Randomization and Quantization for Average Consensus

Bernadette Charron-Bost Patrick Lambein-Monette

Laboratoire d'informatique, École polytechnique

13th International Conference on Reachability Problems 2019–09–12

P. Lambein-Monette (LIX)

Randomization and Quantization for ...

Reachability Problems 2019 1 / 22

• V, a set of *n* agents.

(4) (5) (3) (1) (2)

3

A D N A B N A B N A B N

- *V*, a set of *n* agents.
- Each $u \in V$ has input $\theta_u \in \mathbb{R}$.

э

- *V*, a set of *n* agents.
- Each $u \in V$ has input $\theta_u \in \mathbb{R}$.
- Each $u \in V$ has output $x_u(t)$.

3

- V, a set of *n* agents.
- Each $u \in V$ has input $\theta_u \in \mathbb{R}$.
- Each $u \in V$ has output $x_u(t)$.
- **Goal:** consensus around $\theta := s/n$, with $s := \sum_{u \in V} \theta_u$.

3

- V, a set of *n* agents.
- Each $u \in V$ has input $\theta_u \in \mathbb{R}$.
- Each $u \in V$ has output $x_u(t)$.
- **Goal:** consensus around $\theta := s/n$, with $s := \sum_{u \in V} \theta_u$.

$$\rightsquigarrow \mathbf{x}_{u}(t) \in [\theta - \varepsilon, \theta + \varepsilon]$$

3

Sensor fusion

< □ > < □ > < □ > < □ > < □ >

э

- Sensor fusion
- Motion coordination

A D N A B N A B N A B N

3

- Sensor fusion
- Motion coordination
- Load balancing

A D N A B N A B N A B N

э

- Sensor fusion
- Motion coordination
- Load balancing
- (...)

3

A D N A B N A B N A B N

Algorithm Time Message size Restrictions

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ の Q @

State of the art

Algorithm	Time	Message size	Restrictions
Flooding	$\mathcal{O}(n)$	$\mathcal{O}\left(n\log n\right)$	unique identifiers

Algorithm	Time	Message size	Restrictions
Flooding	$\mathcal{O}\left(\mathbf{n}\right)$	$\mathcal{O}\left(n\log n\right)$	unique identifiers
Nedic et al. 09	$\mathcal{O}\left(\mathbf{n}^{2} ight)$	$\mathcal{O}\left(1 ight)$	bidirectional topology 3-round stability

Algorithm	Time	Message size	Restrictions
Flooding	$\mathcal{O}\left(\mathbf{n}\right)$	$\mathcal{O}\left(n\log n\right)$	unique identifiers
Nedic et al. 09	$\mathcal{O}\left(\mathbf{n}^{2} ight)$	$\mathcal{O}\left(1 ight)$	bidirectional topology 3-round stability
Yuan et al. 13	$\mathcal{O}\left(\mathbf{n}\right)$	∞	fixed and bidirectional topology computation intensive

Algorithm	Time	Message size	Restrictions
Flooding	$\mathcal{O}\left(\mathbf{n}\right)$	$\mathcal{O}\left(n\log n\right)$	unique identifiers
Nedic et al. 09	$\mathcal{O}\left(\mathbf{n}^{2} ight)$	$\mathcal{O}\left(1 ight)$	bidirectional topology 3-round stability
Yuan et al. 13	$\mathcal{O}\left(\mathbf{n}\right)$	∞	fixed and bidirectional topology computation intensive
Olshevsky 14	$\mathcal{O}\left(\textit{N}\right)$	∞	fixed and bidirectional topology $N \ge n$ known to all agents

(ロ) (国) (E) (E) (E) (O)(C)

Algorithm	Time	Message size	Restrictions
Flooding	$\mathcal{O}\left(\mathbf{n}\right)$	$\mathcal{O}\left(n\log n\right)$	unique identifiers
Nedic et al. 09	$\mathcal{O}\left(\mathbf{n}^{2} ight)$	$\mathcal{O}\left(1 ight)$	bidirectional topology 3-round stability
Yuan et al. 13	$\mathcal{O}(n)$	∞	fixed and bidirectional topology computation intensive
Olshevsky 14	$\mathcal{O}\left(\mathbf{N}\right)$	∞	fixed and bidirectional topology $N \ge n$ known to all agents
Oliva et al. 17	$\mathcal{O}\left(\textit{nD} \right)$	$\mathcal{O}\left(\log n\right)$	fixed topology $D \ge$ diameter known to all agents unique identifiers

