

# Reachability Problems on (Partially Lossy) Queue Automata

13<sup>th</sup> International Conference on Reachability Problems, Brussels

Chris Köcher

Automata and Logics Group Technische Universität Ilmenau

September 11, 2019

- Let *A* be an alphabet.
- Two actions for each  $a \in A$ :
  - write letter  $a \sim \mathbf{a}$
  - read letter  $a \sim \overline{\mathbf{a}}$
- $\Sigma := A \uplus \overline{A}$





- Let *A* be an alphabet.
- Two actions for each  $a \in A$ :
  - write letter  $a \sim \mathbf{a}$
  - read letter  $a \sim \overline{\mathbf{a}}$
- $\Sigma := A \uplus \overline{A}$





- Let *A* be an alphabet.
- Two actions for each  $a \in A$ :
  - write letter  $a \sim \mathbf{a}$
  - read letter  $a \sim \overline{\mathbf{a}}$
- $\Sigma := A \uplus \overline{A}$



- Let *A* be an alphabet.
- Two actions for each  $a \in A$ :
  - write letter  $a \sim \mathbf{a}$
  - read letter  $a \rightsquigarrow \overline{\mathbf{a}}$
- $\blacksquare \mathbf{A} := \{ \mathbf{a} \mid a \in A \}, \overline{\mathbf{A}} := \{ \overline{\mathbf{a}} \mid a \in A \}$
- $\Sigma := A \uplus \overline{A}$



- Let *A* be an alphabet.
- Two actions for each  $a \in A$ :
  - write letter  $a \sim \mathbf{a}$
  - read letter  $a \rightsquigarrow \overline{\mathbf{a}}$
- $\Sigma := A \uplus \overline{A}$

#### Example



,

- Let *A* be an alphabet.
- Two actions for each  $a \in A$ :
  - write letter  $a \sim \mathbf{a}$
  - read letter  $a \rightsquigarrow \overline{\mathbf{a}}$
- $\blacksquare \mathbf{A} := \{ \mathbf{a} \mid a \in A \}, \overline{\mathbf{A}} := \{ \overline{\mathbf{a}} \mid a \in A \}$
- $\Sigma := A \uplus \overline{A}$



- Let *A* be an alphabet.
- Two actions for each  $a \in A$ :
  - write letter  $a \sim \mathbf{a}$
  - read letter  $a \rightsquigarrow \overline{\mathbf{a}}$
- $\Sigma := A \uplus \overline{A}$





- Let *A* be an alphabet.
- Two actions for each  $a \in A$ :
  - write letter  $a \sim \mathbf{a}$
  - read letter  $a \rightsquigarrow \overline{\mathbf{a}}$
- $\Sigma := A \uplus \overline{A}$

#### Example



,

## Reachability Problem



#### **Inputs:**

- $T \subseteq \Sigma^*$  regular language of transformation sequences
- $L \subseteq A^*$  regular language of queue contents

#### Compute:

■ REACH(L, T) := the set of all queue contents after application of T on L

#### Example



## Reachability Problem



#### **Inputs:**

- $T \subseteq \Sigma^*$  regular language of transformation sequences
- $L \subseteq A^*$  regular language of queue contents

#### Compute:

■ REACH(L, T) := the set of all queue contents after application of T on L

#### Example



,

## **Turing-Completeness**



#### Theorem (Brand, Zafiropulo 1983)

Queue Automata can simulate Turing-machines.

- Reach(L, T) can be any recursively enumerable language
- holds already for some fixed  $T = \{t_1, \dots, t_n\}^*$  with  $t_1, \dots, t_n \in \Sigma^*$

## Approximations of the Reachability Problem



- Iterative approach: for i = 0, 1, 2, ... do
  - compute the prefixes **T**<sub>i</sub> of length *i* from **T**
  - $\blacksquare$  apply  $T_i$  on L
- Faster approach:

#### Theorem (Boigelot, Godefroid, Willems, Wolper 1997)

Let  $L \subseteq A^*$  be regular and  $\mathbf{t} \in \Sigma^*$ . Then REACH $(L, \mathbf{t}^*)$  is effectively regular.

⇒ Combine multiple iterations of a loop to a meta-transformation

#### Aim

Generalize this result.

#### The Main Theorem



#### Theorem

Let  $L, W, R \subseteq A^*$  be regular. Then REACH $(L, (WR)^*)$  is effectively regular (in polynomial time).

