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Note: The talk is about stability analysis (or positively invariant sets) for switching systems. The
exposition is via Lyapunov theory (alternatively: backward/forward reachability maps inclusions).

Part of these results is going to be published in the proceedings of the IEEE Conference on Decision and Control, 2019
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Introduction and context

Path Complete Graphs and induced Lyapunov Functions (LFs)
Polyhedral path complete Lyapunov functions (+ motivating example)
Partial liftings

Conclusions



Lyapunov Functions (LFs)

Dynamical Systems:  xz(t+1) = f(xz(t)), t>0, x(0)eR"”

Lyapunov conditions: V(z)>0 x40
Vir)=0 x=0
V(f(z)) <eV(z) zeX (Lyapunovdecrease conditions) ¢ € [0,1]

Sets interpretation: S={z:V(r) <1} X f/%\

f(S)CS or f71(S) DS \@//
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Methods to find LFs (invariant sets)

Parameterizations — different templates for function V(.)

quadratic, sum of squares, piecewise linear, max-of-quadratics, min-of-quadratics, homogeneous, ....

Multiple Lyapunov functions — parameterization of the decrease conditions

Example: z(t+1) = Az(t), i€ {1,2} Conditions:  V,(A1z) < Vi ()
%(Alm) S Va(x) B _
Valdoo) < Vow) V) = mintVa(n) V(@)
Vo(Azz) < V()

Reachability maps and invariance:

lterative backward / forward reachability

maps provide invariant sets (sublevel sets are LFs)
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Path Complete Lyapunov Functions

Constrained Switching Systems: r(t+1) = Azyx(t)
_ 2(t+1) € Out(=2(t),Gg(V,&))
Let A = {Ay,..., Ay}, alabeled directed graph G(V, &) (), 2(t + 1), 0(t)) € &

where (z(0),2(0)) € R™ x V, t > 0.
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Path complete graph: Example: 1 C.:) 9

g(\v,¢)
i.e., any sequence o in G(C, £) can be realized as part of a path _iln gV, & {
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W < as k/®
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Not patll—complete raplu 222 cannot be generate
Path-complete graph G’'(V', &) g ( be g d)



Path Complete Lyapunov Functions

ldea: Describe the decrease conditions of Multiple LFs in a graph: unifies previous approaches

Path Complete LFs: The set V;(-) : R™ — Ry, i = 1,...,|V’|, is a Path-Complete Lyapunov Function if

for all z, for all (s,d, o) € &’

(o)

®/\® < > Va(Agz) < eV (), for some € € [0, 1).
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for all z, for all (s,d, o) € &’

(o)

®/\® < > Vi(Apz) < 1V, (x),

Challenge: find a Lyapunov function / invariant set

for some € € [0, 1).

-> simple yet rich enough template that leads to solvable decrease conditions

-> add complexity in the path complete graph structure
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Polyhedral Path Complete Lyapunov Functions

Polyhedral sets

Viz) = (Ga),
hyperplanes § — {r:Gr<w}={x:V(z) <1} v = zzHllaXm Ww;
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Polyhedral Path Complete Lyapunov Functions

Polyhedral sets

rays S={Vy:c'y<1,y>0} V(z) = m;Q{CTy x=Vy)
Yy~




Polyhedral Path Complete Lyapunov Functions

Condition (decrease/invariance conditions)

The following are equivalent.

©/—\@ (i) Va(Asz) < elvlVy(z).

(i) There exists a nonnegative matrix H € R"4*"s guch that G4A, = HG, and
Huw, < elolw,.

(iii) There exists a nonnegative matrix P € R94*% such that A,V, = V3P and
C(IP < 6""0;.
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Polyhedral Path Complete Lyapunov Functions

Condition (decrease/invariance conditions)

®/\@ (i) Va(Ayz) < el7lVy(z). We fix the hyperplanes (rays) directions for
(i1) | |GaAeGy ws < el7lwg. polytopes with 2n parallel faces (opposite
(iii) | ey |V ALV <éelvle] vertices)




Polyhedral Path Complete Lyapunov Functions

Condition (decrease/invariance conditions)

®/\@ (i) Va(Ayz) < el7lVy(z). We fix the hyperplanes (rays) directions for
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But how restrictive is this choice?




A motivating example

é (1) (1) 8 8 8 No Lyapunov function can be found by
Av=eq el weighting an infinity norm (any
(00 0] L componentwise scaling of the hypercube)

However, a Path-Complete Lyapunov function with pieces weighted infinity norms can always be
found, for a path-complete graph

Intuition: The convex hull of the sublevel set of the path-complete Lyapunov function
approximates the crosspolytope (which is a natural invariant set)
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No Lyapunov function can be found by
weighting a 1-norm (any componentwise
scaling of the cross-polytope)

However, a Path-Complete Lyapunov function with pieces weighted 1-norms can always be

found, for a path-complete graph

-0.202

Intuition: The sublevel set of the path-complete Lyapunov function approximates the
hypercube (which is a natural invariant set)



How to produce better path-complete graphs?

There are known liftings on path-complete graphs that provide hierarchies that guarantee
asymptotic convergence to stability certificates for switching systems, e.q.,

- T/T*-Lifts; use iterated dynamics forwards/backwards in time by adding edges to the graph
[Ahmadi, Jungers et al. 2014, Philippe, Jungers et al. 2016]

-P/P* -Lifts; distinguish between different possible switching sequences forwards/backwards in
time by adding nodes to the graph [Lee and Dullerud 2006, Essick et al. 2014]
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Partial lifts
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How to choose which edge to lift?
Intuition: Lift edges corresponding to conditions that violate the decrease inequality
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Example
.CC(t + 1) = Aa(t) (t), O‘(t) < {1, 2}

0.095 —0.2375 0.2375
A= 1[—-1.9 0 0
0 0 0.475
0.4753 0 0
Aoy = 0 0 0.4753 1 .
0 —1.9012 0
1_11“-- .
1147 \

Iterations

e* = min{e : Vy(A,x) < eVi(x), (i,4,0) € G'(V', &)}
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Conclusions

- Polyhedral Path Complete Lyapunov functions -> solvable algebraic conditions

- Partial liftings can be used instead of full liftings, tradeoff between conservatism and practicality

- LP-based algorithms can be formulated to obtain less conservative stability/invariance conditions

Future:

- Hierarchies of stability certificates
- Other templates

- Control problem



Questions / Suggestions?

Thank you!



Path Complete Lyapunov Functions

Constrained Switching Systems: r(t+1) = Azyx(t)
_ 2(t+1) € Out(=2(t),Gg(V,&))
Let A = {Ay,..., Ay}, alabeled directed graph G(V, &) (), 2(t + 1), 0(t)) € &

where (z(0),2(0)) € R™ x V, t > 0.

Path complete graph: G'(V', ") is path-complete if for an admissible o = ¢105...0; inapathin G(V, £),
k > 1, there are two nodes s € V',d € V', a sequence ¢* = 01009, such that
o* € o(s,d)

i.e., any sequence o in G(C, &) can be realized as part of a path in G'()’, £’)



