Parameterised Verification of Publish/Subscribe

Networks with Exception Handling

Giorgio Delzanno

DIBRIS, University of Genova

RP 2019, Bruxelles

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks

Summary of Contributions

@ A Formal Model of Publish/Subscribe Networks

e Single broker, multiple clients

o Different forms of exception handling in the notification phase

@ Retained messages

o Different ways of handling exceptions

@ Some Decidability Results for Parameterised Verification based on
WSTS/Petri Nets

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks

@ Publish/Subscribe Systems

© Formal Model of Publish/Subscribe Networks
© Parameterized Verification

@ Handling Exception Globally

© Conclusions

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks

Publish /Subscribe Systems

@ Architecture

o A broker is in charge of distributing messages to clients subscribed to
certain topics

o Individual nodes can perform operations such as subscription and push
notifications

o Advantages

e Multicast communication in open networks with heterogenous
components, mitigation of security and privacy issues (data are
published only by broker nodes)

@ Application of Pub/Sub to loT Systems

e Communication among Edge Devices and Cloud (Micro)Services
e Ensure Consistency in Distributed Storage and Microservices
Architectures

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks

@ A broker must ensure

e consistency of internal data structures

o efficient data propagation (e.g. data structures indexed on topic
names, client id’s, etc)

e robustness with respect to exceptions due to network/client failures

@ We will consider different ways of exception handling using a Java
implementation of a broker

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks

Formal Model of Publish/Subscribe Networks

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks

Publish /Subscribe Networks: A Broker Perspective

o Given
e sets T (topics names), Q (client state), and M (message labels)
e a client automata P = (Q, qo, R)
e client transition labels taken from
A = {local, (un)subscribe(s), publish(m, t)|s € 2T, m € M, t € T}
@ The set N of configurations of a Pub/Sub Network S consists of
multi-sets v = {c1, ..., ck} of client configurations

@ The relation —C N x N defines the broker semantics

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks

Client Configuration

A client configuration c is a tuple (q, s, b, f), where
@ g € Q is the current client state,
s € 27 is the set of topics for which the client is a subscriber,

b € 2M is the set of messages received so far

f e {T, L} is a flag that defines the connection status of the client
with respect to the global network
T = normal operating status, 1 = disconnected

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks

Broker Semantics: Local Operations

Local {{(q,s,b,)} C — {(d,s,b,T)}&C

Subscription {{q,s,b,)} d C — {(¢,sUs;,b,)} & C
if (g, subscribe(s1),q') € R

Unsubscription — {{(q,s,b,)} & C — {(¢',s\s1,b,)} & C
if (q, unsubscribe(s1),q’) € R

Disconnection {(q,s,b,)} & C — {(q.s,b, L)} & C

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks

Broker Semantics: Push Notification

@ The broker acknowledges a request and, inside a synchronisation
block, forwards the message to the clients subscribed to the topic

@ Communication failures are captured locally via try-catch statements

boolean publish (String topic, String news,
throws Exception {
ClientInterface elient;
synchronized (topicRelation) {
Map<Integer , ClientInterface >
subscriberList = topicRelation.get(topic);
synchronized (subscriberList) {
Iterator <Map. Entry<Integer , ClientInterface>> entries =
subscriberList.entrySet () .iterator ();
while (entries.hasNext()) {
Map. Entry<Integer, ClientInterface>
entry = entries.next();
client = entry.getValue();
try { stub.send(topic ,sender ,news); }
catch (RemoteException e) {
System.out.println (" Notification error);
}

i
}

String sender)

return true;

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks

Broker Semantics: Global Operation

Publish ~ {{q,s,m, T)} &~ — {{(¢,s,m, T)} &+
if
e (q, publish(m,t),q') € R,
e & = Et(t,7) (multiset of connected clients)
° n=79¢,
o v = Addn,(t,&) ® p (m is added to t-subscribers in &)

This rule models exceptions handled locally, i.e., notifications reach all
connected clients

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks

Parameterized Verification

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks

The Coverability Decision Problem

o Given

A Pub/Sub Network (N, —) defined over the sets T, M, Q, A
A Client specification P

An ordering < on Network Configurations

A set Ny of Initial Network Configuration

A finite set of configuration F C N

@ The Coverability Decision Problem consists in checking whether
No N Pre*(uc<(F)) =0

where
o Pre(C)={y|3y € Cst. v =~}
o uc<(S) ={ly <+ v €S}

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks

Decidability

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks

The <,, Ordering

@ Given client configurations ¢y, ¢,

a1 = (q1,s1, b1, i) <c & = (g2, %2, b, o) iff g1 = g2, 51 = 5,
b1 C by, and f; = f.

