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(Reliable) Counter Machines

e Counter Machine (CM) M=(Q, C, Ginir, A) Minsky 1967
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(Reliable) Counter Machines

e Counter Machine (CM) M=(Q, C, Ginir, A) Minsky 1967
e Finite set of control states Q={q1,9,--.-,9.}
e Initial state ginit € Q
e Finite set of counters C ={ci,c2y...5¢m}
e Finite set of State Transitions ACQXOpsXxQ
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(Reliable) Counter Machines

e Counter Machine (CM)

M = <Q7 Ca Ginit» A)

e Finite set of control states Q={q1,q,-..,qn}

e |Initial state Ginit €

Q

e Finite set of counters

C ={ci,co-.-,¢m}

e Finite set of State Transitions ACQXOpsXxQ

e Increment

(ci)™ € Opc

e Decrement

(i)™ € Opc

e Emptiness check
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(ci)” € Opc

Minsky 1967

for all
c,eC
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Lossy / Incrementing Counter Machines

Mayr 2003

e Lossy Conter Machines (LCMs)

e LCMs are counter machines whose possible computations / runs

are determined by the following consecution relation:

M ’
1

M
o‘o—%cr] < do| 3o (o‘o > o, — o] > 01)

where

(¢,7) > (¢',7) <= qg=4q andd(c) > V(¢;) foralle; € C

(counters may spontaneously decrease before / after every operation)
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Lossy / Incrementing Counter Machines

Demri-Lazi¢ 2009, Ouaknine-Worrell 2006, Ouaknine-Worrell 2007
e Incrementing Counter Machines (ICMs)

e |ICMs are counter machines whose possible computations / runs

are determined by the following consecution relation:

M ’
1

M
0'0—¢>0'1 <= 3o Jo; (0'0 < o) — o] < 0'1)

where

(¢,9) < (¢',7) <= q=4q andd(c) < (¢) foralle; € C

(counters may spontaneously increase before / after every operation)
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Lossy / Incrementing Counter Machines

e Dual Counter Machine

e The dual / opposite of M is given by reversing all transitions

o0 O 0 O O
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Lossy / Incrementing Counter Machines

e Dual Counter Machine

e The dual / opposite of M is given by reversing all transitions

O, O O O O, O

(The dual behaves as if the arrow of time has been reversed)
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Lossy / Incrementing Counter Machines

e Dual Counter Machine

e The dual / opposite of M is given by reversing all fransitions

O, O O O O, O

(The dual behaves as if the arrow of time has been reversed)

Theorem (Ouknine-Worrel) Let M and M°P be dual counter

machines. Then, for all configurations g, oy € Conf o4,

M M MoP MoP
og —> ... —> O] D— o 4 oo
lossy incrementing
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Lossy / Incrementing Counter Machines

Theorem Reachability for LCMs and ICMs share the same
complexity
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Lossy / Incrementing Counter Machines

Theorem Reachability for LCMs and ICMs share the same
complexity

However, symmetry is broken for Termination!

Has non-terminating Has NO non-terminating
lossy run incrementing run

RP 2019 11-Sept-19

5/22



Summary of Known Termination Results

Lossy

Incrementing

Channel Systems
(with emptiness

HYPERACKERMANN-complete

TOWER-complete

testing) Chambart-Schnoebelen 2008 | Bouyer et al. 2012
Counter ACKERMANN-complete 29
Machines S
Schnoebelen 2010
Counter NoNn-ELEMENTARY for k > 5 29
Machines £ 4

(with k£ counters)

Schnoebelen 2010

RP 2019

(counter machines can be seen as degenerate channel systems)

11-Sept-19

6/ 22



Main Results

(a.k.a. Filling in the gaps)

RP 2019 11-Sept-19 7/22



Main Results - Upper bound

Theorem The ICM termination problem is decidable in
EXPSPACE
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Main Results - Upper bound

Theorem The ICM termination problem is decidable in
EXPSPACE

Proof (sketch):

Step 1) Let M =(Q,C, ginir, A) be a ICM and let r be

an incrementing run of M.

How long can r be if M has no infinite runs?
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Main Results - Upper bound

Theorem The ICM termination problem is decidable in
EXPSPACE

Proof (sketch):

Step 1) Let M =(Q,C, ginir, A) be a ICM and let r be

an incrementing run of M.

How long can r be if M has no infinite runs?

Step 2) Note that the only impediments to runs are transitions
of the form (s, (¢)™,t) € A.