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Algorithm	Time	Message size	Restrictions
Flooding	$\mathcal{O}\left(\mathbf{n} ight)$	$\mathcal{O}\left(n\log n\right)$	unique identifiers
Nedic et al. 09	$\mathcal{O}\left(\mathbf{n}^{2} ight)$	$\mathcal{O}\left(1 ight)$	bidirectional topology 3-round stability
Yuan et al. 13	$\mathcal{O}\left(\mathbf{n}\right)$	∞	fixed and bidirectional topology computation intensive
Olshevsky 14	$\mathcal{O}\left(\mathbf{N}\right)$	∞	fixed and bidirectional topology $N \ge n$ known to all agents
Oliva et al. 17	$\mathcal{O}\left(\textit{nD}\right)$	$\mathcal{O}\left(\log n\right)$	fixed topology $D \ge$ diameter known to all agents unique identifiers

P. Lambein-Monette (LIX)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Algorithm	Time	Message size	Restrictions
Flooding	$\mathcal{O}\left(\mathbf{n}\right)$	$\mathcal{O}\left(n\log n\right)$	unique identifiers
Nedic et al. 09	$\mathcal{O}\left(\mathbf{n}^{2} ight)$	$\mathcal{O}\left(1 ight)$	bidirectional topology 3-round stability
Yuan et al. 13	$\mathcal{O}\left(\mathbf{n}\right)$	∞	fixed and bidirectional topology computation intensive
Olshevsky 14	$\mathcal{O}\left(\mathbf{N}\right)$	∞	fixed and bidirectional topology $N \ge n$ known to all agents
Oliva et al. 17	$\mathcal{O}\left(\textit{nD}\right)$	$\mathcal{O}\left(\log n\right)$	fixed topology $D \ge$ diameter known to all agents unique identifiers

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Algorithm	Time	Message size	Restrictions
Flooding	$\mathcal{O}\left(\mathbf{n} ight)$	$\mathcal{O}\left(n\log n\right)$	unique identifiers
Nedic et al. 09	$\mathcal{O}\left(\mathbf{n}^{2} ight)$	$\mathcal{O}\left(1 ight)$	bidirectional topology 3-round stability
Yuan et al. 13	$\mathcal{O}(n)$	∞	fixed and bidirectional topology computation intensive
Olshevsky 14	$\mathcal{O}\left(\mathbf{N}\right)$	∞	fixed and bidirectional topology $N \ge n$ known to all agents
Oliva et al. 17	$\mathcal{O}\left(\textit{nD} \right)$	$\mathcal{O}\left(\log n\right)$	fixed topology $D \ge$ diameter known to all agents unique identifiers

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Algorithm	Time	Message size	Restrictions
Flooding	$\mathcal{O}\left(\mathbf{n}\right)$	$\mathcal{O}\left(n\log n\right)$	unique identifiers
Nedic et al. 09	$\mathcal{O}\left(\mathbf{n}^{2} ight)$	$\mathcal{O}\left(1 ight)$	bidirectional topology 3-round stability
Yuan et al. 13	$\mathcal{O}(n)$	∞	fixed and bidirectional topology computation intensive
Olshevsky 14	$\mathcal{O}\left(\mathbf{N}\right)$	∞	fixed and bidirectional topology $N \ge n$ known to all agents
Oliva et al. 17	$\mathcal{O}\left(\textit{nD} \right)$	$\mathcal{O}\left(\log n\right)$	fixed topology $D \ge$ diameter known to all agents unique identifiers

