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Context



Verification and synthesis

Verification: checking that the system
satisfies some specifications.

Synthesis: building a system which
satisfies some specifications by
construction.

,! games played on graph.
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Two player zero-sum games



Qualitative two-player zero-sum reachability games
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Player �: the system
Goal: satisfying a property.
Here: reaching a vertex of the target set
F� = {v2, v6, v7} (reachability objective)

Player ⇤: the environment
Goal: avoid that.

The system satisfies the property
,

Player � has a winning strategy.

Too restrictive  quantitative specification.
(Ex: reaching a vertex of the target set within k steps.)
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Quantitative two-player zero-sum reachability games
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Two players: Player � (Min) and
Player ⇤ (Max).

(Quantitative reachability objective) For every
infinite path (called play) ⇢, ⇢ = ⇢0⇢1 . . .,

Cost�(⇢) =

8
><

>:
k

if k is the least index

st. ⇢k 2 F�

+1 otherwise
Ex:

Cost�((v0v1v2)!) = 2;

Cost�((v0v8)!) = +1.

Objectives:
Player � wants to reach F� ASAP;

Player ⇤ wants to avoid that.
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Quantitative two-player zero-sum reachability games
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Strategy: �i : V
⇤Vi ! V ;

Ex: �� and �⇤
A strategy profile: (��,�⇤)  
h��,�⇤iv0 = (v0v1v2)

! (called outcome)

What cost can Player � ensure?

From v0, Player � can ensure a cost of +1;

From v3, Player � can ensure a cost of 3;

 value of a vertex
 /////////winning//////////strategy  optimal strategies.
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Multiplayer (non zero-sum) quantitative reachability games



Setting

v0

v8

v1v3 v2

v4

v5

v6

v7

Two (or more) players;
Ex: Player � and Player ⇤.
Objectives:

Player � wants to reach F� = {v2, v6, v7}
(ASAP);

Player ⇤ wants to reach F⇤ = {v2} (ASAP).

 non antagonistic.
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Definition of Nash equilibrium
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/////////optimal////////////strategies  other solution concept:
Nash equilibrium.

Nash equilibrium

A strategy profile (��,�⇤) is a Nash equi-
librium (NE) if no player has an incentive to
deviate unilaterally.

Counter-ex: (��,�⇤):

(��,�⇤)  h��,�⇤iv0 = v0v1v3v4v5v!
6
;

(Cost�(h��,�⇤iv0 ),Cost⇤(h��,�⇤iv0 )) =
(5,+1).

 not an NE.
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Di↵erent NEs may coexist
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h��,�⇤iv0 = (v0v8)!

Cost : (+1,+1)

NO player visits his
target set ...

h��,�⇤iv0 =
(v0v1v2)!

Cost : (2, 2)

BOTH players visit
their target set !
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v1v3 v2

v4

v5

v6

v7
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What is (for us) a relevant Nash equilibrium ?
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Studied problems

1 (Threshold decision problem)

Given (k1, . . . , kn) 2 (N [ {+1})n, does there exist
an NE (�1, . . . ,�n) such that, for all 1  i  n:

Costi (h�1, . . . ,�niv0)  ki .

2 (Social welfare decision problem)

3 (Pareto optimal decision problem)

For NEs, in multiplayer quantitative reachability games, Problem
1 is NP-complete.
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Key idea

Outcome characterization of a Nash equilibrium

Let ⇢ be a play,
there exists an NE (�1, . . . ,�n) such that h�1, . . . ,�niv0 = ⇢

if and only if
⇢ satisfies a “good” property.

 Does there exist a play ⇢ such that:

for each player i , Costi (⇢)  ki ;

⇢ satisfies a “good” property?
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Algorithm (For NE)

1 it guesses a lasso of polynomial length;

2 it verifies that the cost profile of this lasso satisfies the
conditions given by the problem;

3 it verifies that the lasso is the outcome of an NE.

NP-algorithm for Problem 1:

Step 1: if there exists an NE which satisfies the constraints, there exists one which
also satisfies the constraints and such that its outcome is a lasso (h`!) with a

polynomial length (|h`|).
Step 2: can be done in polynomial time.

Step 3: checking the “good” property along the lasso of polynomial length can be
done in polynomial time.
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What is this “good” property ?

Val
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1
multiplayer

(non zero-sum)
game

2
Two player
zero-sum
games

Values in quantitative two-player zero-sum games can be computed in polynomial time
(see for example [BGHM17])
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v0 v1

2 F⇤ 2 F�

. . .

Val⇤(v0)
= 4

X

Val�(v1)
= 3

7

XXXXX . . .  outcome of an NE;

XX7  //////////outcome///of////an/////NE.
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Conclusion and additional results



1 (Threshold decision problem)

2 (Social welfare decision problem)

3 (Pareto optimal decision problem)
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Results

Complexity
Qual. Reach. Quant. Reach.

NE SPE NE SPE

Prob. 1 NP-c [CFGR16] PSPACE-c[BBGR18] NP-c PSPACE-c[BBG+19]
Prob. 2 NP-c PSPACE-c NP-c PSPACE-c
Prob. 3 NP-h/⌃P

2 PSPACE-c NP-h/⌃P
2 PSPACE-c

Memory
Qual. Reach. Quant. Reach.

NE SPE NE SPE

Prob. 1 Poly.[CFGR16] Expo.[BBGR18] Poly. Expo.
Prob. 2 Poly. Expo. Poly. Expo.
Prob. 3 Poly. Expo. Poly. Expo.
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