CAU

Solving Word Equations Using SAT

Joel D. Day, Thorsten Ehlers, **Mitja Kulczynski**, Florin Manea, Dirk Nowotka and Danny B. Poulsen

RP '19

$$XabY \doteq aXYb$$

$$XabY \doteq aXYb$$

$$XabY \doteq aXYb$$

These are word equations

a ab b = a a b b

$$XabY \doteq aXYb$$

 $aYXYXaaaYb \doteq XbXYaXaXbb$

$$XabY \doteq aXYb$$
 with bounds $b_X = b_Y = 1$.

$$XabY \doteq aXYb$$

with bounds $b_X = b_Y = 1$.

$$XabY \doteq aXYb$$

with bounds $b_X = b_Y = 1$.

$$XabY \doteq aXYb$$

with bounds $b_X = b_Y = 1$.

$$XabY \doteq aXYb$$

with bounds $b_X = b_Y = 1$.

$$XabY \doteq aXYb$$
 with bounds $b_X = b_Y = 1$.

How this idea came to our minds

Solve word equations by guessing a bound for each variable.

L

How this idea came to our minds

Solve word equations by guessing a bound for each variable.

easily solvable by using the filling the positions method.

How this idea came to our minds

Solve word equations by guessing a bound for each variable.

easily solvable by using the filling the positions method.

... but finding these bounds is especially hard for balanced equations.

$$bYZbaXa \doteq XZbaabY$$
 with bounds $b_X = b_Y = b_Z = 2$.

How this idea came to our minds

1

How this idea came to our minds

Gives us the substitution $X \mapsto \lambda$, $Y \mapsto aa$, $Z \mapsto \lambda$

How this idea came to our minds

Build an automaton which mimics this behavior.

$$aZXb \doteq aXaY$$

with bounds $b_X = b_Y = b_Z = 1$.

Brief overview about it's behaviour

A **location**, corresponding to the current position in our equation. —

$$aZXb \doteq aXaY$$

$$aZXb \doteq aXaY$$

Brief overview about it's behaviour

$$aZXb \doteq aXaY$$

(1,1)

 S_i

$$aZ Xb \doteq aX aY$$

$$S_i\left[\frac{Z}{\lambda}\right]\left[\frac{X}{\lambda}\right]$$

$$S_i \begin{bmatrix} \frac{Z}{a} \end{bmatrix} \begin{bmatrix} \frac{X}{a} \end{bmatrix}$$

$$S_i \left[\frac{Z}{b} \right] \left[\frac{X}{b} \right]$$

$$aZ Xb \doteq aX aY$$

$$aZ Xb \doteq aX aY$$

$$aZXb \doteq aXaY$$

$$S_i \left[\frac{Z}{a} \right] \left[\frac{X}{a} \right] \left[\frac{Y}{b} \right]$$

$$S_i\left[\frac{Z}{a}\right]\left[\frac{X}{\lambda}\right]\left[\frac{Y}{b}\right]$$

$$aZXb \doteq aXaY$$

$$S_i \left[\frac{Z}{a} \right] \left[\frac{X}{a} \right] \left[\frac{Y}{b} \right]$$

$$S_i \left[\frac{Z}{a} \right] \left[\frac{X}{\lambda} \right] \left[\frac{Y}{b} \right]$$

1.
$$X \mapsto a, Y \mapsto b, Z \mapsto a$$

2.
$$X \mapsto \lambda, Y \mapsto b, Z \mapsto a$$

Expansions

Some further features

- * Bound refinement to lower encoding complexity
- Search guiding by using Reduced Ordered Multi-Decision Diagrams (MDD)
- Linear length constraints by using MDDs

The length abstraction

$$aZXb \doteq aXaY$$
 with bounds $b_X = b_Y = b_Z = 2$.

The length abstraction

$$u = aZXb \doteq aXaY = v$$

with bounds $b_X = b_Y = b_Z = 2$.

$$\sum_{M \in \Gamma} (|u|_M - |v|_M) \cdot I_M = \sum_{a \in \Sigma} |v|_a - |u|_a$$

The length abstraction

$$u = aZXb \doteq aXaY = v$$

with bounds $b_X = b_Y = b_Z = 2$.

Build a Diophantine equation as follows:

$$\sum_{M \in \Gamma} (|u|_M - |v|_M) \cdot I_M = \sum_{a \in \Sigma} |v|_a - |u|_a$$

Gives the count of a's in u.

The length abstraction

$$u = aZXb \doteq aXaY = v$$

with bounds $b_X = b_Y = b_Z = 2$.

Build a Diophantine equation as follows:

$$\sum_{M \in \Gamma} (|u|_M - |v|_M) \cdot I_M = \sum_{a \in \Sigma} |v|_a - |u|_a$$

 I_M are positive integer variables ranging within $\{0,\ldots,b_M\}$.

The length abstraction

$$u = aZXb \doteq aXaY = v$$

with bounds $b_X = b_Y = b_Z = 2$.

$$\sum_{M \in \Gamma} (|u|_M - |v|_M) \cdot I_M = |v|_a - |u|_a + |v|_b - |u|_b$$

The length abstraction

$$u = aZXb \doteq aXaY = v$$

with bounds $b_X = b_Y = b_Z = 2$.

$$\sum_{M \in \Gamma} (|u|_M - |v|_M) \cdot I_M = 2 - 1 + 0 - 1 = 0$$

The length abstraction

$$u = aZXb \doteq aXaY = v$$

with bounds $b_X = b_Y = b_Z = 2$.

$$0 \cdot I_X - 1 \cdot I_Y + 1 \cdot I_Z = 0$$

Using MDDs

$$\longrightarrow$$
 $(I_{-1},0)$

false

true

21

Using MDDs

 $\longrightarrow (I_{-1}, 0)$ I_X I_Y I_Z

false

true

Using MDDs

$$0 \cdot I_X - 1 \cdot I_Y + 1 \cdot I_Z = 0$$

$$\longrightarrow$$
 $(I_{-1},0)$

 I_X

 I_Y

 I_Z

false

true

Using MDDs

Using MDDs

Using MDDs

21

Using MDDs

,

Using MDDs

Using MDDs

Linear Constraints

How to involve them?

Just connect all corresponding partial sums to the true node!

Just connect all corresponding partial sums to the true node!

$$0 \cdot I_X - 1 \cdot I_Y + 1 \cdot I_Z \leq 0$$

Just connect all corresponding partial sums to the true node!

The Implementation

Evaluation of this approach

- * Implementation of this pure SAT based approach in a tool called Woorpje.
- * Based on the Glucose SAT-Solver
- * Competitive and reliable

The Implementation

Evaluation of this approach

- * Implementation of this pure SAT based approach in a tool called Woorpje.
- * Based on the Glucose SAT-Solver
- * Competitive and reliable

Woorpje is available at

http://informatik.uni-kiel.de/~mku/woorpje

CAU

Solving Word Equations Using SAT

Joel D. Day, Thorsten Ehlers, **Mitja Kulczynski**, Florin Manea, Dirk Nowotka and Danny B. Poulsen

RP '19