P. Lambein-Monette (LIX)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Algorithm	Time	Message size	Restrictions	
Flooding	$\mathcal{O}\left(\mathbf{n} ight)$	$\mathcal{O}\left(n\log n\right)$	unique identifiers	
Nedic et al. 09	$\mathcal{O}\left(\mathbf{n}^{2} ight)$	$\mathcal{O}\left(1 ight)$	bidirectional topology 3-round stability	
Yuan et al. 13	$\mathcal{O}(n)$	∞	fixed and bidirect computation inte	tional topology Insive
Olshevsky 14	$\mathcal{O}\left(\mathbf{N}\right)$	∞	fixed and bidirectional topology $N \ge n$ known to all agents	
Oliva et al. 17	$\mathcal{O}\left(\textit{nD} \right)$	$\mathcal{O}\left(\log n\right)$	fixed topology $D \ge$ diameter known unique identifiers	own to all agents
Algorithm $\overline{\mathcal{R}}$	n-1	$\mathcal{O}\left(\log\log n\right)$	Monte Carlo	
R Lambein Monette /		Pandomization ar	 A Quantization for 	→ ▶ ▲ ⊡ ▶ ▲ 를 ▶ ▲ 를 ▶ ↓ 를 ▶ ↓ 를
P. Lambeln-Wonette		reancionization ar	iu Quantization for	Reachability Problems 2019

æ

4/22

• $\mathcal{O}(n)$ convergence

3

A D N A B N A B N A B N

- $\mathcal{O}(n)$ convergence
- $\mathcal{O}(\log \log n)$ space use

3

(日) (同) (日) (日)

- $\mathcal{O}(n)$ convergence
- $\mathcal{O}(\log \log n)$ space use
- no global knowledge

э

- 4 回 ト 4 ヨ ト 4 ヨ ト

- $\mathcal{O}(n)$ convergence
- $\mathcal{O}(\log \log n)$ space use
- no global knowledge
- no bidirectional links

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Properties of the algorithm \mathcal{R}

- $\mathcal{O}(n)$ convergence
- $\mathcal{O}(\log \log n)$ space use
- no global knowledge
- no bidirectional links
- no stability of the topology

< A IN

Properties of the algorithm \mathcal{R}

- $\mathcal{O}(n)$ convergence
- $\mathcal{O}(\log \log n)$ space use
- no global knowledge
- no bidirectional links
- no stability of the topology
- no identifiers

< A IN

- $\mathcal{O}(n)$ convergence
- $\mathcal{O}(\log \log n)$ space use
- no global knowledge
- no bidirectional links
- no stability of the topology
- no identifiers

- $\mathcal{O}(n)$ convergence
- $O(\log \log n)$ space use
- no global knowledge
- no bidirectional links
- no stability of the topology
- no identifiers

Builds on the works of Mosk-Aoyama and Shah (2006), and Kuhn et alii (2010).

Communication

• Closed rounds $t = 1, 2, \ldots$

P. Lambein-Monette (LIX)

3

A D N A B N A B N A B N

Communication

- Closed rounds $t = 1, 2, \ldots$
- During a round *t*, each agent *u*:

3

A D N A B N A B N A B N

Communication

- Closed rounds $t = 1, 2, \ldots$
- During a round *t*, each agent *u*:
 - **1** Sends a message $m_u(t)$.

э

Communication

- Closed rounds $t = 1, 2, \ldots$
- During a round t, each agent u:
 - **1** Sends a message $m_u(t)$.
 - 2 Receives some messages $m_{v_1}(t), \ldots, m_{v_k}(t)$ sent by agents v_1, \ldots, v_k .

- 4 回 ト 4 ヨ ト 4 ヨ ト

Communication

- Closed rounds $t = 1, 2, \ldots$
- During a round t, each agent u:
 - **1** Sends a message $m_u(t)$.
 - 2 Receives some messages $m_{v_1}(t), \ldots, m_{v_k}(t)$ sent by agents v_1, \ldots, v_k .
 - Transitions to a new state.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Communication

- Closed rounds $t = 1, 2, \ldots$
- During a round *t*, each agent *u*:
 - **1** Sends a message $m_u(t)$.
 - 2 Receives some messages $m_{v_1}(t), \ldots, m_{v_k}(t)$ sent by agents v_1, \ldots, v_k .
 - Transitions to a new state.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Communication graph

For each round t,

æ

A D N A B N A B N A B N
Communication graph

For each round t,

• binary relationship: $u \sim_t v \iff v$ receives $m_u(t)$ at round t

3

イロト イポト イヨト イヨト

Communication graph

For each round t,

- binary relationship: $u \sim_t v \iff v$ receives $m_u(t)$ at round t
- directed graph $\mathbb{G}(t) = (V, E(t))$

- 3

< 日 > < 同 > < 三 > < 三 >

Communication graph

For each round t,

- binary relationship: $u \sim_t v \iff v$ receives $m_u(t)$ at round t
- directed graph $\mathbb{G}(t) = (V, E(t))$
- $(u, v) \in E(t) \iff u \sim_t v$