(call these transitions c-gates)
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Main Results — Upper bound

Step 3) Show by induction the size of ¥ C C that long intervals containing

only X-gates have repeated (partial) configurations

(we can safely ignore counters not appearing in X)

>0-0-0-0-0-O00O-O-0O-O0-O>-0O-O+-0~0O~0
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Main Results — Upper bound

Step 3) Show by induction the size of ¥ C C that long intervals containing

only X-gates have repeated (partial) configurations

(we can safely ignore counters not appearing in X)

>0-0-0-0-0-0O0-0O0-0O0-0O0-0O-0O-0O-0O-0-0+0
ol X ol
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Main Results — Upper bound

Step 3) Show by induction the size of ¥ C C that long intervals containing

only X-gates have repeated (partial) configurations

(we can safely ignore counters not appearing in X)

>0-0-0-0-0O0-0O-0O-0O-0-0O-0O-0O-0O-0-0+0
ol X ol
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Main Results - Upper bound

Step 4) We can show that

max_length of interval with ()
n

only c-gates, forc € ¥

where

TO) =1 ond T(k)=kT(k—1)+2
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Main Results - Upper bound

Step 4) We can show that

max_length of interval with
only e-gates, forec € X

TN

where

TO) =1 ond T(k)=kT(k—1)+2

By induction

2 2 > ]
ﬁ+”'+_> < 2k!ZE = 2ek!

T(k) = k! (l+ —

o!

t=

(where e ~ 2.7182 is Euler’s constant)
RP 2019 11-Sept-19 Q)22



Step 5)

RP 2019

11-Sept-19

Main Results — Upper bound

It then follows that

max_length(r) < n?™ € O <22m>

(since r contains only C-gates, and |C| = m)
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Step 5)

RP 2019

11-Sept-19

Main Results — Upper bound

It then follows that

max_length(r) < n?™ € O <22m>

(since r contains only C-gates, and |C| = m)

M

non-deterministic search for a ‘long’

run requires only exponential space

Q.E.D

10/ 22



Main Results - Lower bound

Theorem  The ICM termination problem is PSPACE-hard
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Main Results - Lower bound

Theorem  The ICM termination problem is PSPACE-hard

Proof (sketch):

Step 1) Choose your favourite reliable counter machine M

and some specified number of bits N > 0.
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Main Results - Lower bound

Theorem  The ICM termination problem is PSPACE-hard

Proof (sketch):

Step 1) Choose your favourite reliable counter machine M

and some specified number of bits N > 0.

Step 2) Infroduce counters c®,...,eN"1,@,...,eV¥" ! foreach ¢ € C, and let

N-1
05(c) = Z 2 min {1, 3(c’) }
3=0

(0 is the value represented by the non-emptiness of %, ..., ¢~ in binary)
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Main Results - Lower bound

Step 3a) Replace each increment fransition (s, (¢)*™,t) € A with the

following widget:

(Co)?? (—o)?? (Cl)?? (El)?? (Cz)’?? (—2)?? (Cs)?? (_3)77
o O o O o O o
(@) @)/ (@ @) (@ @* ()
Q O Q O Q O Q
@) 77 Ol 27 @) 77 @)
1) (CZ). H ( 3).
(El)?? (52)’?? (33)??
e . & O clz. & .
=3. 2. =g =0.
O #@ O #O (traversable iff 6,(c) > 0,(c) + 1)
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Main Results - Lower bound

Step 3a) Replace each increment fransition (s, (¢)*™,t) € A with the

following widget:

(co)?? (EO)?? (Cl)?? (El)?? (Cz)’?? (—2)?? (Cs)?? (_3)77
o O o O o O @)
(@ @*/ (@™ @)%/ (@ @™ (™
o O Q O Qo O o
@) 77 @) 22 @) 77 @)
1) (CZ). H ( 3).
(El)?? (52)’?? (33)??
e . & O clz. & .
=3. 2. =g =0.
O #@ O #O (traversable iff 6,(c) > 0,(c) + 1)
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Main Results - Lower bound

Step 3a) Replace each increment fransition (s, (¢)*™,t) € A with the

following widget:

( 0)?? (EO)?'? (Cl)?? (El)?? (Cz)’?? (—2)?? (Cs)?? (_3)77
o O o O o O @)
()" @/ (™ @/ (@ (@ ()
o O Q O Qo O o
@) 77 @) 22 @) 77 @)
( 1). [ ( 2). H ( 3).
(El)?? (52)’?? (33)??
c3:. 02:0 ct . cO:.
63:0 62:. ! O EO:@
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(tfraversable iff 6;(c) > 6s(c) + 1)
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Main Results - Lower bound

Step 3a) Replace each increment fransition (s, (¢)*™,t) € A with the

following widget:

(co)?? (EO)?'? (Cl)?? (—1)?? (Cz)’?? (—2)?? (Cs)?? (_3)77
@) o O o O @)
(@) @) (@ @) (@ @* ()
QO O Q O Q O Q
(EO)“ ?? (El)__ g (EZ)“ ?? (ES)“
1) (CZ). H ( 3).
(El)?? (52)’?? (33)??
e . & O clz. & .
=3. 2. =g =0.
0O »@ O “Q (traversable iff 6,(c) > 0,(c) + 1)
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Main Results - Lower bound

