Monadic Decomposability of Regular Relations

Pablo Barceló¹, Chih-Duo Hong², Xuan-Bach Le², Anthony W. Lin³ and **Reino Niskanen**²

¹Department of Computer Science, University of Chile & IMFD, Chile

²Department of Computer Science, University of Oxford, UK

³Department of Computer Science, Technische Universität Kaiserslautern, Germany

Reachability Problems 2019

What is monadic decomposability?

- For a relation, monadic decomposability captures the notion of sufficient independence of the components of the relation.
- Components of $X \times Y$ are completely independent. While in $\{(x,x) \mid x \in X\}$ the components are tightly coupled.

What is monadic decomposability?

- For a relation, monadic decomposability captures the notion of sufficient independence of the components of the relation.
- Components of $X \times Y$ are completely independent. While in $\{(x, x) \mid x \in X\}$ the components are tightly coupled.
- Monadic decomposable relation *R* is expressible as a finite union of direct products of unary predicates.

What is monadic decomposability?

- For a relation, monadic decomposability captures the notion of sufficient independence of the components of the relation.
- Components of $X \times Y$ are completely independent. While in $\{(x, x) \mid x \in X\}$ the components are tightly coupled.
- Monadic decomposable relation *R* is expressible as a finite union of direct products of unary predicates.
- It is a powerful tool for decision procedures in logical theories.
- Restricting analysis to monadic decomposable relations can turn an undecidable problem into a decidable one.
- They also provide a large and robust class that can be implemented in the context of SMT solvers.

Main problem

Given a relation R. Is R monadic decomposable?

Main problem

Given a relation R. Is R monadic decomposable?

We focus on relations defined by multitape automata.

- Introduced in the 50s.
- Consists of a finite state-control and one-way read-only heads.
- Operates on finite inputs.
- An input is accepted, if a state reached after reading the whole input is final.
- An automaton *recognizes* a relation.

- Introduced in the 50s.
- Consists of a finite state-control and one-way read-only heads.
- Operates on finite inputs.
- An input is accepted, if a state reached after reading the whole input is final.
- An automaton *recognizes* a relation.
- Represented as a labelled directed graph.

Syntactic restrictions

We study classes based on restrictions on the underlying graph.

Variant 1

Nondeterministic behaviour with no restriction on tuples being read.

Variant 1

Nondeterministic behaviour with no restriction on tuples being read.

We call such relations rational and denote by Rat.

Variant 1

Nondeterministic behaviour with no restriction on tuples being read.

We call such relations rational and denote by Rat.

Variant 2

Deterministic behaviour with no restriction on tuples being read.

Variant 1

Nondeterministic behaviour with no restriction on tuples being read.

We call such relations rational and denote by Rat.

Variant 2

Deterministic behaviour with no restriction on tuples being read.

We call such relations deterministic rational and denote by DRat.

No ε components in transitions allowed.

In other words, the automaton operates on k-tuples of symbols. So we need to *pad* the input words.

No ε components in transitions allowed.

In other words, the automaton operates on k-tuples of symbols. So we need to *pad* the input words.

Let us call the relations $R \subseteq \Sigma^* \times \cdots \times \Sigma^*$ recognized by such automata regular and denote the class by **Reg**.

No ε components in transitions allowed.

In other words, the automaton operates on k-tuples of symbols. So we need to *pad* the input words.

Let us call the relations $R \subseteq \Sigma^* \times \cdots \times \Sigma^*$ recognized by such automata regular and denote the class by **Reg**.

Also known as synchronous or automatic relations.

$$(a, a)$$

$$(b, b)$$

$$(*, *)$$

$$(*, *)$$

$$(b, a), (a, \bot), (b, \bot)$$

$$(*, *)$$

The components of the tuples are completely independent.

Essentially, the automaton has k-tuples of states and ith tape affects only ith component.

The components of the tuples are completely independent.

Essentially, the automaton has k-tuples of states and ith tape affects only ith component.

Let us call the relations $R \subseteq \Sigma^* \times \cdots \times \Sigma^*$ recognized by such automata *recognizable* and denote the class by **Rec**.

Rec can be equivalently seen as a finite union of direct products of regular languages.

$$R \in \mathbf{Rec} \text{ iff } R = \bigcup_{i=1}^{n} L_{i,1} \times L_{i,2} \times \cdots \times L_{i,k},$$

for some regular languages $L_{i,j}$.

Rec can be equivalently seen as a finite union of direct products of regular languages.

$$R \in \mathbf{Rec} \text{ iff } R = \bigcup_{i=1}^{n} L_{i,1} \times L_{i,2} \times \cdots \times L_{i,k},$$

for some regular languages $L_{i,j}$.

