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Molecular design of hypothalamus 
development


Roman A. Romanov1,2,12, Evgenii O. Tretiakov1,12, Maria Eleni Kastriti1,3, Maja Zupancic1,  
Martin Häring1, Solomiia Korchynska1, Konstantin Popadin4,5, Marco Benevento1,  
Patrick Rebernik1, Francois Lallemend2, Katsuhiko Nishimori6, Frédéric Clotman7,  
William D. Andrews8, John G. Parnavelas8, Matthias Farlik9,10, Christoph Bock9,11,  
Igor Adameyko1,3, Tomas Hökfelt2, Erik Keimpema1,13 & Tibor Harkany1,2,13 ✉

A wealth of specialized neuroendocrine command systems intercalated within the 
hypothalamus control the most fundamental physiological needs in vertebrates1,2. 
Nevertheless, we lack a developmental blueprint that integrates the molecular 
determinants of neuronal and glial diversity along temporal and spatial scales of 
hypothalamus development3. Here we combine single-cell RNA sequencing of 51,199 
mouse cells of ectodermal origin, gene regulatory network (GRN) screens in 
conjunction with genome-wide association study-based disease phenotyping, and 
genetic lineage reconstruction to show that nine glial and thirty-three neuronal 
subtypes are generated by mid-gestation under the control of distinct GRNs. 
Combinatorial molecular codes that arise from neurotransmitters, neuropeptides 
and transcription factors are minimally required to decode the taxonomical hierarchy 
of hypothalamic neurons. The differentiation of γ-aminobutyric acid (GABA) and 
dopamine neurons, but not glutamate neurons, relies on quasi-stable intermediate 
states, with a pool of GABA progenitors giving rise to dopamine cells4. We found an 
unexpected abundance of chemotropic proliferation and guidance cues that are 
commonly implicated in dorsal (cortical) patterning5 in the hypothalamus. In 
particular, loss of SLIT–ROBO signalling impaired both the production and 
positioning of periventricular dopamine neurons. Overall, we identify molecular 
principles that shape the developmental architecture of the hypothalamus and show 
how neuronal heterogeneity is transformed into a multimodal neural unit to provide 
virtually infinite adaptive potential throughout life.

A kaleidoscope of neuroendocrine cell modalities is concentrated into 
a minimal brain volume within the hypothalamus by using sometimes 
only thousands of neurons to encode essential hormonal output. There-
fore, diversification of neuronal subtypes, rather than the numerical 
expansion of single progenies6,7, might underpin the success of verte-
brate evolution in refining metabolic and adaptive capacity. Functional 
versatility at the level of individual neuroendocrine output neurons 
is coded by combinations of neurotransmitters and neuropeptides1. 
Therefore, interrogation of the molecular and positional diversity 
of hypothalamic neurons by morphological, circuit and endocrine 
analyses continues to mount a substantial challenge. The introduction 
of single-cell RNA sequencing (scRNA-seq)6,8,9 has provided precise 
molecular insights into the existence of glutamate, GABA, dopamine 
and even ‘mixed’ neuronal phenotypes4. However, the question of 

how cellular subtypes emerge, migrate, and differentiate during the 
development of the hypothalamus in order to achieve neuroendocrine 
readiness by birth remains relatively unexplored (but see refs. 3,10,11).

Whereas a handful of transcription factors (TFs) are sufficient to mark 
anatomical footprints in cortical structures with a layered organiza-
tion6,8, the intercalated nature of nuclei makes it more challenging to 
establish an anatomical template within the hypothalamus. In par-
ticular, the breadth of endocrine command neurons and their ability 
to rapidly switch cell state (that is, to upregulate specific hormones 
or neuropeptides in an ‘on-demand’ fashion) suggest that what is con-
sidered terminally differentiated in the adult brain is in fact a neuronal 
‘anagram’ that is primarily dictated by the neuronal circuit that orches-
trates a specific endocrine modality. Therefore, we sought to identify 
the molecular determinants of ectodermal progenies as they advance 
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towards terminal neuroendocrine differentiation. By using a time series 
of scRNA-seq data across critical periods of intrauterine and postnatal 
hypothalamus development in mouse, we read out combinatorial codes 
for GABA, GABA-derived dopamine and glutamate neurons, catalogued 
GRNs (regulons) and their dynamic transitions during neurogenesis, 
directional migration and morphogenesis, and identified local chemo-
tropic cues that define the anatomical constraints of the hypothalamus.

