Reachability Problems 2019 On the Termination of Counter Machines with Incrementing Errors

Christopher Hampson

Department of Informatics

King's College London

(Reliable) Counter Machines

• Counter Machine (CM)

$$\mathcal{M}=\langle \ Q, \ C, \ q_{\mathsf{init}}, \ \Delta \
angle$$

Minsky 1967

(Reliable) Counter Machines

(Reliable) Counter Machines

Mayr 2003

- Lossy Conter Machines (LCMs)
 - LCMs are counter machines whose possible computations / runs are determined by the following consecution relation:

$$\sigma_0 \stackrel{\mathcal{M}\downarrow}{\longrightarrow} \sigma_1 \quad \Longleftrightarrow \quad \exists \sigma_0' \exists \sigma_1' \left(\sigma_0 \geq \sigma_0' \stackrel{\mathcal{M}}{\longrightarrow} \sigma_1' \geq \sigma_1 \right)$$

where

$$(q, ec{v}) \ \geq \ (q', ec{v}') \quad \Longleftrightarrow \quad q = q' ext{ and } ec{v}(c_i) \geq ec{v}'(c_i) ext{ for all } c_i \in C$$

(counters may spontaneously decrease before / after every operation)

Demri-Lazić 2009, Ouaknine-Worrell 2006, Ouaknine-Worrell 2007

- Incrementing Counter Machines (ICMs)
 - ICMs are counter machines whose possible computations / runs are determined by the following consecution relation:

$$\sigma_0 \xrightarrow{\mathcal{M}} \sigma_1 \quad \Longleftrightarrow \quad \exists \sigma_0' \exists \sigma_1' \left(\sigma_0 \leq \sigma_0' \xrightarrow{\mathcal{M}} \sigma_1' \leq \sigma_1 \right)$$

where

$$(q, ec{v}) \ \leq \ (q', ec{v}') \quad \Longleftrightarrow \quad q = q' ext{ and } ec{v}(c_i) \leq ec{v}'(c_i) ext{ for all } c_i \in C$$

(counters may spontaneously increase before / after every operation)

- Dual Counter Machine
 - The dual / opposite of ${\mathcal M}$ is given by reversing all transitions

- Dual Counter Machine
 - The dual / opposite of ${\mathcal M}$ is given by reversing all transitions

(The dual behaves as if the arrow of time has been reversed)

- Dual Counter Machine
 - The dual / opposite of ${\mathcal M}$ is given by reversing all transitions

(The dual behaves as if the arrow of time has been reversed)

Theorem (Ouknine–Worrel)Let \mathcal{M} and \mathcal{M}^{op} be dual countermachines. Then, for all configurations $\sigma_0, \sigma_1 \in Conf_{\mathcal{M}}$, $\sigma_0 \xrightarrow{\mathcal{M}\downarrow} \dots \xrightarrow{\mathcal{M}\downarrow} \sigma_1 \iff \sigma_1 \xrightarrow{\mathcal{M}^{op}\uparrow} \dots \xrightarrow{\mathcal{M}^{op}\uparrow} \sigma_0$ Iossy

Theorem Reachability for LCMs and ICMs share the same complexity

However, symmetry is broken for Termination!

Summary of Known Termination Results

	Lossy	Incrementing
Channel Systems (with emptiness	HyperAckermann-complete	Tower-complete
testing)	Chambart-Schnoebelen 2008	Bouyer et al. 2012
Counter Machines	ACKERMANN-COMPlete	??
Counter Machines (with <i>k</i> counters)	non-Elementary for $k > 5$ Schnoebelen 2010	??

(counter machines can be seen as degenerate channel systems)

Main Results

(a.k.a. Filling in the gaps)

Theorem	The ICM termination problem is decidable in	
EXPSPACE		

TheoremThe ICM termination problem is decidable inEXPSpace

Proof (sketch):

Step 1) Let $\mathcal{M}=\langle Q,C,q_{\mathsf{init}},\Delta
angle$ be a terminating ICM and let r be

an incrementing run of \mathcal{M} .

Question

How long can r be if \mathcal{M} has no infinite runs?

TheoremThe ICM termination problem is decidable inEXPSpace

Proof (sketch):

Step 1) Let $\mathcal{M}=\langle Q,C,q_{\mathsf{init}},\Delta
angle$ be a terminating ICM and let r be

an incrementing run of \mathcal{M} .

Question

How long can r be if \mathcal{M} has no infinite runs?

Step 2) Note that the only impediments to infinitely long runs are transitions of the form $(s, (c)^{??}, t) \in \Delta$.