Recognizable relations are also known as monadic decomposable relations.

Monadic decomposable relation example

Consider

$$R_{\mathsf{fin}} = \{(a, a), (a^2, \varepsilon)\}.$$

Monadic decomposable relation example

Consider

$$R_{\mathsf{fin}} = \{(a, a), (a^2, \varepsilon)\}.$$

Monadic decomposable relation example

Consider

$$R_{\mathsf{fin}} = \{(a, a), (a^2, \varepsilon)\}.$$

 $R_{\mathsf{fin}} = (\{a\} \times \{a\}) \cup (\{a^2\} \times \{\varepsilon\})$

For languages, the classes define the same family of languages.

k = 1

For languages, the classes define the same family of languages.

For k > 1:

Theorem

There exists a strict hierarchy of families:

 $\textbf{Rec} \subsetneq \textbf{Reg} \subsetneq \textbf{DRat} \subsetneq \textbf{Rat}$

Given a relation R in $X \in \{\text{Reg}, \text{DRat}, \text{Rat}\}$. Is R in $Y \in \{\text{Rec}, \text{Reg}, \text{DRat}\}$ as well? (wlog $Y \subsetneq X$)

That is, can R be expressed by a simpler family?

Y X	Rat	DRat	Reg
DRat			
Reg			
Rec			

Y X	Rat	DRat	Reg
DRat	Undecidable [Fisher, Rosenberg '67]		
Reg	undecidable		
Rec	undecidable [Lisovik '79]		

Y X	Rat	DRat	Reg
DRat	Undecidable [Fisher, Rosenberg '67]		
Reg	undecidable	open	
Rec undecidable [Lisovik '79]		decidable [Carton, Choffrut, Grigorieff '06] 2-EXPTIME (for $k = 2$) [Valiant '75]	

Y X	Rat	DRat	Reg	
DRat	Undecidable [Fisher, Rosenberg '67]			
Reg	undecidable	open		
Rec undecidable [Lisovik '79]		decidable [Carton, Choffrut, Grigorieff '06] 2-EXPTIME (for $k = 2$) [Valiant '75]	decidable ¹ [Libkin '00]	

¹Also independently by Carton et al.

Y X	Rat	DRat	Reg	
DRat	Undecidable [Fisher, Rosenberg '67]			
Reg	undecidable	open		
Rec undecidable [Lisovik '79]		decidable [Carton, Choffrut, Grigorieff '06] 2-EXPTIME (for $k = 2$) [Valiant '75]	decidable ¹ [Libkin '00] EXPTIME (for $k = 2$) [Löding, Spinrath '17]	

¹Also independently by Carton et al.

Y X	Rat	DRat	Reg	
DRat	Undecidable [Fisher, Rosenberg '67]			
Reg	undecidable	open		
Rec undecidable [Lisovik '79]		decidable [Carton, Choffrut, Grigorieff '06] 2-EXPTIME (for $k = 2$) [Valiant '75]	decidable ¹ [Libkin '00] EXPTIME (for $k = 2$) [Löding, Spinrath '17]	

Theorem (BHLLN'19)

Let R be a regular k-ary relation given by a DFA (resp. NFA). Deciding whether R is monadic decomposable is in NL (resp. PSPACE).

¹Also independently by Carton et al.

Y X	Rat	DRat	Reg	
DRat	Undecidable [Fisher, Rosenberg '67]			
Reg	undecidable	open		
Rec undecidable [Lisovik '79]		decidable [Carton, Choffrut, Grigorieff '06] 2-EXPTIME (for $k = 2$) [Valiant '75]	decidable ¹ [Libkin '00] EXPTIME (for $k = 2$) [Löding, Spinrath '17]	

Theorem (BHLLN'19)

Let R be a regular k-ary relation given by a DFA (resp. NFA). Deciding whether R is monadic decomposable is in NL (resp. PSPACE). Matching lower bounds also hold.

¹Also independently by Carton et al.

Let R be a regular binary relation. Define equivalence relation \sim as

$$u \sim v \text{ iff } \forall w : ((u, w) \in R \Leftrightarrow (v, w) \in R) \land ((w, u) \in R \Leftrightarrow (w, v) \in R)$$

Let R be a regular binary relation. Define equivalence relation \sim as

$$u \sim v ext{ iff } \forall w : ((u,w) \in R \Leftrightarrow (v,w) \in R) \land ((w,u) \in R \Leftrightarrow (w,v) \in R)$$

Lemma (folklore)

Let R be a regular binary relation. Then the equivalence relation \sim has infinite index iff R is not monadic decomposable.

