Monadic Decomposability of Regular Relations

Pablo Barceló¹, Chih-Duo Hong², Xuan-Bach Le², Anthony W. Lin³ and Reino Niskanen²

¹Department of Computer Science, University of Chile & IMFD, Chile

²Department of Computer Science, University of Oxford, UK

³Department of Computer Science, Technische Universität Kaiserslautern, Germany

Reachability Problems 2019

What is monadic decomposability?

- For a relation, monadic decomposability captures the notion of sufficient independence of the components of the relation.
- Components of $X \times Y$ are completely independent. While in $\{(x, x) \mid x \in X\}$ the components are tightly coupled.

What is monadic decomposability?

- For a relation, monadic decomposability captures the notion of sufficient independence of the components of the relation.
- Components of $X \times Y$ are completely independent. While in $\{(x, x) \mid x \in X\}$ the components are tightly coupled.
- Monadic decomposable relation R is expressible as a finite union of direct products of unary predicates.

What is monadic decomposability?

- For a relation, monadic decomposability captures the notion of sufficient independence of the components of the relation.
- Components of $X \times Y$ are completely independent. While in $\{(x, x) \mid x \in X\}$ the components are tightly coupled.
- Monadic decomposable relation R is expressible as a finite union of direct products of unary predicates.
- It is a powerful tool for decision procedures in logical theories.
- Restricting analysis to monadic decomposable relations can turn an undecidable problem into a decidable one.
- They also provide a large and robust class that can be implemented in the context of SMT solvers.

Main problem

Given a relation R. Is R monadic decomposable?

Main problem

Given a relation R. Is R monadic decomposable?

We focus on relations defined by multitape automata.

- Introduced in the 50s.
- Consists of a finite state-control and one-way read-only heads.
- Operates on finite inputs.
- An input is accepted, if a state reached after reading the whole input is final.
- An automaton *recognizes* a relation.

- Introduced in the 50s.
- Consists of a finite state-control and one-way read-only heads.
- Operates on finite inputs.
- An input is accepted, if a state reached after reading the whole input is final.
- An automaton *recognizes* a relation.
- Represented as a labelled directed graph.

Syntactic restrictions

We study classes based on restrictions on the underlying graph.

Variant 1

Nondeterministic behaviour with no restriction on tuples being read.

Variant 1

Nondeterministic behaviour with no restriction on tuples being read.

We call such relations rational and denote by Rat.

Variant 1

Nondeterministic behaviour with no restriction on tuples being read.

We call such relations rational and denote by Rat.

Variant 2

Deterministic behaviour with no restriction on tuples being read.

Variant 1

Nondeterministic behaviour with no restriction on tuples being read.

We call such relations rational and denote by Rat.

Variant 2

Deterministic behaviour with no restriction on tuples being read.

We call such relations deterministic rational and denote by DRat.

No ε components in transitions allowed.

In other words, the automaton operates on k -tuples of symbols. So we need to *pad* the input words.

No ε components in transitions allowed.

In other words, the automaton operates on k -tuples of symbols. So we need to *pad* the input words.

Let us call the relations $R \subseteq \Sigma^* \times \cdots \times \Sigma^*$ recognized by such automata regular and denote the class by Reg.

No ε components in transitions allowed.

In other words, the automaton operates on k -tuples of symbols. So we need to *pad* the input words.

Let us call the relations $R \subseteq \Sigma^* \times \cdots \times \Sigma^*$ recognized by such automata regular and denote the class by Reg.

Also known as synchronous or automatic relations.

(a, a) (b, b) (a, b), (a, ⊥), (b, ⊥) (b, a), (⊥, a), (⊥, b) (∗, ∗)

The components of the tuples are completely independent.

Essentially, the automaton has k -tuples of states and *i*th tape affects only ith component.

The components of the tuples are completely independent.

Essentially, the automaton has k -tuples of states and *i*th tape affects only ith component.

Let us call the relations $R \subseteq \Sigma^* \times \cdots \times \Sigma^*$ recognized by such automata *recognizable* and denote the class by **Rec**.

Rec can be equivalently seen as a finite union of direct products of regular languages.

$$
R \in \textbf{Rec iff } R = \bigcup_{i=1}^n L_{i,1} \times L_{i,2} \times \cdots \times L_{i,k},
$$

for some regular languages $L_{i,j}.$

Rec can be equivalently seen as a finite union of direct products of regular languages.

$$
R \in \textbf{Rec iff } R = \bigcup_{i=1}^n L_{i,1} \times L_{i,2} \times \cdots \times L_{i,k},
$$

for some regular languages $L_{i,j}.$

Recognizable relations are also known as monadic decomposable relations.

Monadic decomposable relation example

Consider

$$
R_{fin} = \{(a, a), (a^2, \varepsilon)\}.
$$

Monadic decomposable relation example

Consider

$$
R_{\text{fin}} = \{ (a, a), (a^2, \varepsilon) \}.
$$

Monadic decomposable relation example

Consider

$$
R_{fin} = \{(a, a), (a^2, \varepsilon)\}.
$$

 $R_{\mathsf{fin}} = (\{\mathsf{a}\} \times \{\mathsf{a}\}) \cup (\{\mathsf{a}^2\} \times \{\varepsilon\})$

$k = 1$

For languages, the classes define the same family of languages.

$k = 1$

For languages, the classes define the same family of languages.

For $k > 1$:

Theorem

There exists a strict hierarchy of families:

 $\mathsf{Rec} \subsetneq \mathsf{Reg} \subsetneq \mathsf{DRat} \subsetneq \mathsf{Rat}$

Given a relation R in $X \in \{Reg, DRat, Rat\}$. Is R in $Y \in \{\text{Rec}, \text{Reg}, \text{DRat}\}$ as well? (wlog $Y \subsetneq X$)

That is, can R be expressed by a simpler family?

