Deciding Reachability for Piecewise Constant Derivative Systems on Orientable Manifolds

> Andrei Sandler and Olga Tveretina University of Hertfordshire

Reachability Problems'19

Motivation

Understanding the boundary between decidable and undecidable hybrid systems

A hybrid automaton is

(a) a finite state machine combined with some k real-valued continuous variables

(b) k determines the number of the automaton dimensions

Asarin, Mysore, Pnueli and Schneider, 2011 'Low dimensional hybrid systems - decidable, undecidable, don't know':

A Piecewise Constant Derivative System (PCDs) is a finite set of regions, where each region is associated with a constant vector field.

A 2-dimensional Piecewise Constant Derivative System (or 2-PCD) is a pair H = (Q, F) with $Q = \{q_i\}_{i \in I}$ a finite polygonal partition of \mathbb{R}^2 and $F = \{\vec{v}_i\}_{i \in I}$ a set of vectors from \mathbb{R}^2 . The dynamics is determined by the equation $\dot{x} = \vec{v}_i$ for $x \in q_i$.

Example

An example of a 2-PCD and a trajectory segment:

Reachability Problem for PCDs

Point-to-point reachability:

A point b is reachable from a point a if there is a trajectory segment that starts at a and ends at b.

Edge-to-edge reachability:

An edge e_f is reachable from an edge e_s if there are points $a_s \in e_s$ and $b_f \in e_f$ such that there is a trajectory segment that starts at a_s and ends at b_f .

Decidability:

(Maler and Pnueli, 1993) Decidable for the 2-dimensional case: Each trajectory is ultimately periodic

(Asarin, Maler and Pnueli, 1995) Undecidable for 3-dimensions

PCDs on Manifolds (PCD_{2m})

Representations of a torus:

- (a) A surface in \mathbb{R}^3
- (b) A triangulated surface with identified edges

A closed surface is a compact surface without boundary

PCD on a 2-dimensional manifold (PCD_{2m}) is a 2-PCD on a closed orientable surface S.

Regular PCDs on Manifolds (PCD_{r2m})

We forbid the following dynamics in PCD_{r2m} :

- (a) collision at an edge;
- (b) branching at an edge;
- (c) collision and branching on a vertex;
- (d) flow vector parallel to an edge

Regionwise Dynamical Systems (RDS_{2m})

A. Mayer: Trajectories on the closed orientable surfaces, 1943

A finite number of regions r_i , homeomorphic to a Euclidean disc with he dynamics in each r_i defined by :

$$\varphi_i' = \Phi(\varphi_i, \psi_i), \quad \psi_i' = \Psi(\varphi_i, \psi_i)$$

A trajectory τ is dense on a set of intervals e_1, \ldots, e_k if for any $x \in \tau$ and any interval $e'_i \subseteq e_i, 1 \leq i \leq k$, there is $y \in e'_i$ such that y is reachable from x.

A trajectory τ is called orbital stable if for any $\varepsilon > 0$ there exists $\delta > 0$ such that if a trajectory τ' starts in the δ -neighbourhood of τ then it is also contained in the ε -neighbourhood of τ .

Any RDS_{2m} can be decomposed into components consisting of trajectories which are equivalent topologically.

Theorem (Mayer):

A $RDS_{2m} S_g$ is a disjoint union of a finite number of areas of the following types:

Type A: Any trajectory inside the area is orbital stable and non-closed (the area is flat!).

Type B: Any trajectory inside the area is closed

Type C: Any trajectory inside the area is everywhere dense

All other trajectories, called **separatrices**, form boundaries between the areas of the above types.

The component is of Type A is highlighted with grey colour:

A PCD_{r2m} consisting of one dynamical component of Type B:

A word $e_1 \dots e_k$ is a sequence of edges traversed by some trajectory segment.

A language L is called **uniformly recurrent** if for any $n \in \mathbb{N}$ there exists $k \in \mathbb{N}$ such that every word from L of length k contains all of the words from L of length n as subwords.

Lemma.

Density of the trajectories of a dynamical component of Type C of a $PCD_{r2m} H = (Q, F)$ implies the uniformal recurrence of its language L_C .

Corollary. The language of any dynamical component of Type B of any PCD_{r2m} is uniformly recurrent.

Rauzy Graphs

Rauzy graph of power $k \ge 1$ for a language L is a directed graph $R^k(L) = (V^k, E^k)$ defined as follows:

(1)
$$V^k = \{w \in L \mid |w| = k\};$$

(2) For any two vertices $u = u_1 u_2 \dots u_k \in V^k$ and $v = v_1 v_2 \dots v_k \in V^k$ there is an edge $(u, v) \in E^k$ if $u_2 = v_1, u_3 = v_2, \dots, u_k = v_{k-1}$ and $u_1 u_2 \dots u_k v_k \in L.$

Example

The Rauzy graphs of power one and two for $L = \{a, b, c, ab, bc, ba, ca, abc, aba, bab, bca, cab\}$:

Decidability of Edge-to-Edge Reachability for PCD_{r2m}

Theorem.

Edge-to-edge reachability for a PCD_{r2m} is decidable.

Idea of the proof:

For any $PCD_{r2m} H = (Q, F)$, we can construct a sequence of Rauzy graphs such that the set V^k of vertices of $R^k(L) = (V^k, E^k)$ consists of all the words of length k over the finite alphabet on the edges of H.

This set can be constructed by applying the successor function k-1 times to each edge.

There is a finite t_{stop} such that an edge $e_f \in e(\mathbb{Q})$ is reachable from an edge e_s if and only if $R^{t_{stop}}(L)$ contains a component with a vertex labelled by a word $(\ldots e_s \ldots e_f \ldots)$.

While the reachability problem for the whole class PCD_{2m} is still an open question, we proved that under certain limitations on the systems dynamics it becomes decidable.

As future work we consider to extend the current results to non-orentable manifolds using properties of trajectories on non-orientable manifolds presented in

Aranson, S.H.: Trajectories on non-orientable two-dimensional manifolds.

Thank you