- 3

< 日 > < 同 > < 回 > < 回 > < 回 > <

Communication graph

For each round t,

- binary relationship: $u \sim_t v \iff v$ receives $m_u(t)$ at round t
- directed graph $\mathbb{G}(t) = (V, E(t))$
- $(u, v) \in E(t) \iff u \sim_t v$

3

・ 何 ト ・ ヨ ト ・ ヨ ト

Communication graph

For each round *t*,

- binary relationship: $u \sim_t v \iff v$ receives $m_u(t)$ at round t
- directed graph $\mathbb{G}(t) = (V, E(t))$

•
$$(u, v) \in E(t) \iff u \sim_t v$$

э

0

Model

Communication graph

For each round t,

- binary relationship: $u \sim_t v \iff v$ receives $m_u(t)$ at round t
- directed graph $\mathbb{G}(t) = (V, E(t))$

•
$$(u, v) \in E(t) \iff u \sim_t v$$

э

Communication graph

For each round t,

- binary relationship: $u \sim_t v \iff v$ receives $m_u(t)$ at round t
- directed graph $\mathbb{G}(t) = (V, E(t))$

•
$$(u, v) \in E(t) \iff u \sim_t v$$

э

Communication assumptions

In each round *t*, the graph $\mathbb{G}(t)$:

э

< □ > < □ > < □ > < □ > < □ > < □ >

Communication assumptions

In each round *t*, the graph $\mathbb{G}(t)$:

• has a self-loop (u, u) for each vertex $u \in V$

Communication assumptions

In each round *t*, the graph $\mathbb{G}(t)$:

- has a self-loop (u, u) for each vertex u ∈ V
- is strongly connected

Communication assumptions

In each round *t*, the graph $\mathbb{G}(t)$:

- has a self-loop (u, u) for each vertex u ∈ V
- is strongly connected

 $\rightsquigarrow \mathbb{G}(t) \circ \cdots \circ \mathbb{G}(t+n-1) = K_V$

3

Input: $\theta_u \in \mathbb{R}$ $x_u \leftarrow \theta_u$ for t = 1, 2, ... do Send x_u . Receive $x_{v_1}, ..., x_{v_k}$ from neighbors. $x_u \leftarrow \min \{x_{v_1}, ..., x_{v_k}\}$ end for

3

3

3

3

3

3

3

\rightsquigarrow Converges in at most n-1 rounds.

In this model, deterministically computable functions are **order**- and **multiplicity**-independent in the input values, unless the agents have either:

A B K A B K

In this model, deterministically computable functions are **order**- and **multiplicity**-independent in the input values, unless the agents have either:

• unique identifiers

In this model, deterministically computable functions are **order**- and **multiplicity**-independent in the input values, unless the agents have either:

- unique identifiers
- knowledge of their out-degree

4 1 1 1 4 1 1 1

In this model, deterministically computable functions are **order**- and **multiplicity**-independent in the input values, unless the agents have either:

- unique identifiers
- knowledge of their out-degree

even for a fixed topology.

10/22

In this model, deterministically computable functions are **order**- and **multiplicity**-independent in the input values, unless the agents have either:

- unique identifiers
- knowledge of their out-degree

even for a fixed topology.

\rightsquigarrow the average is not computable.

A B A A B A

In this model, **deterministically** computable functions are **order**- and **multiplicity**-independent in the input values, unless the agents have either:

- unique identifiers
- knowledge of their out-degree

even for a fixed topology.

\rightsquigarrow the average is not deterministically computable.

Exponential random variables

$$\left. \begin{array}{c} X_1 \sim \mathsf{Exp}(\lambda_1), \\ \left(\vdots \right) \\ X_k \sim \mathsf{Exp}(\lambda_k) \end{array} \right\}$$

independent

P. Lambein-Monette (LIX)

э

11/22

Exponential random variables

$$\left. \begin{array}{c} X_1 \sim \mathsf{Exp}(\lambda_1), \\ \left(\vdots \right) \\ X_k \sim \mathsf{Exp}(\lambda_k) \end{array} \right\}$$

independent

$$\rightsquigarrow \min \{X_1, \ldots, X_k\}$$

P. Lambein-Monette (LIX)

Randomization and Quantization for ...