(call these transitions c-gates)

Step 3) Show by induction the size of $\Sigma \subseteq C$ that long intervals containing only Σ -gates have repeated (partial) configurations

(we can safely ignore counters not appearing in Σ)

Step 3) Show by induction the size of $\Sigma \subseteq C$ that long intervals containing only Σ -gates have repeated (partial) configurations

(we can safely ignore counters not appearing in Σ)

Step 3) Show by induction the size of $\Sigma \subseteq C$ that long intervals containing only Σ -gates have repeated (partial) configurations

(we can safely ignore counters not appearing in Σ)

 $\sigma \restriction \Sigma$ $\sigma \restriction \Sigma$

Step 4) We can show that

where

$$T(0) = 1$$
 and $T(k) = k T(k-1) + 2$

Step 4) We can show that

where

$$T(0) = 1$$
 and $T(k) = k T(k - 1) + 2$

By induction

$$T(k) = k! \left(\frac{1}{0!} + \frac{2}{1!} + \dots + \frac{2}{k!}\right) < 2k! \sum_{t=0}^{\infty} \frac{1}{t!} = 2ek!$$

(where $e \approx 2.7182$ is Euler's constant)

Step 5) It then follows that

$$\mathsf{max_length}(r) \leq n^{2em!} \in O\left(2^{2^m}
ight)$$

(since r contains only C-gates, and |C| = m)

Step 5) It then follows that

$$\mathsf{max_length}(r) \leq n^{2em!} \in O\left(2^{2^m}
ight)$$

(since r contains only C-gates, and |C| = m)

Q.E.D

Theorem The ICM termination problem is **PSPACE-hard**

Theorem The ICM termination problem is **PSPACE-hard**

Proof (sketch):

Step 1) Choose your favourite reliable counter machine \mathcal{M} and some specified number of bits N > 0.

Theorem The ICM termination problem is **PSPACE-hard**

Proof (sketch):

Step 1) Choose your favourite reliable counter machine \mathcal{M} and some specified number of bits N > 0.

Step 2) Introduce counters $c^0,\ldots,c^{N-1},\overline{c}^0,\ldots,\overline{c}^{N-1}$ for each $c\in C$, and let

$$heta_{ec v}(c) = \sum_{j=0}^{N-1} 2^j \min\left\{1, \, ec v(c^j)
ight\}$$

(heta is the value represented by the non-emptiness of c^0,\ldots,c^{N-1} in binary)

Step 3b) Replace each **decrement** transition $(s, (c)^{--}, t) \in \Delta$ with the following widget:

(traversable iff $heta_t(c) \geq heta_s(c) - 1$)

Step 3c) Replace each emptiness-check transition $(s, (c)^{??}, t) \in \Delta$ with the following widget:

Step 3c) Replace each emptiness-check transition $(s, (c)^{??}, t) \in \Delta$ with the following widget:

$$(c^{0})?? (c^{1})?? (c^{2})?? (c^{3})?? t$$

Step 3c) Replace each emptiness-check transition $(s, (c)^{??}, t) \in \Delta$ with the following widget:

Step 3c) Replace each emptiness-check transition $(s, (c)^{??}, t) \in \Delta$ with the following widget:

Step 3c) Replace each emptiness-check transition $(s, (c)^{??}, t) \in \Delta$ with the following widget:

$$c^3$$
: c^2 : c^1 : c^0 : \bar{c}^3 : \bar{c}^2 : \bar{c}^1 : \bar{c}^0 :

Step 3c) Replace each emptiness-check transition $(s, (c)^{??}, t) \in \Delta$ with the following widget:

Step 4) It follows that:

Step 4) It follows that:

Step 5) PSPACE-hardness follows from the following claim

Claim

The termination problem for relaible counter machines with "exponentially bounded counters" is PSPACE-hard.

TheoremThe k-counterICMterminationproblemisNLOGSPACE-complete

Proof:

• Lower Bound) Trivial

(via a reduction from Graph Reachability)

TheoremThe k-counterICMterminationproblemisNLOGSPACE-complete

Proof:

• Lower Bound) Trivial

(via a reduction from Graph Reachability)

• Upper Bound) With |C| = k fixed

max_length
$$\leq n^{2ek!} \in O(n)$$

TheoremThe k-counterICMterminationproblemisNLOGSPACE-complete

Proof:

• Lower Bound) Trivial

(via a reduction from Graph Reachability)

• Upper Bound) With |C| = k fixed

max_length
$$\leq n^{2ek!} \in O(n)$$

Summary of Known Results

	Lossy	Incrementing
Channel Systems (with emptiness	HyperAckermann-complete	Tower-complete
testing)	Chambart-Schnoebelen 2008	Bouyer et al. 2012
Counter Machines	ACKERMANN-complete	PSpace-hard in ExpSpace
	Schnoebelen 2010	H 2019
Counter Machines (with <i>k</i> counters)	non-Elementary for $k > 5$	NLOGSPACE-complete
	Schnoebelen 2010	H 2019

Recent Developments ...

