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(Reliable) Counter Machines

• Counter Machine (CM) M = 〈 Q, C, qinit, ∆ 〉 Minsky 1967

• Finite set of control states Q = {q1, q2, . . . , qn}

• Initial state qinit ∈ Q

• Finite set of counters C = {c1, c2, . . . , cm}

• Finite set of State Transitions ∆ ⊆ Q×OpC ×Q

• Increment (ci)
++ ∈ OpC

• Decrement (ci)
-- ∈ OpC

• Emptiness check (ci)
?? ∈ OpC
} for all

ci ∈ C
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Lossy / Incrementing Counter Machines

Mayr 2003

• Lossy Conter Machines (LCMs)

• LCMs are counter machines whose possible computations / runs

are determined by the following consecution relation:

σ0
M↓−→ σ1 ⇐⇒ ∃σ′0 ∃σ

′
1

(
σ0 ≥ σ′0

M−→ σ′1 ≥ σ1

)

where

(q, ~v) ≥ (q′, ~v′) ⇐⇒ q = q′ and ~v(ci) ≥ ~v′(ci) for all ci ∈ C

(counters may spontaneously decrease before / after every operation)

RP 2019 11-Sept-19 2 / 22



Lossy / Incrementing Counter Machines

Demri–Lazić 2009, Ouaknine–Worrell 2006, Ouaknine–Worrell 2007

• Incrementing Counter Machines (ICMs)

• ICMs are counter machines whose possible computations / runs

are determined by the following consecution relation:

σ0
M↓−→ σ1 ⇐⇒ ∃σ′0 ∃σ

′
1

(
σ0 ≤ σ′0

M−→ σ′1 ≤ σ1

)

where

(q, ~v) ≤ (q′, ~v′) ⇐⇒ q = q′ and ~v(ci) ≤ ~v′(ci) for all ci ∈ C

(counters may spontaneously increase before / after every operation)
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Lossy / Incrementing Counter Machines

• Dual Counter Machine

• The dual / opposite ofM is given by reversing all transitions

(c)++ (c)-- (c)??
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Lossy / Incrementing Counter Machines

• Dual Counter Machine

• The dual / opposite ofM is given by reversing all transitions

(c)-- (c)++ (c)??

(The dual behaves as if the arrow of time has been reversed)

Theorem (Ouknine–Worrel) LetM andMop be dual counter

machines. Then, for all configurations σ0, σ1 ∈ ConfM,

σ0
M↓−→ . . .

M↓−→ σ1︸ ︷︷ ︸
lossy

⇐⇒ σ1
Mop↑−→ . . .

Mop↑−→ σ0︸ ︷︷ ︸
incrementing
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Lossy / Incrementing Counter Machines

Theorem Reachability for LCMs and ICMs share the same

complexity
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Lossy / Incrementing Counter Machines

Theorem Reachability for LCMs and ICMs share the same

complexity

However, symmetry is broken for Termination!

>

(c)++

(c)??(c)??

(c)--

Has non-terminating
lossy run

>

(c)--

(c)??(c)??

(c)++

Has NO non-terminating
incrementing run

op
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Summary of Known Termination Results

Lossy Incrementing

Channel Systems

(with emptiness

testing)

HYPERACKERMANN-complete TOWER-complete

Chambart–Schnoebelen 2008 Bouyer et al. 2012

Counter
Machines

ACKERMANN-complete ??
Schnoebelen 2010

Counter
Machines

(with k counters)

non-ELEMENTARY for k > 5 ??
Schnoebelen 2010

(counter machines can be seen as degenerate channel systems)
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Main Results

(a.k.a. Filling in the gaps)
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Main Results – Upper bound

Theorem The ICM termination problem is decidable in

EXPSPACE
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Main Results – Upper bound

Theorem The ICM termination problem is decidable in

EXPSPACE

Proof (sketch):

Step 1) LetM = 〈Q,C, qinit,∆〉 be a terminating ICM and let r be

an incrementing run ofM.