Emergence of ectoderm-derived cell pools
We addressed the differentiation programs for hypothalamic cell pools 
by parallel scRNA-seq on 51,199 dissociated cells at embryonic days 

(E)15.5 (n = 8,290 cells) and E17.5 (11,213), at birth (7,492), and at post-
natal days (P)2 (12,824), P10 (8,965) and P23 (2,415; Online Methods 
and Supplementary Note). Overall, proto-groups of progenitors (2), 
tanycytes (2), astroependymal cells (2), immature oligodendrocytes 
(3), cells of the pars tuberalis (3) and neurons (33; Fig. 1a), reflecting 
diversity in the adult hypothalamus4,8,9, were specified by differentially 
expressed TFs (Extended Data Fig. 1) during development (Fig. 1b).

We then investigated when and by which progenitors the various 
cell types are generated. The dynamics of gene expression in hypotha-
lamic progenitors (Fig. 1c) to produce astrocytes, ependyma, tanycytes 
and neurons fit a pseudotime scale on a multidimensional integrated 
dataset12 (Fig. 1c, d), including a bifurcation in cell transition towards 

Integrated data of ectodermal protogroups

Tanycytes

Progenitors
Cell transition

Neurons

Oligodendrocytes

UMAP2

U
M

A
P

1

4

2

6

9

8

1

3

7

5

45
42

38

19 1121

10 32

29

27 40

35
33

44

18

34

41

43
26

282431

12
3015

23
22

16
13

14

20
37

3925

36 17

Astroependyma

a b

40

40

20

20

0

0

0

–20

–20

–40
–20

0–2
0–4
0–6

00

0

0

0.2

0.2

0.
5

0.4

0.4

0.6

0.6

0.8

0.8

2
0
–0

z

0

–4
0

–4
0

–2
0

–2
0

0000000000000000000

–4
0

–4
040040–4
0

–4
04–4
0404040–4
0

–4
0400000400–4
04040–4
004000000–4
0040–4
0040400000004004000400444444–4444–4–44––4–

–2222222222
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

20

0

0

0

20

20

–6
0

–6
0

y

y

x

x

Annotation in pseudotime (z-axis)

2

–2

z

0

–20
y

0 000

E15.5, E17.5, P0, P2, P10, P23     

Ascl1-creERT2:Ai14

d

Rbfox3

Dlx5

Dlx1

Sox11

Rbpj

Dll3

Dll1

Ascl1

Hes1

Sox2

Bridge dynamics

Hes1Sox2

Dll3

Ascl1

Rbpj Rbfox3

Validation of pseudotime by age

E15
E17
P0

P10
P2

P23

Bridge to neurons

Transition to neurons in time

Tanycytes
Ependyma

Astrocytes Progenitors

Neurons

c

E18.5Ascl1-creERT2:Ai14e

E12.5 E13.5 E15.5

Arc Arc Arc

VMH VMH

f
3V

GAD65–GFP

P21

P21

N
eu

N
/G

A
D

65

Fig. 1 | Developmental diversification of hypothalamic cell lineages.  
a, UMAP plot of 51,199 cells of ectodermal origin, integrated by canonical 
correlation analysis (CCA) to achieve a hypothetical continuum that reflects 
the progressive attainment of cell identities. Walktrap in iGRAPH distinguished 
non-mature cells (clusters 11, 19) and neurons (31 proto-groups) at the end of 
each developmental trajectory. b, Schemes illustrating the conformity of 
alignment and clustering in pseudotime (z-axis, calculated independently, top) 
and biological age (bottom). c, UMAP on PAGA representation of progenitors, 
glia and immature neurons (bridge cells). RNA velocity12,13 transformed 