Theorem The ICM termination problem is **ExpSpace-complete**

Theorem The ICM termination problem is **ExpSpace-complete**

Proof (sketch):

Step 1) Using the decrement gadget above, we can construct a controlled loop that visits a given state *exactly* 2^n times (or terminates prematurely).

(set all bits to 1 then decrement repeatedly until all bits are 0)

Theorem The ICM termination problem is **ExpSpace-complete**

Proof (sketch):

Step 1) Using the decrement gadget above, we can construct a controlled loop that visits a given state *exactly* 2^n times (or terminates prematurely).

(set all bits to 1 then decrement repeatedly until all bits are 0)

Claim

It is possible to construct a **controlled loop** that visits a given state *exactly* 2^{2^n} times (or terminates prematurely).

Step 2) Take a reliable machine \mathcal{M} and construct an ICM \mathcal{M}' by replacing every increment with the following subroutine:

Increment c_i subroutine

- Increment c_i and decrement d_i ,
- Use a controlled loop to transfer $(c_i, d_i) \mapsto (\text{temp}, \overline{\text{temp}})$
- Check that $(c_i, d_i) = (0, 0)$, else terminate.
- Use a controlled loop to transfer $(\text{temp}, \overline{\text{temp}}) \mapsto (c_i, d_i)$
- Check that $(temp, \overline{temp}) = (0, 0)$, else terminate.

(the sum of c and d remains constant and any errors result in termination)

Step 2) Take a reliable machine \mathcal{M} and construct an ICM \mathcal{M}' by replacing every increment with the following subroutine:

Increment c_i subroutine

- Increment c_i and decrement d_i ,
- Use a controlled loop to transfer $(c_i, d_i) \mapsto (\text{temp}, \overline{\text{temp}})$
- Check that $(c_i, d_i) = (0, 0)$, else terminate.
- Use a controlled loop to transfer $(temp, temp) \mapsto (c_i, d_i)$
- Check that $(temp, \overline{temp}) = (0, 0)$, else terminate.

(the sum of c and d remains constant and any errors result in termination)

Step 3) Next replace every **decrement** with the analogous subroutine.

Step 4) It follows that:

Q.E.D

Summary of Known Results

	Lossy	Incrementing
Channel Systems (with emptiness	HyperAckermann-complete	Tower-complete
testing)	Chambart-Schnoebelen 2008	Bouyer et al. 2012
Counter Machines	ACKERMANN-complete	ExpSpace-complete
	Schnoebelen 2010	NEW
Counter Machines (with <i>k</i> counters)	non-Elementary for $k > 5$	NLOGSPACE-complete
	Schnoebelen 2010	H 2019

End of Slides!

Some references

- P. Bouyer, N. Markey, J.Ouaknine, P. Schnoebelen and J. Worrell. On termination and invariance for faulty channel machines. Formal Aspects of Computing, 24(1):595–607, 2012.
- M. L. Minsky. Computation. Prentice-Hall Englewood Cliffs, 1967.
- R. Mayr. Undecidable problems in unreliable computations. Theoretical Computer Science, 297(1-3):337–354, 2003.
- J. Ouaknine and J. Worrell. On metric temporal logic and faulty Turing machines. In International Conference on Foundations of Software Science and Computation Structures, pages 217–230. Springer, 2006.
- J. Ouaknine and J. Worrell. On the Decidability and Complexity of Metric temporal logic over finite words. Logical Methods in Computer Science, 3(1), 2007.
- P. Chambart and P. Schnoebelen. The ordinal recursive complexity of lossy channel systems. In 2008 23rd Annual IEEE Symposium on Logic in Computer Science, pages 205–216. IEEE, 2008.
- S. Demri and R. Lazić. LTL with the freeze quantifier and register automata. ACM Transactions on Computational Logic (TOCL), 10(3):16, 2009.
- P. Schnoebelen. Revisiting Ackermann-hardness for lossy counter machines and reset Petri nets. In International Symposium on Mathematical Foundations of Computer Science, pages 616–628. Springer, 2010.