Step 3a) Replace each increment fransition (s, (¢)*™,t) € A with the

following widget:

() @ (™ @7
o O @)
() @** ()
O Q
(G i
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(tfraversable iff 6;(c) > 6s(c) + 1)
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Main Results - Lower bound

Step 3a) Replace each increment fransition (s, (¢)*™,t) € A with the

following widget:

(Ez)?? (Cs)?? (_3)77
o O O
@* ()"
O Q
T e\

RP 2019 11-Sept-19

O
:Q (raversable iff 6,(c) > 0,(c) + 1)
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Main Results - Lower bound

Step 3a) Replace each increment fransition (s, (¢)*™,t) € A with the

following widget:

(Ez)?? (Cs)?? (_3)77
o O O
@* ()"
O Q
T e\

RP 2019 11-Sept-19

O
X
. (tfraversable iff 6;(c) > 6s(c) + 1)
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Main Results - Lower bound

Step 3a) Replace each increment fransition (s, (¢)*™,t) € A with the

following widget:

@™ (™ 7
O O @)
@)* (@**
O @)
T e\

RP 2019 11-Sept-19

O 0O 0O
Q@ Q@ 0 (traversable iff 0;(c) > 0s(c) + 1)
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Main Results - Lower bound

Step 3a) Replace each increment fransition (s, (¢)*™,t) € A with the

Q70
)" (c?) (53)??

o O o

following widget:

@) @™
Qo O Q
@7 e\
(63)??
CS:. 022@ CIZO CO3O
=0 »Q @ “Q@ (traversable iff 6;(c) > 6.(c) + 1)
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Main Results - Lower bound

Step 3a) Replace each increment fransition (s, (¢)*™,t) € A with the

following widget:

Q

()
@) ()
@)

() (<)
()77 (@77 77 @)?? (@77 77 o
@) @) @)
(™ ()™ ()™ @™ (™
Q Q O O Q
@)™ 77 Ol 77 @) 77 @)
(1).. (2) ( ) (Cz).
(El)?? (52)’?? (33)??
03:. 02:. cl: O & O
3. 2. =y 0.
0O =0 ~0 "0 (traversable iff 6,(c) > 0,(c) + 1)
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Main Results - Lower bound

Step 3a) Replace each increment fransition (s, (¢)*™,t) € A with the

following widget:

(), (g
()77 (@77 77 @)?? (@77

@) O
(CO)++ (Cl)++ (CZ)++ (62)++
Q Q O
@) ()77 5 @7 (@) )7
(El)?? (62)?? (53)??
A . 02:. clzo cO:O
53:0 @:O Elz. 0 .

RP 2019 11-Sept-19

()
@) (c
@)

Q

@)

Q
@)

©

(53)??

(tfraversable iff 6;(c) > 6s(c) + 1)
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Main Results - Lower bound

Step 3a) Replace each increment fransition (s, (¢)*™,t) € A with the

s ( C ?7?
( 3)..

(02)++ ++ (03)++

77 i(cz) O O
O\_'@

following widget:

[

@ #0 O
O EI:. EO.
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(tfraversable iff 6;(c) > 6s(c) + 1)
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Main Results - Lower bound

Step 3b) Replace each decrement transition (s, (¢)™,t) € A with the

following widget:

) (<) () c ()77
o O o O o O @)
@) @/ @ &) @ ()t @)
QO O Q O QO O Q
il @) (™ @77 (@ @77 (@)
O O O ®
(Cl)?? (Cz)?? (03)??

(tfraversable iff 6;(c) > 6s(c) — 1)
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Main Results - Lower bound

Step 3c) Replace each empliness-check transition (s, (¢)™,t) € A with the

following widget:

Q
o5

Q
o

X
e O
6O
6O

Q

(traversable iff 0;(c) = 0)
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Main Results - Lower bound

Step 3c) Replace each empliness-check transition (s, (¢)™,t) € A with the

following widget:

Q
o5

Q
o

X
e O
6O
6O

Q

(traversable iff 0;(c) = 0)
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Main Results - Lower bound

Step 3c) Replace each empliness-check transition (s, (¢)™,t) € A with the

following widget:

Q
Q

O}—‘
NS

O
® O
@ O
ov

Q

(traversable iff 0;(c) = 0)
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Main Results - Lower bound

Step 3c) Replace each empliness-check transition (s, (¢)™,t) € A with the

following widget:

=]

*
@ O

Q
Q

aQl
w
Ql
o8>
al
i

(traversable iff 0;(c) = 0)

Q
=
Q
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Main Results - Lower bound

Step 3c) Replace each empliness-check transition (s, (¢)™,t) € A with the

following widget:

mc‘,:ﬁ
© O
® 0
© IR@)
UL oo
© O
L%
© O

(traversable iff 0;(c) = 0)
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Main Results - Lower bound

