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Karp & Miller Tree by example

2N

Pe p3
ts) |t

pa+2ps pa
t4i it4

p3 +3ps p3 + ps wps
t3i it3

pa + 3p5 Wps pa + wps
t4i
MCS = {p1, ps, p3 + wps, pa + wps} 3 + wps

K&M Algorithm performs redundant computations: all branches are
developped independently.



Computation of the MCS

o Karp & Miller Tree (1969) : impractical

@ Minimal Coverability Tree (MCT) [Finkel, 1991] : incomplete
improved K&M Algorithm with pruning

o MCT Patch [Luttge, 1995]: does not terminate
@ CoverProc procedure [Geeraerts et al, 2005] : not K&M-based
@ Our algorithm: K&M Algorithm with pruning

@ Piipponen and Valmari, 2016: new algorithm, very efficient
implementation

Others...

©



K&M Algorithm

Waiting List composed of pairs (n', t).

Q@ Pop an element (n', t) of the Waiting List.

Q Build a new node n such that n’ 5 n
@ If nis already covered go to 1.
@ Perform acceleration if possible.

© Add n to the tree and (n, t) to Waiting List for all possible t.



Our Algorithm

Waiting List composed of pairs (n', t).

Q@ Pop an element (n’, t) of the Waiting List.

@ Build a new node n such that n’ Lon
Q If nis already covered go to 1.

@ Perform acceleration if possible.

@ Pruning:

for each node x covered by n such that x € Act V x ¢ Ancestor(n),
deactivate the subtree rooted in x

© Add n to the tree and (n, t) to Waiting List for all possible t.
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Monotone Pruning Algorithm by example
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6 “u
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In this paper

While our algorithm is a simple, elegant optimisation of the K&M
algorithm, the 2011 proof is horrible, 10 pages long.
In this paper:

@ shorter elegant proof (less than 2 pages)

@ the acceleration function is a parameter: you can plug any
reasonable function, the proof still holds.

o better suited for generalisation to other WSTS.



Proof of Monotone Pruning Algorithm

MP Algorithm terminates and is correct.

Theorem J
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Proof of Monotone Pruning Algorithm

Theorem J

MP Algorithm terminates and is correct.

Termination: as for K&M Algorithm, relies on the fact that < is a well
quasi order on (NU {w})P

Correction:
@ Soundness: each marking built by MP algorithm can be part of a
coverability set
=» easily follows similarly as K&M Algorithm
@ Completeness: prove that every reachable marking is covered by an

active node
=» this is the main challenge



Proof of completeness

We want to prove, for each sequence myg LN m, that there exists an active
node built by MP that covers m.

Consider for example the sequence p = tyt3tsts:
t t: t. t.
p1 —> P3 —> pa —> p3+ Ps —> Pa + Ps
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Proof of completeness

At each step, the algorithm satisfies the following invariant.

For any reachable marking m, either m is covered by an active node or
there exists an active node x and a sequence of transition p such that:

o x % - covers the marking
o (x,t), where t is the first transition of p, is in the Waiting List

@ every intermediate marking when firing p from x is not covered by
any active node

In other words: if it is not covered now, it will be covered later.
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Experiments

Test | K&M | MP [ CoverProc
name P T MCS [ nodes time (s) [ nodes time (s) | time (s)
BasicME 5 4 3 5 < 0.01 5 < 0.01 0.12
Kanban 16 16 1 72226 9.1 114 < 0.01 0.19
Lamport 11 9 14 83 0.02 24 < 0.01 0.17
Manufacturing 13 6 1 81 0.01 30 < 0.01 0.14
Peterson 14 12 20 609 0.2 35 0.02 0.25
Read-write 13 9 41 11139 6.33 76 .06 1.75
Mesh2x2 32 32 256 X X 6241 18.1 330
Multipool 18 21 220 X X 2004 4.9 365
pncsacover 31 36 80 X X 1604 1.6 113
csm 14 13 16 X X 102 .03 0.34
fms 22 20 24 X X 809 0.28 2.1

@ Drastic reduction of the number of states over K&M Algorithm
@ A lot faster than both K&M and CoverProc Algorithms

@ After running K&M Algorithm, one has to extract the MCS from
the coverability set computed by K& M.
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Contributions

Simpler and more general proof for the MP algorithm:

@ Acceleration function as a parameter

@ May allow extension to other WSTS

The MP algorithm is nice :
@ Simple modification of the K&M algorithm

@ Any strategy of exploration is correct
@ Any reasonable acceleration function can be plugged in

@ Drastic improvement over K&M
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