
Parameterised Verification of Publish/Subscribe
Networks with Exception Handling

Giorgio Delzanno

DIBRIS, University of Genova

RP 2019, Bruxelles

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks 1 / 27



Summary of Contributions

A Formal Model of Publish/Subscribe Networks

Single broker, multiple clients
Different forms of exception handling in the notification phase
Retained messages
Different ways of handling exceptions

Some Decidability Results for Parameterised Verification based on
WSTS/Petri Nets

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks 2 / 27



Contents

1 Publish/Subscribe Systems

2 Formal Model of Publish/Subscribe Networks

3 Parameterized Verification

4 Handling Exception Globally

5 Conclusions

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks 3 / 27



Publish/Subscribe Systems

Architecture

A broker is in charge of distributing messages to clients subscribed to
certain topics
Individual nodes can perform operations such as subscription and push
notifications

Advantages

Multicast communication in open networks with heterogenous
components, mitigation of security and privacy issues (data are
published only by broker nodes)

Application of Pub/Sub to IoT Systems

Communication among Edge Devices and Cloud (Micro)Services
Ensure Consistency in Distributed Storage and Microservices
Architectures

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks 4 / 27



Broker Architecture

A broker must ensure

consistency of internal data structures
efficient data propagation (e.g. data structures indexed on topic
names, client id’s, etc)
robustness with respect to exceptions due to network/client failures

We will consider different ways of exception handling using a Java
implementation of a broker

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks 5 / 27



Formal Model of Publish/Subscribe Networks

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks 6 / 27



Publish/Subscribe Networks: A Broker Perspective

Given

sets T (topics names), Q (client state), and M (message labels)
a client automata P = 〈Q, q0,R〉
client transition labels taken from
A = {local , (un)subscribe(s), publish(m, t)|s ∈ 2T ,m ∈ M, t ∈ T}

The set N of configurations of a Pub/Sub Network S consists of
multi-sets γ = {{c1, . . . , ck}} of client configurations

The relation →⊆ N × N defines the broker semantics

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks 7 / 27



Client Configuration

A client configuration c is a tuple 〈q, s, b, f 〉, where

q ∈ Q is the current client state,

s ∈ 2T is the set of topics for which the client is a subscriber,

b ∈ 2M is the set of messages received so far

f ∈ {>,⊥} is a flag that defines the connection status of the client
with respect to the global network
> = normal operating status, ⊥ = disconnected

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks 8 / 27



Broker Semantics: Local Operations

Local {{〈q, s, b,>〉}} ⊕ C → {{〈q′, s, b,>〉}} ⊕ C

Subscription {{〈q, s, b,>〉}} ⊕ C → {{〈q′, s ∪ s1, b,>〉}} ⊕ C
if 〈q, subscribe(s1), q′〉 ∈ R

Unsubscription {{〈q, s, b,>〉}} ⊕ C → {{〈q′, s \ s1, b,>〉}} ⊕ C
if 〈q, unsubscribe(s1), q′〉 ∈ R

Disconnection {{〈q, s, b,>〉}} ⊕ C → {{〈q, s, b,⊥〉}} ⊕ C

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks 9 / 27



Broker Semantics: Push Notification

The broker acknowledges a request and, inside a synchronisation
block, forwards the message to the clients subscribed to the topic

Communication failures are captured locally via try-catch statements

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks 10 / 27



Broker Semantics: Global Operation

Publish {{〈q, s,m,>〉}} ⊕ γ → {{〈q′, s,m,>〉}} ⊕ γ′

if

〈q, publish(m, t), q′〉 ∈ R,

ξ = E>(t, γ) (multiset of connected clients)

µ = γ 	 ξ,

γ′ = Addm(t, ξ)⊕ µ (m is added to t-subscribers in ξ)

This rule models exceptions handled locally, i.e., notifications reach all
connected clients

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks 11 / 27



Parameterized Verification

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks 12 / 27



The Coverability Decision Problem

Given

A Pub/Sub Network 〈N,→〉 defined over the sets T ,M,Q,A
A Client specification P
An ordering ≤ on Network Configurations
A set N0 of Initial Network Configuration
A finite set of configuration F ⊆ N

The Coverability Decision Problem consists in checking whether

N0 ∩ Pre∗(uc≤(F )) = ∅

where

Pre(C ) = {γ|∃γ′ ∈ C s.t. γ → γ′}
uc≤(S) = {γ′|γ ≤ γ′, γ ∈ S}

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks 13 / 27



Decidability

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks 14 / 27



The ≤n Ordering

Given client configurations c1, c2,
c1 = 〈q1, s1, b1, f1〉 ≤c c2 = 〈q2, s2, b2, f2〉 iff q1 = q2, s1 = s2,
b1 ⊆ b2, and f1 = f2.