Question

How long can r be ifM has no infinite runs?
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Main Results – Upper bound

Theorem The ICM termination problem is decidable in

EXPSPACE

Proof (sketch):

Step 1) LetM = 〈Q,C, qinit,∆〉 be a terminating ICM and let r be

an incrementing run ofM.

Question

How long can r be ifM has no infinite runs?

Step 2) Note that the only impediments to infinitely long runs are transitions

of the form (s, (c)??, t) ∈ ∆.

(call these transitions c-gates)
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Main Results – Upper bound

Step 3) Show by induction the size of Σ ⊆ C that long intervals containing

only Σ-gates have repeated (partial) configurations

(we can safely ignore counters not appearing in Σ)

>
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(we can safely ignore counters not appearing in Σ)

>
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Main Results – Upper bound

Step 4) We can show that

max length of interval with

only c-gates, for c ∈ Σ
< nT (|Σ|)

where

T (0) = 1 and T (k) = k T (k − 1) + 2
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Main Results – Upper bound

Step 4) We can show that

max length of interval with

only c-gates, for c ∈ Σ
< nT (|Σ|)

where

T (0) = 1 and T (k) = k T (k − 1) + 2

By induction

T (k) = k!

(
1
0!

+
2
1!

+ · · ·+
2
k!

)
< 2k!

∞∑
t=0

1
t!

= 2ek!

(where e ≈ 2.7182 is Euler’s constant)
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Main Results – Upper bound

Step 5) It then follows that

max length(r) ≤ n2em! ∈ O
(

22m
)

(since r contains only C-gates, and |C| = m)
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Main Results – Upper bound

Step 5) It then follows that

max length(r) ≤ n2em! ∈ O
(

22m
)

(since r contains only C-gates, and |C| = m)

; non-deterministic search for a ‘long’

run requires only exponential space

Q.E.D
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Main Results – Lower bound

Theorem The ICM termination problem is PSPACE-hard
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Main Results – Lower bound

Theorem The ICM termination problem is PSPACE-hard

Proof (sketch):

Step 1) Choose your favourite reliable counter machineM

and some specified number of bits N > 0.
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Main Results – Lower bound

Theorem The ICM termination problem is PSPACE-hard

Proof (sketch):

Step 1) Choose your favourite reliable counter machineM

and some specified number of bits N > 0.

Step 2) Introduce counters c0, . . . , cN−1, c0, . . . , cN−1 for each c ∈ C, and let

θ~v(c) =

N−1∑
j=0

2j min
{

1, ~v(cj)
}

(θ is the value represented by the non-emptiness of c0, . . . , cN−1 in binary)
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Main Results – Lower bound

Step 3a) Replace each increment transition (s, (c)++, t) ∈ ∆ with the

following widget:

s

t

(c3)??
(c3)??

(c3)++

(c0)??

(c0)++

(c0)??

(c0)++

(c1)??

(c1)++

(c1)??

(c1)++

(c2)??

(c2)++

(c2)??

(c2)++

(c0)-- (c1)-- (c2)--

(c1)??

(c1)??

(c2)??

(c2)??

(c3)??

(c3)??

(c0)-- (c1)-- (c2)-- (c3)--

c0:c1:c2:c3:

c0:c1:c2:c3:
(traversable iff θt(c) ≥ θs(c) + 1)
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Main Results – Lower bound
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Main Results – Lower bound
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following widget:
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Main Results – Lower bound
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Main Results – Lower bound
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Main Results – Lower bound
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Main Results – Lower bound
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Main Results – Lower bound

Step 3a) Replace each increment transition (s, (c)++, t) ∈ ∆ with the
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Main Results – Lower bound
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Main Results – Lower bound

Step 3a) Replace each increment transition (s, (c)++, t) ∈ ∆ with the

following widget:

s

t

(c3)??
(c3)??

(c3)++

(c0)??

(c0)++

(c0)??

(c0)++

(c1)??

(c1)++

(c1)??

(c1)++

(c2)??

(c2)++

(c2)??

(c2)++

(c0)-- (c1)-- (c2)--

(c1)??

(c1)??

(c2)??

(c2)??

(c3)??

(c3)??