Step 3c) Replace each empliness-check transition (s, (¢)™,t) € A with the

following widget:

()7 (ch)*? (c3)7* ()77
Q@ o N O

[N

@ O
® O
%

® O

Q
Q
Q
%

(traversable iff 0;(c) = 0)

O v

Ql
o
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Main Results - Lower bound

Step 4) It follows that:

M’ hasa M has a non-terminating
non-terminating <:> reliable run whose counters do

incrementing run not exceed 2NV — 1

RP 2019 11-Sept-19 13 /22



Main Results - Lower bound

Step 4) It follows that:

M’ has a M has a non-terminafing
non-terminating <:> reliable run whose counters do

incrementing run not exceed 2V — 1

Step 5) PSPACE-hardness follows from the following claim

The termination problem for relaible counter
machines with “exponentially bounded
counters” is PSPACE-hard.

Q.E.D
RP 2019 11-Sept-19 13 /22



Main Results - Fixed number of counters

Theorem The k-counter ICM termination problem is
NLOGSPACE-complete
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Main Results - Fixed number of counters

Theorem The k-counter ICM termination problem is
NLOGSPACE-complete

Proof:

e Lower Bound) Trivial (via a reduction from Graph Reachability)

RP 2019 11-Sept-19 14 /22



Main Results - Fixed number of counters

Theorem The k-counter ICM termination problem is
NLOGSPACE-complete

Proof:

e Lower Bound) Trivial (via a reduction from Graph Reachability)

e UpperBound) With |C| =k fixed

max_length < n?* ¢ O(n)
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Main Results - Fixed number of counters

Theorem The k-counter ICM termination problem is
NLOGSPACE-complete

Proof:

e Lower Bound) Trivial (via a reduction from Graph Reachability)

e UpperBound) With |C| =k fixed

max_length < n?* ¢ O(n)

non-deterministic search requires
~S 9

only logarithmic space
Q.E.D
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Summary of Known Results

Channel Systems

(with emptiness

HYPERACKERMANN-complete

TOWER-complete

testing)

Counter ACKERMANN-complete PSPACE-hard in EXPSPACE
Machines

Counfer Nnon-ELEMENTARY for k > 5 | NLOGSPACE-complete
Machines

(with k counters)




Recent Developments ...
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Some recent (unpublished) developments

Theorem The ICM ftermination problem is EXPSPACE-complete
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Some recent (unpublished) developments

Theorem The ICM ftermination problem is EXPSPACE-complete

Proof (sketch):

Step 1) Using the decrement gadget above, we can construct a controlled

loop that visits a given state exactly 2™ times (or terminates prematurely).

(set all bits to 1 then decrement repeatedly until all bits are 0)
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Some recent (unpublished) developments

Theorem The ICM ftermination problem is EXPSPACE-complete

Proof (sketch):

Step 1) Using the decrement gadget above, we can construct a

that visits a given state exactly 2™ times (or terminates prematurely).

(set all bits to 1 then decrement repeatedly until all bits are 0)

It is possible to construct a that visits a
given state exactly 22" times (or terminates prematurely).
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Some recent (unpublished) developments

Step 2) Take a machine M and construct an ICM M’ by replacing

every with the following subroutine:

e Increment ¢; and decrement d;,

e Usea to transfer (¢;, d;) — (temp, temp)
e Checkthat (¢;, d;) = (0,0), else terminate.

e Usea to transfer (temp, temp) — (c;, d;)

e Check that (temp, temp) = (0, 0), else terminate.

(the sum of ¢ and d remains constant and any errors result in termination)
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Some recent (unpublished) developments

Step 2) Take a machine M and construct an ICM M’ by replacing

every with the following subroutine:

e Increment ¢; and decrement d;,

e Usea to transfer (¢;, d;) — (temp, temp)
e Checkthat (¢;, d;) = (0,0), else terminate.

e Usea to transfer (temp, temp) — (c;, d;)

e Check that (temp, temp) = (0, 0), else terminate.

(the sum of ¢ and d remains constant and any errors result in termination)
Step 3) Next replace every with the analogous subroutine.

RP 2019 11-Sept-19 18 /22



Step 4)

RP 2019

Some recent (unpublished) developments

[T follows that:

M’ has a

non-terminating
incrementing run

M has a non-terminating
<——> reliable run whose counters do

not exceed 22"

11-Sept-19

Q.E.D
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Summary of Known Results

Channel Systems

(with emptiness

HYPERACKERMANN-complete

TOWER-complete

testing)
Counter ACKERMANN-complete EXPSPACE-complete
Machines
NEW
Counter non-ELEMENTARY for k > 5 | NLOGSPACE-complete
Machines

(with k£ counters)

20



End of Slides!
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