Reachability Problems 2019

э

11/22

Exponential random variables

$$\left. \begin{array}{c} X_1 \sim \mathsf{Exp}(\lambda_1), \\ \left(\vdots \right) \\ X_k \sim \mathsf{Exp}(\lambda_k) \end{array} \right\}$$

independent

$$\rightsquigarrow \min \{X_1, \ldots, X_k\} \sim \mathsf{Exp}(\lambda_1 + \cdots + \lambda_k)$$

P. Lambein-Monette (LIX)

Randomization and Quantization for ...

Reachability Problems 2019

э

11/22

First idea

$\mathbb{E}\left[\textbf{X} \sim \mathsf{Exp}(\lambda) \right] = 1/\lambda$

P. Lambein-Monette (LIX)

Randomization and Quantization for ...

Reachability Problems 2019

12/22

- 2

First idea

$\mathbb{E}\left[\textbf{X} \sim \mathsf{Exp}(\lambda) \right] = 1/\lambda$

$\forall u \in V, X_u \sim \mathsf{Exp}(\theta_u)$

P. Lambein-Monette (LIX)

12/22

イロト 不得下 イヨト イヨト 二日

Probabilities

First idea

$\mathbb{E}\left[\textbf{X} \sim \mathsf{Exp}(\lambda) \right] = 1/\lambda$

$\forall u \in V, X_u \sim \mathsf{Exp}(\theta_u) \qquad \Rightarrow X := \min \{X_u \mid u \in V\} \sim \mathsf{Exp}(s)$

P. Lambein-Monette (LIX)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

12/22

First idea

$\mathbb{E}\left[\textbf{X} \sim \mathsf{Exp}(\lambda) \right] = 1/\lambda$

 $\forall u \in V, X_u \sim \mathsf{Exp}(\theta_u) \qquad \Rightarrow X := \min \{X_u \mid u \in V\} \sim \mathsf{Exp}(s)$

 $\forall u \in V, Y_u \sim Exp(1)$

12/22

Probabilities

First idea

$$\mathbb{E}\left[\boldsymbol{X} \sim \mathsf{Exp}(\lambda)\right] = 1/\lambda$$

$$\forall u \in V, X_u \sim \mathsf{Exp}(\theta_u) \qquad \Rightarrow X := \min \left\{ X_u \mid u \in V \right\} \sim \mathsf{Exp}(s)$$

$$\forall u \in V, Y_u \sim \mathsf{Exp}(1) \qquad \Rightarrow Y := \min\{Y_u \mid u \in V\} \sim \mathsf{Exp}(n)$$

First idea

$$\mathbb{E}\left[\boldsymbol{X} \sim \mathsf{Exp}(\lambda)\right] = 1/\lambda$$

$$\forall u \in V, X_u \sim \mathsf{Exp}(\theta_u) \qquad \Rightarrow X := \min \left\{ X_u \mid u \in V \right\} \sim \mathsf{Exp}(s)$$

$$\forall u \in V, Y_u \sim \mathsf{Exp}(1) \qquad \Rightarrow Y := \min\{Y_u \mid u \in V\} \sim \mathsf{Exp}(n)$$

$$\rightsquigarrow \mathbb{E}\left[X\right] = 1/s, \qquad \mathbb{E}\left[Y\right] = 1/n$$

First idea

$$\mathbb{E}\left[\boldsymbol{X} \sim \mathsf{Exp}(\lambda)\right] = 1/\lambda$$

$$\forall u \in V, X_u \sim \mathsf{Exp}(\theta_u) \qquad \Rightarrow X := \min \left\{ X_u \mid u \in V \right\} \sim \mathsf{Exp}(s)$$

$$\forall u \in V, Y_u \sim \mathsf{Exp}(1) \qquad \Rightarrow Y := \min\{Y_u \mid u \in V\} \sim \mathsf{Exp}(n)$$

$$\rightsquigarrow \mathbb{E}[X] = 1/s, \qquad \mathbb{E}[Y] = 1/n$$

$$\ldots \mathbb{E}\left[Y/X\right] = +\infty$$

P. Lambein-Monette (LIX)

3

12 / 22
Exponential random variable (continued)

$$\left. \begin{array}{c} X_1 \sim \mathsf{Exp}(\lambda), \\ \left(\vdots \right) \\ X_\ell \sim \mathsf{Exp}(\lambda) \end{array} \right\} \quad \text{ i.i.d.}$$