¹Also independently by Carton et al.

¹Also independently by Carton et al.

Theorem (BHLLN'19)

Let R be a regular k-ary relation given by a DFA (resp. NFA). Deciding whether R is monadic decomposable is in NL (resp. PSPACE).

¹Also independently by Carton et al.

Theorem (BHLLN'19)

Let R be a regular k-ary relation given by a DFA (resp. NFA). Deciding whether R is monadic decomposable is in NL (resp. PSPACE). Matching lower bounds also hold.

¹Also independently by Carton et al.

Let R be a regular binary relation. Define equivalence relation \sim as

$$
u \sim v \text{ iff } \forall w : ((u, w) \in R \Leftrightarrow (v, w) \in R) \land ((w, u) \in R \Leftrightarrow (w, v) \in R)
$$

Let R be a regular binary relation. Define equivalence relation \sim as

$$
u \sim v \text{ iff } \forall w : ((u, w) \in R \Leftrightarrow (v, w) \in R) \land ((w, u) \in R \Leftrightarrow (w, v) \in R)
$$

Lemma (folklore)

Let R be a regular binary relation. Then the equivalence relation \sim has infinite index iff R is not monadic decomposable.

Consider $R_{eq} = \{(u, u) \mid u \in \Sigma^*\}$, where $\Sigma = \{a, b\}$. It is clear that $u \nsim v$ iff $u \neq v$.

It is clear that $u \nless v$ iff $u \neq v$.

Hence there are infinitely many equivalence classes and the relation is not monadic decomposable.

It is clear that $u \nless v$ iff $u \neq v$.

Hence there are infinitely many equivalence classes and the relation is not monadic decomposable.

Consider $R_{fin} = \{(a, a), (a^2, \varepsilon)\}.$

It is clear that $u \nless v$ iff $u \neq v$.

Hence there are infinitely many equivalence classes and the relation is not monadic decomposable.

Consider $R_{fin} = \{(a, a), (a^2, \varepsilon)\}.$

There are four equivalence classes, $\{\varepsilon\}$, $\{a\}$, $\{a^2\}$ and "everything else". Hence, the relation is monadic decomposable.

- \bullet Previous works studied whether a relation R is monadic decomposable.
- We focus on being not decomposable.
- In a way, we are reasoning on infinite objects rather than finite.
- \bullet Previous works studied whether a relation R is monadic decomposable.
- We focus on being not decomposable.
- In a way, we are reasoning on infinite objects rather than finite.
- We will show
	- R is not **Rec** iff there exists a sequence of representatives with a nice structure — utilizing combinatorial arguments such as Infinite Ramsey Theorem; and
	- how to generate such a sequence utilizing pumping argument.

construct regular automaton for $R^{\not\sim}$;

- construct regular automaton for $R^{\not\sim}$;
- verify that $R^{\not\sim}$ recognizes infinite number of pairs of distinct representatives;

- construct regular automaton for $R^{\not\sim}$;
- verify that $R^{\not\sim}$ recognizes infinite number of pairs of distinct representatives;
- and be efficient.

The pigeonhole principle and −−
König's Lemma

In this sequence, no matter which pair of words is being read, the states are the same after reading $(\delta_i,\delta_i)!$

Barceló, Hong, Le, Lin, Niskanen [Monadic Decomposability of Regular Relations](#page-0-0) RP 2019 18 / 21

We have an infinite sequence of words $\{w_i\}_{i>0}$, where

- $w_j \nsim w_\ell$ for all $j \neq \ell;$
- $w_i = \delta_0 \cdots \delta_{i-1} \gamma_i;$
- $|\gamma_i|=|\delta_i|>0;$
- No matter which pair of words is read, the automaton visits the same states in particular points of computation in $R^{\not\sim}.$

This sequence exists if and only if R is not monadic decomposable.

We can further prove that R is not monadic decomposable iff there are synchronizing states with pumping property in $R^{\not\sim}.$

We can further prove that R is not monadic decomposable iff there are synchronizing states with pumping property in $R^{\not\sim}.$

"Algorithm"

Given binary regular relation R , construct automaton for $R^{\not\sim}$. Guess these pumping states and check the reachability (in NL). We can further prove that R is not monadic decomposable iff there are synchronizing states with pumping property in $R^{\not\sim}.$

"Algorithm"

Given binary regular relation R , construct automaton for $R^{\not\sim}$. Guess these pumping states and check the reachability (in NL).

- If R is given by a DFA, then $R^{\not\sim}$ can be constructed in L.
- If R is given by an NFA, then $R^{\not\sim}$ can be constructed in PSPACE.

Theorem (BHLLN'19)

Let R be a regular binary relation given by a DFA (resp. NFA). Deciding whether R is monadic decomposable is in NL (resp. PSPACE).

Theorem (BHLLN'19)

Let R be a regular k-ary relation given by a DFA (resp. NFA). Deciding whether R is monadic decomposable is NL-complete (resp. PSPACE-complete).

Theorem (BHLLN'19)

Let R be a regular k-ary relation given by a DFA (resp. NFA). Deciding whether R is monadic decomposable is NL-complete (resp. PSPACE-complete).

F P. Barceló, C-D. Hong, X-B. Le, A. Lin, R. Niskanen. Monadic Decomposability of Regular Relations. ICALP 2019, LIPIcs 132: 103:1–103:14, 2019.

Thank you for your attention!