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Queue Automata

Let A be an alphabet.

Two actions for each a ∈ A:
write letter a ↝ a
read letter a ↝ a

A ∶= {a ∣ a ∈ A}, A ∶= {a ∣ a ∈ A}
Σ ∶= A ⊎A

Example

q0 q1

q2 q3

b b
a

a
aab

b

a
a

a
a

a a b b b
2



Queue Automata

Let A be an alphabet.

Two actions for each a ∈ A:
write letter a ↝ a
read letter a ↝ a

A ∶= {a ∣ a ∈ A}, A ∶= {a ∣ a ∈ A}
Σ ∶= A ⊎A

Example

q0 q1

q2 q3

b b
a

a
aab

b

a
a

a
a

a a b b b
2



Queue Automata

Let A be an alphabet.

Two actions for each a ∈ A:
write letter a ↝ a
read letter a ↝ a

A ∶= {a ∣ a ∈ A}, A ∶= {a ∣ a ∈ A}
Σ ∶= A ⊎A

Example

q0 q1

q2 q3

b b
a

a
aab

b

a
a

a
a

a a b b b
2



Queue Automata

Let A be an alphabet.

Two actions for each a ∈ A:
write letter a ↝ a
read letter a ↝ a

A ∶= {a ∣ a ∈ A}, A ∶= {a ∣ a ∈ A}
Σ ∶= A ⊎A

Example

q0 q1

q2 q3

b b
a

a
aab

b

a
a

a
a

a a b b b
2



Queue Automata

Let A be an alphabet.

Two actions for each a ∈ A:
write letter a ↝ a
read letter a ↝ a

A ∶= {a ∣ a ∈ A}, A ∶= {a ∣ a ∈ A}
Σ ∶= A ⊎A

Example

q0 q1

q2 q3

b b
a

a
aab

b

a
a

a
a

a a b b b
2



Queue Automata

Let A be an alphabet.

Two actions for each a ∈ A:
write letter a ↝ a
read letter a ↝ a

A ∶= {a ∣ a ∈ A}, A ∶= {a ∣ a ∈ A}
Σ ∶= A ⊎A

Example

q0 q1

q2 q3

b b
a

a
aab

b

a
a

a
a

a a b b b
2



Queue Automata

Let A be an alphabet.

Two actions for each a ∈ A:
write letter a ↝ a
read letter a ↝ a

A ∶= {a ∣ a ∈ A}, A ∶= {a ∣ a ∈ A}
Σ ∶= A ⊎A

Example

q0 q1

q2 q3

b b
a

a
aab

b

a
a

a
a

a a b b b
2



Queue Automata

Let A be an alphabet.

Two actions for each a ∈ A:
write letter a ↝ a
read letter a ↝ a

A ∶= {a ∣ a ∈ A}, A ∶= {a ∣ a ∈ A}
Σ ∶= A ⊎A

Example

q0 q1

q2 q3

b b
a

a
aab

b

a
a

a
a

a a b b b
2



Reachability Problem

Inputs:

T ⊆ Σ∗ regular language of
transformation sequences

L ⊆ A∗ regular language of queue
contents

Compute:

Reach(L,T) ∶= the set of all queue

contents a�er application of T on L

Example
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Turing-Completeness

�eorem (Brand, Za�ropulo 1983)

Queue Automata can simulate Turing-machines.

Reach(L,T) can be any recursively enumerable language

holds already for some �xed T = {t1, . . . , tn}∗ with t1, . . . , tn ∈ Σ∗
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Approximations of the Reachability Problem

Iterative approach: for i = 0, 1, 2, . . . do

compute the pre�xes Ti of length i from T
apply Ti on L

Faster approach:

�eorem (Boigelot, Godefroid, Willems, Wolper 1997)

Let L ⊆ A∗ be regular and t ∈ Σ∗. �en Reach(L, t∗) is e�ectively
regular.

⇒ Combine multiple iterations of a loop to a meta-transformation

Aim

Generalize this result.
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�eMain�eorem

�eorem

Let L,W , R ⊆ A∗ be regular. �en Reach(L, (WR)∗) is e�ectively
regular (in polynomial time).

We slightly modifyW and R:
Let $ ∉ A be some new letter.
SetW′ ∶= $W and R′ ∶= shu�e(R,$

∗

).
Easy: Reach(L, (WR)∗) = projA(Reach(L, (W′R′)∗)).
We prove that Reach(L, (W′R′)∗) is regular.

From now on, we writeW and R instead ofW ′ and R′, resp.
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Proof Idea (1)

Consider the following example:

NFA LW∗
accepting LW∗:

a
b

a

b

$

$

a a, b

NFA (WR)∗ accepting (WR)∗:
$ a a, b

b

$$ $
a

b

$ a b
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Proof Idea (2)

NFA LW∗
accepting LW∗:

NFA (WR)∗ accepting (WR)∗:

a
b

a

b

$

$

a a, b

$ a a, b
b

$$ $
a

b $ a b

A con�guration of the queue automaton can be abstracted as

follows:

1 the current state in (WR)∗
2 the starting state of the path in LW∗

3 the ending state of the path in LW∗

4 the number of $s on the path
⇒ �e queue automaton can be simulated by a one-counter

automaton C

control state of C

counter of C
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Semantics of C

C’s con�gurations consist of:
1 the current state in (WR)∗
2 the starting state of the path in LW∗

3 the ending state of the path in LW∗

4 the number of $s on the path
Let (p, q, r, n) ∈ ConfC be a con�guration of C.
Jp, q, r, nK ∶= L(LW∗

q→r) ∩ shu�e($n ,A∗)

control state of C

counter of C

Proposition

Reach(L, (WR)∗) = ⋃
σ∈ConfC , reach. + acc.

JσK ,

i.e., Reach(L, (WR)∗) is a rational image of the set of reachable and
accepting con�gurations of C.
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Finishing the Proof

Consider the set of reachable and accepting con�gurations of C.
By [Bouajjani, Esparza, Maler 1997] this set is semilinear.

Using a rational transduction implies e�ective regularity of

Reach(L, (WR)∗). ◻

⇒ We have seen:

�eorem (Main�eorem)

Let L,W , R ⊆ A∗ be regular. �en Reach(L, (WR)∗) is e�ectively
regular (in polynomial time).
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Consequences

Corollary

Let L ⊆ A∗ and T ⊆ Σ∗ be regular. �en Reach(L,T∗) is regular if
1 T = R1WR2 for regular W , R1, R2 ⊆ A∗,
2 T =W ∪R for regular W , R ⊆ A∗,
3 T = {t} for t ∈ Σ∗ (cf. [Boigelot et al. 1997]), or
4 T = shu�e(W,R) for regular W , R ⊆ A∗.

Remark: Proofs of 3 and 4 use some result from [K. 2018, cf.

STACS’18]

�ank you!
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