Synthesis of Data Words Transducers

Léo Exibard¹² Pierre-Alain Reynier¹ Emmanuel Filiot² Wednesday, September 11th, 2019

¹Laboratoire d'Informatique et des Systèmes Aix-Marseille Université France

²Méthodes Formelles et Vérification Université libre de Bruxelles Belgium

Statement of the Problem

Reactive systems

Goal

Generate a system from a specification

? \parallel Env \models Specification

The Classical Setting: Specifications

Finite Automata

A Universal co-Büchi Automaton checking that every request is eventually granted.

Relation recognised by A

$$
\mathcal{R}(A) = \{ (i_1 i_2 \ldots, o_1 o_2 \ldots) \mid i_1 o_1 i_2 o_2 \cdots \in \mathcal{L}(A) \}
$$

Finite Transducers

- Automata with outputs
- Deterministically outputs a letter on reading a letter
- No accepting states

The Classical Setting: Implementations

Sequentiality

- Automata with outputs
- Deterministically outputs a letter on reading a letter
- No accepting states

The Classical Setting: Implementations

- Automata with outputs
- Deterministically outputs a letter on reading a letter
- No accepting states

The Classical Setting: Implementations

- Automata with outputs
- Deterministically outputs a letter on reading a letter
- No accepting states

Theorem

The synthesis of Sequential Transducers from Nondeterministic Finite Automata is $ExpTime-c$ [\[Büchi and Landweber, 1969\]](#page-23-0).

Motivating example

Every request of client i is eventually granted:

$$
\bigwedge_{i \in C} G\Big(\mathit{req}(i) \to F\big(\mathit{grant}(i)\big)\Big)
$$

Limitation

Input and output alphabets are assumed to be small (finite) sets.

- Classical setting: C finite
- Our setting: C infinite

How to Represent Executions? Data Words

- Sequences of pairs $(a, d) \in \Sigma \times \mathcal{D}$
- \bullet Σ finite alphabet of *labels*
- D infinite set of *data*

1 4 2 2 3 1 5 3 req \neg grt req grt req grt \neg req grt

- $\Sigma = \{ \text{req}, \text{grt}, \neg \text{req}, \neg \text{grt} \}$
- $\bullet \mathcal{D} = \mathbb{N}$

Extending Automata to Data Words: Register Automata

Finite automata with a finite set R of registers

- Store data
- Test register content

Transitions $q \xrightarrow{\sigma, \varphi, A} q'$

- \bullet σ label
- $\varphi \subset R$ tests
- A registers assigned d

An URA checking that every request is eventually granted.

Sequential Register Transducers

- Transitions $q \xrightarrow{i, \varphi \ |A, o, r_{\text{out}}} q'$
	- *i* input letter, *o* output letter
	- φ test over d_{in}
	- A registers assigned d_{in}
	- \bullet r_{out} register whose content is output
- Sequentiality: tests are mutually exclusive

A register transducer immediately granting each request.

Unbounded Synthesis Problem

Input: S a register automaton

Output: • M a register transducer

s.t. $M \models S$ if it exists

• No otherwise

Unbounded Synthesis Problem **Input:** S a register automaton **Output:** • M a register transducer s.t. $M \models S$ if it exists • No otherwise

Theorem

The unbounded synthesis problem is undecidable for S given as a

Nondeterministic Register Automaton.

Unbounded Synthesis Problem **Input:** S a register automaton **Output:** • M a register transducer s.t. $M \models S$ if it exists • No otherwise

Theorem

The unbounded synthesis problem is undecidable for S given as a Nondeterministic Register Automaton.

 \rightarrow Universality of NRA over finite words is undecidable

Unbounded Synthesis Problem

Input: S a register automaton **Output:** • M a register transducer s.t. $M \models S$ if it exists • No otherwise

Theorem

The unbounded synthesis problem is undecidable for S given as a Universal Register Automaton.

- \rightarrow Slightly more complex proof
- \rightarrow Open question in [\[Khalimov et al., 2018\]](#page-23-1)

Unbounded Synthesis Problem **Input:** S a register automaton **Output:** • M a register transducer s.t. $M \models S$ if it exists • No otherwise

Theorem

The unbounded synthesis problem is decidable for S given as a Deterministic Register Automaton.

- \rightarrow Reduce to bounded synthesis
- \rightarrow S is realisable by a register transducer iff it is realisable by a $|R_S|$ -registers transducer

Bounded Synthesis of Register Transducers

Bounded Synthesis Problem

Input: S a register automaton, k a number of registers

- **Output:** M a k-register transducer
	- s.t. $M \models S$ if it exists
	- No otherwise

Results

• Still undecidable for S nondeterministic (even for $k = 1$)

Bounded Synthesis of Register Transducers

Bounded Synthesis Problem

Input: S a register automaton, k a number of registers

- **Output:** M a k-register transducer
	- s.t. $M \models S$ if it exists
	- No otherwise

Results

- Still undecidable for S nondeterministic (even for $k = 1$)
- Decidable for S universal [\[Khalimov et al., 2018,](#page-23-1) we provide an alternative, simpler proof

Bounded Synthesis of Register Transducers

Bounded Synthesis Problem

Input: S a register automaton, k a number of registers

- **Output:** M a k-register transducer
	- s.t. $M \models S$ if it exists
	- No otherwise

Results

- Still undecidable for S nondeterministic (even for $k = 1$)
- Decidable for S universal [\[Khalimov et al., 2018,](#page-23-1) we provide an alternative, simpler proof
- Decidable for S nondeterministic test-free
	- \rightarrow Test-free: cannot test equality between input data

Main results

Ongoing work

- Complexity lower bounds
- For S functions, decision of sequentiality and continuity
- Decision of functionality

Future work

• Synthesis from logical specifications

Abstract actions

- Input actions: $(i, \textsf{tst}) \in \Sigma_{\textsf{in}} \times 2^k$
- Output actions: $(\textit{asgn}, o, r_{\text{out}}) \in 2^k \times \Sigma_{\text{out}} \times 2^k$
- $\rightarrow w \in (\Sigma \times \mathcal{D})^{\omega}$ is compatible with $\mathsf{a} = \mathsf{a}_1 \mathsf{a}_2 \ldots$ iff $\mathsf{a}_1 \mathsf{a}_2 \ldots$ can be performed on reading w.

Example

Proposition

- S is realisable by a k-register transducer iff
- $W_{S,k} = \{a \text{ abstract sequence } | \text{ Comp}(a) \subseteq S\}$ is realisable by a (register-free) finite transducer

Proposition

- $W_{S,k}$ is ω -regular for S Universal Register Automaton
- $W_{S,k}$ is ω -regular for S Nondeterministic test-free Register Automaton

量 Büchi, J. R. and Landweber, L. H. (1969). Solving Sequential Conditions by Finite-State Strategies. Transactions of the American Mathematical Society, 138:295–311.

譶 Khalimov, A., Maderbacher, B., and Bloem, R. (2018). Bounded Synthesis of Register Transducers.

In Automated Technology for Verification and Analysis, 16th International Symposium, ATVA 2018, Los Angeles, October 7-10, 2018. Proceedings.