(c0)-- (c1)-- (c2)-- (c3)--

c0:c1:c2:c3:

c0:c1:c2:c3:
(traversable iff θt(c) ≥ θs(c) + 1)

RP 2019 11-Sept-19 12 / 22



Main Results – Lower bound

Step 3a) Replace each increment transition (s, (c)++, t) ∈ ∆ with the

following widget:

s

t
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Main Results – Lower bound

Step 3a) Replace each increment transition (s, (c)++, t) ∈ ∆ with the

following widget:

s

t

(c3)??
(c3)??

(c3)++

(c0)??

(c0)++

(c0)??

(c0)++

(c1)??

(c1)++

(c1)??

(c1)++

(c2)??

(c2)++

(c2)??

(c2)++

(c0)-- (c1)-- (c2)--

(c1)??
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(traversable iff θt(c) ≥ θs(c) + 1)
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Main Results – Lower bound

Step 3b) Replace each decrement transition (s, (c)--, t) ∈ ∆ with the

following widget:

s

t

(c3)??
(c3)??

(c3)++

(c0)??

(c0)++

(c0)??

(c0)++

(c1)??

(c1)++

(c1)??

(c1)++

(c2)??

(c2)++

(c2)??

(c2)++

(c0)-- (c1)-- (c2)--

(c1)??

(c1)??

(c2)??

(c2)??

(c3)??

(c3)??

(c0)-- (c1)-- (c2)-- (c3)--

(traversable iff θt(c) ≥ θs(c)− 1)
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Main Results – Lower bound

Step 3c) Replace each emptiness-check transition (s, (c)??, t) ∈ ∆ with the

following widget:

s t

(c0)?? (c1)?? (c2)?? (c3)??

c0:c1:c2:c3:

c0:c1:c2:c3:

(traversable iff θs(c) = 0)
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Main Results – Lower bound

Step 3c) Replace each emptiness-check transition (s, (c)??, t) ∈ ∆ with the

following widget:

s t

(c0)?? (c1)?? (c2)?? (c3)??
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(traversable iff θs(c) = 0)
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Main Results – Lower bound

Step 3c) Replace each emptiness-check transition (s, (c)??, t) ∈ ∆ with the

following widget:

s t

(c0)?? (c1)?? (c2)?? (c3)??

c0:c1:c2:c3:

c0:c1:c2:c3:

(traversable iff θs(c) = 0)
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Main Results – Lower bound

Step 3c) Replace each emptiness-check transition (s, (c)??, t) ∈ ∆ with the

following widget:

s t

(c0)?? (c1)?? (c2)?? (c3)??

c0:c1:c2:c3:

c0:c1:c2:c3:

(traversable iff θs(c) = 0)
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Main Results – Lower bound

Step 3c) Replace each emptiness-check transition (s, (c)??, t) ∈ ∆ with the

following widget:

s t

(c0)?? (c1)?? (c2)?? (c3)??

c0:c1:c2:c3:

c0:c1:c2:c3:

(traversable iff θs(c) = 0)
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Main Results – Lower bound

Step 3c) Replace each emptiness-check transition (s, (c)??, t) ∈ ∆ with the

following widget:

s t

(c0)?? (c1)?? (c2)?? (c3)??

c0:c1:c2:c3:

c0:c1:c2:c3:

(traversable iff θs(c) = 0)
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Main Results – Lower bound

Step 4) It follows that:

M′ has a

non-terminating

incrementing run

⇐⇒
M has a non-terminating

reliable run whose counters do

not exceed 2N − 1
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Main Results – Lower bound

Step 4) It follows that:

M′ has a

non-terminating

incrementing run

⇐⇒
M has a non-terminating

reliable run whose counters do

not exceed 2N − 1

Step 5) PSPACE-hardness follows from the following claim

Claim

The termination problem for relaible counter

machines with “exponentially bounded

counters” is PSPACE-hard.