Consider $R_{eq} = \{(u, u) \mid u \in \Sigma^*\}$, where $\Sigma = \{a, b\}$. It is clear that $u \not\sim v$ iff $u \neq v$.

It is clear that $u \not\sim v$ iff $u \neq v$.

Hence there are infinitely many equivalence classes and the relation is not monadic decomposable.

It is clear that $u \not\sim v$ iff $u \neq v$.

Hence there are infinitely many equivalence classes and the relation is not monadic decomposable.

Consider $R_{\text{fin}} = \{(a, a), (a^2, \varepsilon)\}.$

It is clear that $u \not\sim v$ iff $u \neq v$.

Hence there are infinitely many equivalence classes and the relation is not monadic decomposable.

Consider $R_{\text{fin}} = \{(a, a), (a^2, \varepsilon)\}.$

There are four equivalence classes, $\{\varepsilon\}$, $\{a\}$, $\{a^2\}$ and "everything else". Hence, the relation is monadic decomposable.

- Previous works studied whether a relation *R* is monadic decomposable.
- We focus on being not decomposable.
- In a way, we are reasoning on infinite objects rather than finite.

- Previous works studied whether a relation *R* is monadic decomposable.
- We focus on being not decomposable.
- In a way, we are reasoning on infinite objects rather than finite.
- We will show
 - *R* is not **Rec** iff there exists a sequence of representatives with a *nice* structure utilizing combinatorial arguments such as Infinite Ramsey Theorem; and
 - how to generate such a sequence utilizing pumping argument.

• construct regular automaton for R^{γ} ;

- construct regular automaton for $R^{\gamma^{\prime}}$;
- verify that R[≁] recognizes infinite number of pairs of distinct representatives;

- construct regular automaton for $R^{\gamma^{\prime}}$;
- verify that R[≁] recognizes infinite number of pairs of distinct representatives;
- and be efficient.

ι

ı,

w ₀	α_0]					
w_1	β_0	α_1					
w2	β_0	β_1	α_2				
w3	β_0	β_1	β_2	α_3]		
w4	β_0	β_1	β_2	β_3	α_4		
w5	β_0	β_1	β_2	β_3	β_4	α_5	
w ₆	β_0	β_1	β_2	β_3	β_4	β_5	α_6
:				:			

In this sequence, no matter which pair of words is being read, the states are the same after reading $(\delta_i, \delta_i)!$

Barceló, Hong, Le, Lin, Niskanen

Monadic Decomposability of Regular Relations

We have an infinite sequence of words $\{w_i\}_{i\geq 0}$, where

- $w_j \not\sim w_\ell$ for all $j \neq \ell$;
- $w_i = \delta_0 \cdots \delta_{i-1} \gamma_i;$
- $|\gamma_i| = |\delta_i| > 0;$
- No matter which pair of words is read, the automaton visits the same states in particular points of computation in R^{γ} .

This sequence exists if and only if R is not monadic decomposable.

We can further prove that R is not monadic decomposable iff there are synchronizing states with pumping property in R^{γ} .

We can further prove that R is not monadic decomposable iff there are synchronizing states with pumping property in $R^{\gamma^{2}}$.

"Algorithm"

Given binary regular relation R, construct automaton for R^{\sim} . Guess these pumping states and check the reachability (in NL).

We can further prove that R is not monadic decomposable iff there are synchronizing states with pumping property in $R^{\gamma^{\prime}}$.

"Algorithm"

Given binary regular relation R, construct automaton for R^{\sim} . Guess these pumping states and check the reachability (in NL).

- If R is given by a DFA, then R^{\sim} can be constructed in L.
- If R is given by an NFA, then $R^{\gamma^{2}}$ can be constructed in PSPACE.

Theorem (BHLLN'19)

Let R be a regular binary relation given by a DFA (resp. NFA). Deciding whether R is monadic decomposable is in NL (resp. PSPACE).

Theorem (BHLLN'19)

Let R be a regular k-ary relation given by a DFA (resp. NFA). Deciding whether R is monadic decomposable is NL-complete (resp. PSPACE-complete).

Theorem (BHLLN'19)

Let R be a regular k-ary relation given by a DFA (resp. NFA). Deciding whether R is monadic decomposable is NL-complete (resp. PSPACE-complete).

P. Barceló, C-D. Hong, X-B. Le, A. Lin, R. Niskanen. Monadic Decomposability of Regular Relations. *ICALP 2019*, LIPIcs 132: 103:1–103:14, 2019.

Thank you for your attention!