3

13/22

Exponential random variable (continued)

$$\left. \begin{array}{c} X_1 \sim \mathsf{Exp}(\lambda), \\ \left(\vdots \right) \\ X_\ell \sim \mathsf{Exp}(\lambda) \end{array} \right\} \quad \text{ i.i.d}$$

$$\begin{split} \Pr\left[\left|\frac{X_1 + \dots + X_\ell}{\ell} - \frac{1}{\lambda}\right| \geq \frac{\alpha}{\lambda}\right] \\ &\leq 2\exp\left(-\frac{\ell\alpha^2}{3}\right) \end{split}$$

(Cramér-Chernoff bound)

3

Exponential random variable (continued)

(Cramér-Chernoff bound)

13/22

э

Contribution

The algorithm $\ensuremath{\mathcal{R}}$

- 2

Contribution

The algorithm $\ensuremath{\mathcal{R}}$

The algorithm $\ensuremath{\mathcal{R}}$

The algorithm $\ensuremath{\mathcal{R}}$

Contribution

The algorithm $\mathcal R$

- 御下 - 戸下 - 戸下 - 戸

The algorithm ${\cal R}$

• • = • • = •

Contribution

The algorithm $\ensuremath{\mathcal{R}}$

æ

Contribution

The algorithm ${\cal R}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Convergence of the algorithm $\mathcal{R}_{\varepsilon,\eta}$

 ℓ ?

P. Lambein-Monette (LIX)

3

15/22

Convergence of the algorithm $\mathcal{R}_{\varepsilon,\eta}$

$$\ell = \left\lceil 3(2+\varepsilon)^2 (\ln 4 - \ln \eta) (\boldsymbol{b} - \boldsymbol{a} + 1)^2 / \varepsilon^2 \right\rceil$$

Theorem:

•
$$\forall t \ge n - 1, x_u = x^*$$

• $\Pr[x^* \notin [\theta - \varepsilon, \theta + \varepsilon]] \le \eta$

3

15/22

• Sampling from $\mathcal{U}([0,1]),$ agents generate random identifiers, unique with probability 1.

< □ > < □ > < □ > < □ > < □ > < □ >

э

- Sampling from $\mathcal{U}([0,1]),$ agents generate random identifiers, unique with probability 1.
- Via flooding, we compute the *exact* average.

16/22

- \bullet Sampling from $\mathcal{U}([0,1]),$ agents generate random identifiers, unique with probability 1.
- Via flooding, we compute the *exact* average.

However...

< 日 > < 同 > < 三 > < 三 >

- Sampling from $\mathcal{U}([0,1]),$ agents generate random identifiers, unique with probability 1.
- Via flooding, we compute the *exact* average.

However...

• With finite memory, random IDs collide with non-null probability.

- \bullet Sampling from $\mathcal{U}([0,1]),$ agents generate random identifiers, unique with probability 1.
- Via flooding, we compute the *exact* average.

However...

- With finite memory, random IDs collide with non-null probability.
- Generating unique identifiers w.h.p. requires agents to know a bound on *n* to circumvent the birthday paradox.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

- \bullet Sampling from $\mathcal{U}([0,1]),$ agents generate random identifiers, unique with probability 1.
- Via flooding, we compute the *exact* average.

However...

- With finite memory, random IDs collide with non-null probability.
- Generating unique identifiers w.h.p. requires agents to know a bound on *n* to circumvent the birthday paradox.
- The algorithm ${\mathcal R}$ does not require global information.

16/22

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Relevance of the algorithm ${\cal R}$

- \bullet Sampling from $\mathcal{U}([0,1]),$ agents generate random identifiers, unique with probability 1.
- Via flooding, we compute the *exact* average.

However...

- With finite memory, random IDs collide with non-null probability.
- Generating unique identifiers w.h.p. requires agents to know a bound on *n* to circumvent the birthday paradox.
- The algorithm ${\mathcal R}$ does not require global information.
- Does it degrade gracefully when real numbers cannot be used?

ヘロト ヘヨト ヘヨト

Rounding and quantization

We can adapt the algorithm $\ensuremath{\mathcal{R}}$ so that it requires finite memory and bandwidth.

