Synthesis of Data Words Transducers

Léo Exibard¹² Pierre-Alain Reynier¹ Emmanuel Filiot² Wednesday, September 11th, 2019

¹Laboratoire d'Informatique et des Systèmes Aix-Marseille Université France

²Méthodes Formelles et Vérification Université libre de Bruxelles Belgium

Statement of the Problem

Reactive systems

Goal

Generate a system from a specification

? $\parallel Env \models Specification$

The Classical Setting: Specifications

Finite Automata

A Universal co-Büchi Automaton checking that every request is eventually granted.

Relation recognised by A

$$\mathcal{R}(A) = \{ (i_1 i_2 \dots, o_1 o_2 \dots) \mid i_1 o_1 i_2 o_2 \dots \in \mathcal{L}(A) \}$$

Finite Transducers

- Automata with outputs
- Deterministically outputs a letter on reading a letter
- No accepting states

The Classical Setting: Implementations

- Automata with outputs
- Deterministically outputs a letter on reading a letter
- No accepting states

The Classical Setting: Implementations

- Automata with outputs
- Deterministically outputs a letter on reading a letter
- No accepting states

The Classical Setting: Implementations

- Automata with outputs
- Deterministically outputs a letter on reading a letter
- No accepting states

Theorem

The synthesis of Sequential Transducers from Nondeterministic Finite Automata is ExpTime-c [Büchi and Landweber, 1969].

Motivating example

Every request of client *i* is eventually granted:

$$\bigwedge_{i \in C} G\left(req(i) \to F(grant(i)) \right)$$

Limitation

Input and output alphabets are assumed to be small (finite) sets.

- Classical setting: C finite
- Our setting: C infinite

How to Represent Executions? Data Words

- Sequences of pairs $(a, d) \in \Sigma \times D$
- Σ finite alphabet of *labels*
- \mathcal{D} infinite set of *data*

- $\Sigma = \{ req, grt, \neg req, \neg grt \}$
- $\mathcal{D} = \mathbb{N}$

Extending Automata to Data Words: Register Automata

Finite automata with a finite set **R** of registers

- Store data
- Test register content

Transitions
$$q \xrightarrow{\sigma, arphi, A} q'$$

- $\bullet \ \sigma \ {\rm label}$
- $\varphi \subseteq R$ tests
- A registers assigned d

An URA checking that every request is eventually granted.

Sequential Register Transducers

- Transitions $q \xrightarrow{i, \varphi \mid A, \ o, \ r_{out}} q'$
 - *i* input letter, *o* output letter
 - φ test over d_{in}
 - A registers assigned din
 - rout register whose content is output
- Sequentiality: tests are mutually exclusive

A register transducer immediately granting each request.

Unbounded Synthesis Problem

Input: *S* a register automaton

- **Output:** *M* a register transducer
 - s.t. $M \models S$ if it exists
 - No otherwise

Unbounded Synthesis Problem Input: *S* a register automaton **Output:** • *M* a register transducer s.t. $M \models S$ if it exists No otherwise

Theorem

The unbounded synthesis problem is undecidable for S given as a

Nondeterministic Register Automaton. 😕

Unbounded Synthesis ProblemInput:S a register automatonOutput:M a register transducers.t. $M \models S$ if it exists• No otherwise

Theorem

The unbounded synthesis problem is undecidable for S given as a Nondeterministic Register Automaton.

 \rightarrow Universality of NRA over finite words is undecidable

Unbounded Synthesis Problem Input: S a register automaton Output: M a register transducer s.t. $M \models S$ if it exists

• No otherwise

Theorem

The unbounded synthesis problem is undecidable for S given as a Universal Register Automaton.

- → Slightly more complex proof
- → Open question in [Khalimov et al., 2018]

Unbounded Synthesis ProblemInput:S a register automatonOutput:M a register transducer
s.t. $M \models S$ if it exists
• No otherwise

Theorem

The unbounded synthesis problem is decidable for S given as a Deterministic Register Automaton.

- → Reduce to bounded synthesis
- → S is realisable by a register transducer iff it is realisable by a $|R_S|$ -registers transducer

Bounded Synthesis of Register Transducers

Bounded Synthesis Problem

Input: *S* a register automaton, k a number of registers

- **Output:** *M* a k-register transducer
 - s.t. $M \models S$ if it exists
 - No otherwise

Results

• Still undecidable for S nondeterministic (even for k = 1)

Bounded Synthesis of Register Transducers

Bounded Synthesis Problem

Input: *S* a register automaton, k a number of registers

- **Output:** *M* a k-register transducer
 - s.t. $M \models S$ if it exists
 - No otherwise

Results

- Still undecidable for S nondeterministic (even for k = 1)
- Decidable for *S* universal [Khalimov et al., 2018, we provide an alternative, simpler proof]

Bounded Synthesis of Register Transducers

Bounded Synthesis Problem

Input: *S* a register automaton, k a number of registers

- **Output:** *M* a k-register transducer
 - s.t. $M \models S$ if it exists
 - No otherwise

Results

- Still undecidable for S nondeterministic (even for k = 1)
- Decidable for *S* universal [Khalimov et al., 2018, we provide an alternative, simpler proof]
- Decidable for *S* nondeterministic test-free 🐸
 - \rightarrow Test-free: cannot test equality between input data

Main results

Synthesis	DRA	NRA	URA	NRA _{tf}
Bounded	EveTime	Undecidable	2ExpTime	2ExpTime
Unbounded			Undecidable	Open

Ongoing work

- Complexity lower bounds
- For S functions, decision of sequentiality and continuity
- Decision of functionality

Future work

• Synthesis from logical specifications

Abstract actions

- Input actions: $(i, tst) \in \Sigma_{in} \times 2^k$
- Output actions: $(asgn, o, r_{out}) \in 2^k \times \Sigma_{out} \times 2^k$
- → $w \in (\Sigma \times D)^{\omega}$ is compatible with $\mathbf{a} = a_1 a_2 \dots$ iff $a_1 a_2 \dots$ can be performed on reading w.

Example

Sequence	(a, arnothing)	$(\{r_1\}, b, \{r_1\})$	(a, \varnothing)	$(\{r_2\}, b, \{r_1\})$	$(a, \{r_1\})$
Word	(a,1)	(b,1)	(a,2)	(b,1)	(a,1)
Registers	(0,0)	(1,0)	(1,0)	(1,2)	(1,2)

Proposition

- S is realisable by a k-register transducer iff
- *W*_{S,k} = {a abstract sequence | Comp(a) ⊆ S} is realisable by a (register-free) finite transducer

Proposition

- $W_{S,k}$ is ω -regular for S Universal Register Automaton
- $W_{S,k}$ is ω -regular for S Nondeterministic test-free Register Automaton

Büchi, J. R. and Landweber, L. H. (1969). Solving Sequential Conditions by Finite-State Strategies. Transactions of the American Mathematical Society, 138:295–311.

Khalimov, A., Maderbacher, B., and Bloem, R. (2018).
Bounded Synthesis of Register Transducers.

In Automated Technology for Verification and Analysis, 16th International Symposium, ATVA 2018, Los Angeles, October 7-10, 2018. Proceedings.