- We slightly modify *W* and *R*:
  - Let  $\$ \notin A$  be some new letter.
  - Set W' := \$W and  $\overline{R'} := \text{shuffle}(\overline{R}, \overline{\$}^*)$ .
  - Easy: Reach(L,  $(\overline{WR})^*$ ) =  $\operatorname{proj}_A(\operatorname{Reach}(L, (\overline{W'R'})^*))$ .
  - We prove that REACH $(L, (\mathbf{W}'\overline{\mathbf{R}'})^*)$  is regular.
- From now on, we write W and  $\overline{R}$  instead of W' and  $\overline{R'}$ , resp.



■ Consider the following example:







- A configuration of the queue automaton can be abstracted as follows:
  - 1 the current state in  $(W\overline{R})^*$ 
    - the starting state of the path in  $\mathcal{LW}^*$
  - the ending state of the path in  $\mathcal{LW}^*$
  - 4 the number of \$s on the path

counter of C

control state of C

 $\Rightarrow$  The queue automaton can be simulated by a one-counter automaton C





- A configuration of the queue automaton can be abstracted as follows:
  - 1 the current state in  $(W\overline{R})^*$
  - the starting state of the path in  $\mathcal{LW}^*$  control state of  $\mathcal{C}$
  - the ending state of the path in  $\mathcal{L}W^*$ 
    - the number of \$s on the path  $\}$  counter of C
- $\Rightarrow$  The queue automaton can be simulated by a one-counter automaton C





- A configuration of the queue automaton can be abstracted as follows:
  - 1 the current state in  $(W\overline{R})^*$
  - the starting state of the path in  $\mathcal{LW}^*$  control state of  $\mathcal{C}$
  - 3 the ending state of the path in  $\mathcal{L}W^*$
  - 4 the number of \$s on the path

counter of *C* 

 $\Rightarrow$  The queue automaton can be simulated by a one-counter automaton C





- A configuration of the queue automaton can be abstracted as follows:
  - 1 the current state in  $(W\overline{R})^*$ 
    - the starting state of the path in  $\mathcal{LW}^*$
  - the ending state of the path in  $\mathcal{LW}^*$
  - 4 the number of \$s on the path

control state of *C* 

counter of *C* 

 $\Rightarrow$  The queue automaton can be simulated by a one-counter automaton C

#### Semantics of C



- *C*'s configurations consist of:
  - 1 the current state in  $(W\overline{R})^*$
  - 2 the starting state of the path in  $\mathcal{L}W^*$
  - 3 the ending state of the path in  $\mathcal{LW}^*$
  - 4 the number of \$s on the path

 $\}$  counter of C

control state of C

- Let  $(p, q, r, n) \in Conf_C$  be a configuration of C.

#### Proposition

$$\operatorname{Reach}(L, (\mathbf{W}\overline{\mathbf{R}})^*) = \bigcup_{\sigma \in \operatorname{Conf}_{\mathcal{C}}, \ \textit{reach.} \ + \ \textit{acc.}} \llbracket \sigma \rrbracket,$$

i.e., Reach(L,  $(\overline{WR})^*$ ) is a rational image of the set of reachable and accepting configurations of C.

## Finishing the Proof



- Consider the set of reachable and accepting configurations of *C*.
- By [Bouajjani, Esparza, Maler 1997] this set is semilinear.
- Using a rational transduction implies effective regularity of  $REACH(L, (WR)^*)$ .

⇒ We have seen:

#### Theorem (Main Theorem)

Let  $L, W, R \subseteq A^*$  be regular. Then REACH $(L, (\overline{WR})^*)$  is effectively regular (in polynomial time).

### Consequences



#### Corollary

Let  $L \subseteq A^*$  and  $\mathbf{T} \subseteq \mathbf{\Sigma}^*$  be regular. Then  $\operatorname{REACH}(L, \mathbf{T}^*)$  is regular if

- $T = \overline{R_1}W\overline{R_2}$  for regular  $W, R_1, R_2 \subseteq A^*$ ,
- **2**  $\mathbf{T} = \mathbf{W} \cup \overline{\mathbf{R}}$  for regular  $W, R \subseteq A^*$ ,
- **T** =  $\{t\}$  for  $t \in \Sigma^*$  (cf. [Boigelot et al. 1997]), or
- **T** = shuffle(**W**,  $\overline{\mathbf{R}}$ ) for regular  $W, R \subseteq A^*$ .
- Remark: Proofs of 3 and 4 use some result from [K. 2018, cf. STACS'18]

# Thank you!