Q.E.D
RP 2019 11-Sept-19 13 / 22



Main Results – Fixed number of counters

Theorem The k-counter ICM termination problem is

NLOGSPACE-complete
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Main Results – Fixed number of counters

Theorem The k-counter ICM termination problem is

NLOGSPACE-complete

Proof:

• Lower Bound) Trivial (via a reduction from Graph Reachability)
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Main Results – Fixed number of counters

Theorem The k-counter ICM termination problem is

NLOGSPACE-complete

Proof:

• Lower Bound) Trivial (via a reduction from Graph Reachability)

• Upper Bound) With |C| = k fixed

max length ≤ n2ek! ∈ O(n)
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Main Results – Fixed number of counters

Theorem The k-counter ICM termination problem is

NLOGSPACE-complete

Proof:

• Lower Bound) Trivial (via a reduction from Graph Reachability)

• Upper Bound) With |C| = k fixed

max length ≤ n2ek! ∈ O(n)

; non-deterministic search requires

only logarithmic space
Q.E.D

RP 2019 11-Sept-19 14 / 22



Summary of Known Results

Lossy Incrementing

Channel Systems

(with emptiness

testing)

HYPERACKERMANN-complete TOWER-complete

Chambart–Schnoebelen 2008 Bouyer et al. 2012

Counter
Machines

ACKERMANN-complete PSPACE-hard in EXPSPACE

Schnoebelen 2010 H 2019

Counter
Machines

(with k counters)

non-ELEMENTARY for k > 5 NLOGSPACE-complete

Schnoebelen 2010 H 2019

RP 2019 11-Sept-19 15 / 22



Recent Developments . . .
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Some recent (unpublished) developments

Theorem The ICM termination problem is EXPSPACE-complete
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Some recent (unpublished) developments

Theorem The ICM termination problem is EXPSPACE-complete

Proof (sketch):

Step 1) Using the decrement gadget above, we can construct a controlled

loop that visits a given state exactly 2n times (or terminates prematurely).

(set all bits to 1 then decrement repeatedly until all bits are 0)
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Some recent (unpublished) developments

Theorem The ICM termination problem is EXPSPACE-complete

Proof (sketch):

Step 1) Using the decrement gadget above, we can construct a controlled

loop that visits a given state exactly 2n times (or terminates prematurely).

(set all bits to 1 then decrement repeatedly until all bits are 0)

Claim

It is possible to construct a controlled loop that visits a

given state exactly 22n times (or terminates prematurely).
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Some recent (unpublished) developments

Step 2) Take a reliable machine M and construct an ICM M′ by replacing

every increment with the following subroutine:

Increment ci subroutine

• Increment ci and decrement di,

• Use a controlled loop to transfer (ci, di) 7→ (temp, temp)

• Check that (ci, di) = (0, 0), else terminate.

• Use a controlled loop to transfer (temp, temp) 7→ (ci, di)

• Check that (temp, temp) = (0, 0), else terminate.

(the sum of c and d remains constant and any errors result in termination)
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Step 2) Take a reliable machine M and construct an ICM M′ by replacing

every increment with the following subroutine:

Increment ci subroutine

• Increment ci and decrement di,

• Use a controlled loop to transfer (ci, di) 7→ (temp, temp)

• Check that (ci, di) = (0, 0), else terminate.

• Use a controlled loop to transfer (temp, temp) 7→ (ci, di)

• Check that (temp, temp) = (0, 0), else terminate.

(the sum of c and d remains constant and any errors result in termination)

Step 3) Next replace every decrement with the analogous subroutine.
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Some recent (unpublished) developments

Step 4) It follows that:

M′ has a

non-terminating

incrementing run

⇐⇒
M has a non-terminating

reliable run whose counters do

not exceed 22n

Q.E.D
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Summary of Known Results

Lossy Incrementing

Channel Systems

(with emptiness

testing)

HYPERACKERMANN-complete TOWER-complete

Chambart–Schnoebelen 2008 Bouyer et al. 2012

Counter
Machines

ACKERMANN-complete EXPSPACE-complete

Schnoebelen 2010 NEW

Counter
Machines

(with k counters)

non-ELEMENTARY for k > 5 NLOGSPACE-complete

Schnoebelen 2010 H 2019
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