multi-dimensional PAGA data into developmental trajectories. The colours of 
junctions accord with groups (top) and age (bottom). Note that a ‘cell bridge’ 
that links progenitors and immature neurons encompasses cells of early 
developmental stages, even though all time points are minimally represented 
therein. d, Imputed expression for the cell groups shown in c and pseudotime 
trajectories of differentiation into neurons starting from a Sox2+ state.  
e, Genetic tracing of Ascl1+ progenitors (induction at successive time points)  
in VMH and Arc. f, Ascl+ progenitor-derived neurons (arrowheads) generated 
postnatally. Scale bars, 65 μm (e), 20 μm (f).
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glial subtypes or neuronal fates (Fig. 1a, c, Extended Data Fig. 2a, b) 
that peaked between E15.5 and E17.5 (Fig. 1c, bottom). RNA velocity13 
(as well as PAGA12; see Supplementary Note) demonstrated that the 
number of neuroblasts (‘bridge cells’) tailed off as a factor of age with 
an appreciable rupture of this cell continuum by birth (Extended Data 
Fig. 2b). Semi-supervised analysis of 327 genes for enrichment high-
lighted that the progression of bridge cells relied on the dominance of 
genes related to the regulation of pluripotency (Sox2), neural stem cell 
differentiation (Hes1, Ascl1, Rbpj, Dll1 and Dll3 for Notch signalling)14,15, 
Erk signalling (Sox11), neuronal migration (Dlx1, Dlx2, Dlx5, Dlx6; 
subsequently referred to as Dlx1/2/5/6) and morphogenesis (Rbfox3; 
Fig. 1d)16,17. Additionally, scRNA-seq suggested the existence of an alter-
native and embryonically restricted (<E15.5) pathway of hypothalamic 
neurogenesis that centred on Tbr1+/Eomes+ progenitors that reside at 
the thalamus–hypothalamus dorsal boundary (an Ascl1− territory) and 
contribute multiple diencephalic neuronal subtypes (Extended Data 
Fig. 2d, e). The proposed waves of neurogenesis by self-renewing pro-
genitors and early neuroblasts that ubiquitously express Ascl1 along the 
third ventricle (Fig. 1d) were shown in Ascl1-creERT2::Ai14 mice at E18.5 
with recombination induced during the E12.5–E16.5 period (Fig. 1e) 
and validated in Ascl1−/− mice presenting a restricted cohort of Sox2+ 
immature precursors (Extended Data Fig. 2f). tdTomato+ progenies 
in the many hypothalamic subregions confirmed neurogenesis dur-
ing mid-gestation with a gradual decline after E16.5 (Fig. 1e, Extended 

Data Fig. 2d). In support of postnatal neurogenesis, Sox2+ precursors 
persisted in the wall of the third ventricle and generated progenies that 
progressed through Ascl1+ and Rbfox3+ (NeuN) stages (Fig. 1f, Extended 
Data Fig. 2g, h).