@ Given Network Configurations v1, 72, 71 < 72 iff there exists an

injective map h from the configurations in v1 = {c1,..., ¢k} to
configurations in yo = {d, ..., dp} such that ¢; <. h(¢;) for
i1,k

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks

Decidability 1

The Coverability Decision Problem is decidable for Pub/Sub Networks
equipped with ordering <,

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks

We first observe that the ordering <,, is obtained embedding equality over
finite sets and finite set inclusion into multiset inclusion.

By Higman Lemma’s, the resulting ordering is a well-quasi-ordering

The transition relation — induced by a client specification P is monotone
w.r.t. <,, ie., if 1 <, v2 and 1 — ~y3, then there there exists 4 s.t.

Y2 = Y4 and 13 <p, 73.

Given a finite set of configuration C it is possibile to compute a finite
representation of Pre(uc<,(C)) via an encoding into transfer arc
operations on Petri Nets

Decidability of coverability follows then from the general results on
well-structured transition systems (WSTYS)

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks

Retained Messages: Push Notifications

PUShf <g7{<q7 s, m, T)H @7> - <g/a{<q,75a m, T)H @71>

if
e (q, publish(m,t),q’) € R,
o u=76¢,

e 7 = Addn(t,§) & u,
o g'(t)=g(t)u{m}, g'(r) =g(r) for r £ t
where g is a global map from T to 2M

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks

Retained Messages: Subscription

Subscribe, (g, {(q,s,b,)} @y — {{q’,sUs,bUg(s1), T)} ®~)

when (g, subscribe(s1),q’) € R.

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks

Decidability 2

The Coverability Decision Problem remains decidable for Pub/Sub
Networks with retained messages and equipped with the <, ordering

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks

Handling Exception Globally

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks

Broker Internal Structure: Second Scenario

@ Every invocation of the publish method is embedded into a try-catch
statement to propagate error notifications to the server or to modify
the current list of active clients.

boolean publish (String topie, String news, String sender)
throws Exception {
synchronized (topicRelation) {
Map<Integer , InfoSub> subscriberList =
topicRelation . get (topic):
synchronized (subscriberList) {
[terator <Map ry<Integer ;, InfoSub>>
entries = subscriberList.entrySet().iterator();
while (entries.hasNext()) {
Map. Entry<Integer , InfoSub>
entry = entries.next();
entry . getValue () .send (topic ,sender ,news);

b
}

return true;

i

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks

Modified Semantics

Publishe — {{g,s,m, T)} &~ — {(¢/,s,m, T)} &~

if
e (q, publishe(m,t),q') € R
o Etx(t,vy) =mn, ®np,®nr (multiset of connected clients)
e 1), represents clients who receive the notification
e 1)¢ represents clients who fail during notification
e 1), represents clients who do receive the notification and do no fail
o p=7 1 Snr)
o 7' = Addm(n,) ® Upy(nf) &

where Up, (7)) sets all connection flags in 7 to L

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks

Decidability 3

The Coverability Decision Problem is decidable for Pub/Sub Networks
with publish, semantics and equipped with the <, ordering

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks

Proof sketch

o Flatten configuration (move topic and messages in control states)

@ Counter representation as a symbolic representation of global
configurations as in Petri Nets

@ To model publishe we associate an auxiliary variable AuxX to each
counter X and a gadget to move a non-deterministic amount of
tokens from X to AuxX.

@ Gadgets can be pipelined in a globally locked series of transitions in
order to simulate the non-deterministic split of active clients in three
classes (receive notification, do not receive notification, fail)

@ Reduction to coverability of a Petri Net

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks

Conclusions

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks

Conclusions

o Contributions
o A Formal Model of Publish/Subscribe Network with different ways of

handling communication exceptions
o Reductions to (extended) Petri nets for obtaining decidable fragment

@ Possible Extensions
o Refinement of the broker model (e.g. internal data structures,
asynchronous phases)

o Federation of brokers (e.g. broker hierarchies)
o Other protocol properties (e.g. success of notifications?)

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks

	Publish/Subscribe Systems
	Formal Model of Publish/Subscribe Networks
	Parameterized Verification
	Handling Exception Globally
	Conclusions