< □ > < □ > < □ > < □ > < □ > < □ >

э

Rounding and quantization

We can adapt the algorithm ${\mathcal R}$ so that it requires finite memory and bandwidth.

By appropriately rounding each $\sigma_u^{(i)}$ and $\nu_u^{(i)}$, this new algorithm $\overline{\mathcal{R}}$ uses

$$\mathcal{O}\left((-\log\eta/\varepsilon^2)(\log\left(\log n - \log\eta\right) - \log\varepsilon)\right)$$

bits of memory/bandwidth, at the cost of making $\ell' \leq K \ell$ samples.

17 / 22

To sum up

 $\bullet\,$ Our Monte Carlo algorithm computes a good approximation of the average θ

To sum up

- $\bullet\,$ Our Monte Carlo algorithm computes a good approximation of the average θ
- Fast: n-1 rounds

3

18/22

イロト イポト イヨト イヨト

To sum up

- \bullet Our Monte Carlo algorithm computes a good approximation of the average θ
- Fast: n-1 rounds
- Efficient: $O(\log \log n)$ bits of memory/bandwidth

3

18/22

< 日 > < 同 > < 三 > < 三 >

To sum up

- $\bullet\,$ Our Monte Carlo algorithm computes a good approximation of the average θ
- Fast: n-1 rounds
- Efficient: $O(\log \log n)$ bits of memory/bandwidth
- Completely distributed: no identifiers, no global information

< 日 > < 同 > < 三 > < 三 >

To sum up

- $\bullet\,$ Our Monte Carlo algorithm computes a good approximation of the average θ
- Fast: n-1 rounds
- Efficient: $O(\log \log n)$ bits of memory/bandwidth
- Completely distributed: no identifiers, no global information
- Works with any strongly connected communication topology

18/22

To sum up

- \bullet Our Monte Carlo algorithm computes a good approximation of the average θ
- Fast: n-1 rounds
- Efficient: $O(\log \log n)$ bits of memory/bandwidth
- Completely distributed: no identifiers, no global information
- Works with any strongly connected communication topology
- Can be used to decide rather than simply stabilize

18/22

Thank you

P. Lambein-Monette (LIX)

Randomization and Quantization for ...

Reachability Problems 2019

< □ > < □ > < □ > < □ > < □ >

19/22

э

Logarithmic rounding

 $r_{\beta}(\mathbf{x}) := (1+\beta)^{\left\lfloor \log_{1+\beta} \mathbf{x} \right\rfloor}$

Logarithmic rounding

Convergence of the algorithm $\overline{\mathcal{R}}$

$$\beta = \varepsilon / (6 + \varepsilon) (\mathbf{b} - \mathbf{a} + 1)$$

$$\ell = \left\lceil 3(4 + \varepsilon)^2 (\ln 8 - \ln \eta) (\mathbf{b} - \mathbf{a} + 1)^2 / \varepsilon^2 \right\rceil$$

イロト イポト イヨト イヨト

э

Convergence of the algorithm $\overline{\mathcal{R}}$

$$\beta = \varepsilon/(6+\varepsilon)(b-a+1)$$

$$\ell = \left\lceil 3(4+\varepsilon)^2(\ln 8 - \ln \eta)(b-a+1)^2/\varepsilon^2 \right\rceil$$

Theorem:

•
$$\forall t \ge n - 1, x_u = x^*$$

• $\Pr[x^* \notin [\theta - \varepsilon, \theta + \varepsilon]] \le \eta/2$

Quantization levels

Each
$$\sigma_u^{(i)}$$
, $\nu_u^{(i)}$ can be represented
over $Q = \mathcal{O}\left(\frac{1}{\varepsilon}\left(\log n - \log \eta - \log \varepsilon\right)\right)$ quantization levels,
with probability at least $1 - \eta/2$.

Quantization levels

Each
$$\sigma_u^{(i)}$$
, $\nu_u^{(i)}$ can be represented
over $Q = \mathcal{O}\left(\frac{1}{\varepsilon}\left(\log n - \log \eta - \log \varepsilon\right)\right)$ quantization levels,
with probability at least $1 - \eta/2$.

$\stackrel{\rightsquigarrow}{\rightarrow} \mathsf{memory/bandwidth in} \\ \mathcal{O}\left((-\log\eta/\varepsilon^2)(\log(\log n - \log\eta) - \log\varepsilon)\right) \text{ bits.}$