Given Network Configurations γ1, γ2, γ1 ≤n γ2 iff there exists an
injective map h from the configurations in γ1 = {c1, . . . , ck} to
configurations in γ2 = {d1, . . . , dn} such that ci ≤c h(ci ) for
i : 1, . . . , k .

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks 15 / 27



Decidability 1

The Coverability Decision Problem is decidable for Pub/Sub Networks
equipped with ordering ≤n

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks 16 / 27



Proof

We first observe that the ordering ≤n is obtained embedding equality over
finite sets and finite set inclusion into multiset inclusion.
By Higman Lemma’s, the resulting ordering is a well-quasi-ordering
The transition relation → induced by a client specification P is monotone
w.r.t. ≤n, i.e., if γ1 ≤n γ2 and γ1 → γ3, then there there exists γ4 s.t.
γ2 → γ4 and γ3 ≤n γ4.
Given a finite set of configuration C it is possibile to compute a finite
representation of Pre(uc≤n(C )) via an encoding into transfer arc
operations on Petri Nets
Decidability of coverability follows then from the general results on
well-structured transition systems (WSTS)

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks 17 / 27



Retained Messages: Push Notifications

Pushr 〈g , {{〈q, s,m,>〉}} ⊕ γ〉 → 〈g ′, {{〈q′, s,m,>〉}} ⊕ γ′〉

if

〈q, publish(m, t), q′〉 ∈ R,

ξ = E>(t, γ),

µ = γ 	 ξ,

γ′ = Addm(t, ξ)⊕ µ,

g ′(t) = g(t) ∪ {m}, g ′(r) = g(r) for r 6= t

where g is a global map from T to 2M

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks 18 / 27



Retained Messages: Subscription

Subscriber 〈g , {{〈q, s, b,>〉}} ⊕ γ → {{〈q′, s ∪ s1, b ∪ g(s1),>〉}} ⊕ γ〉

when 〈q, subscribe(s1), q′〉 ∈ R.

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks 19 / 27



Decidability 2

The Coverability Decision Problem remains decidable for Pub/Sub
Networks with retained messages and equipped with the ≤n ordering

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks 20 / 27



Handling Exception Globally

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks 21 / 27



Broker Internal Structure: Second Scenario

Every invocation of the publish method is embedded into a try-catch
statement to propagate error notifications to the server or to modify
the current list of active clients.

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks 22 / 27



Modified Semantics

Publishe {{〈q, s,m,>〉}} ⊕ γ → {{〈q′, s,m,>〉}} ⊕ γ′

if

〈q, publishe(m, t), q′〉 ∈ R

E>(t, γ) = ηr ⊕ ηn ⊕ ηf (multiset of connected clients)

ηr represents clients who receive the notification
ηf represents clients who fail during notification
ηn represents clients who do receive the notification and do no fail

µ = γ 	 (ηr ⊕ ηf )

γ′ = Addm(ηr )⊕ Up⊥(ηf )⊕ µ

where Up⊥(ηf ) sets all connection flags in ηf to ⊥

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks 23 / 27



Decidability 3

The Coverability Decision Problem is decidable for Pub/Sub Networks
with publishe semantics and equipped with the ≤n ordering

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks 24 / 27



Proof sketch

Flatten configuration (move topic and messages in control states)

Counter representation as a symbolic representation of global
configurations as in Petri Nets

To model publishe we associate an auxiliary variable AuxX to each
counter X and a gadget to move a non-deterministic amount of
tokens from X to AuxX .

Gadgets can be pipelined in a globally locked series of transitions in
order to simulate the non-deterministic split of active clients in three
classes (receive notification, do not receive notification, fail)

Reduction to coverability of a Petri Net

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks 25 / 27



Conclusions

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks 26 / 27



Conclusions

Contributions

A Formal Model of Publish/Subscribe Network with different ways of
handling communication exceptions
Reductions to (extended) Petri nets for obtaining decidable fragment

Possible Extensions

Refinement of the broker model (e.g. internal data structures,
asynchronous phases)
Federation of brokers (e.g. broker hierarchies)
Other protocol properties (e.g. success of notifications?)

Giorgio Delzanno (DIBRIS) Verification of Publish/Subscribe Networks 27 / 27


	Publish/Subscribe Systems
	Formal Model of Publish/Subscribe Networks
	Parameterized Verification
	Handling Exception Globally
	Conclusions