Intermediate states for GABA neurons
Within our integrated dataset, about 47% of all cells committed to the 
neuronal lineage were in immature states (clusters 11, 19; Figs. 1a, 2a) 
before progressing towards final differentiation, as suggested by the 
expression of homeobox genes that are thought to determine GABA 
identities (cluster 11, Foxg1 and Nkx2-3; number 19, Sox2, Sox11, Gsx1, 
Gsx2, E2f1, Arx and Pbx3; Extended Data Fig. 1). Specifically, cluster 19 
contains a continuum of neuroblasts (bridge cells) with a normalized 
contribution of 36.5% (E15.5), 34.6% (E17.5), 13.2% (birth), 9.2% (P2), 
4.8% (P10) and 1.6% (P23), and remains separated from other clusters 
despite our re-partitioning efforts (Supplementary Note). Cluster 
11 is composed of immature neurons that are largely homogeneous 
with low-level differential gene expression, but express rate-limiting 
enzymes and transporters for GABA neurotransmission (Extended 
Data Figs. 1a, 3a). When re-partitioning these data, immature GABA 
neurons were re-assigned to phenotypically stable groups, empha-
sizing the intermediate nature of cluster 11. These findings contrast 
glutamate neurons, which immediately appear as differentiated and 
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Fig. 2 | Neuronal differentiation in the hypothalamus. a, Cellular clusters 
from Fig. 1a (without clusters 38, 42, 45 and oligodendrocytes) represented as a 
graph-like map upon transforming UMAP embedding with the PAGA method12 
to assess cell differentiation trajectories. Red dotted line specifies the 
trajectory for Pomc (cluster 40) neurons. b, Prdm12 and Nhlh2 expression (top 
left) and their developmental dynamics (in pseudotime) relative to Pomc and 
Cited1, a transcriptional co-activator that specifies neurons of Arc (top right). 

Data in pseudotime were scaled6. Expression of Prdm12 and Nhlh2 in Pomc+ 
neurons was validated by in situ hybridization in Pomc-Gfp mice (bottom). Blue 
rectangles in topographical maps show the locations of images at single-cell 
resolution. c, d, Dynamics of gene expression for neuropeptides (c) and their 
receptors (d) during hypothalamus development. Data shown as dot plots.  
e, Developmental mapping of hypothalamic Oxtr expression in OxtrVenus/+ mice. 
Scale bars, 12 μm (b), 200 μm (e).
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pseudotime (top; mean ± s.d.) and on an integrated dataset (bottom). Blue–red 
scale denotes low–high mRNA expression. g, Slit1−/− and Slit2−/− mice show 
increased cell density at the level of the VMH (arrowheads) but not the Arc 
relative to Robo1−/− and wild-type littermates. h, In turn, glutamatergic 
(VGLUT2) synaptogenesis is reduced in the VMH of Robo1−/− mice by E18.5. The 
median eminence (ME), where Slit2 is not expressed, lacked any phenotype. 
Scale bars, 20 μm (b, h, i).



Nature  |  www.nature.com  |  5

spatially segregated groups (Fig. 1a) without an intermediate cell pool 
being detected. Thus, GABA and glutamate neurons seem to adopt 
principally different developmental programs with immature GABA 
cells, rather than pre-formed GABA lineages18, serving as precursors 
for terminal differentiation.

TF and neuropeptide codes of diversity
TF-mediated cell-autonomous differentiation programs are key to neu-
ronal specification6,18. Hence, we screened TFs that distinguished hypo-
thalamic cell clusters. We applied a supervised approach that sampled 
stationary states (genes that are spatially restricted in both pre- and 
postnatal brains; Fig. 1d, Extended Data Fig. 1) and integrated stages of 
fate transition and branching-off of differentiated neurons. Avp+ (cluster 
26) and Oxt+ (cluster 43) magnocellular and parvocellular neuroendo-
crine clusters that are destined to the paraventricular nucleus (PVN; 
including Trh+ and Crh+ cells (cluster 24)) exhibited spatial convergence 
(Fig. 2a) and were separated by differentially expressed genes from their 
non-PVN counterparts. For example, Mbnl3, Pgf, Irs4, Gpr101, Nr3c2 and 
Agtr1 demarcated Trh+ neurons in the PVN, whereas Trh+ neurons that 
prospectively populate the dorsomedial hypothalamus (DMH, cluster 15) 
were labelled with Onecut2, Onecut3 and Cartpt, and mapped distantly.

Subsequently, we selected Pomc+ neurons to test whether 
scRNA-seq-based temporal profiling of gene expression allowed 
us to reconstruct neuronal differentiation. Besides cataloguing 
Pomc-specific TFs (Fig. 2a), we show that, for example, Prdm12 and 
Nhlh2, both placed by in situ hybridization into Pomc–Gfp+ neurons 
(Fig. 2b), are transiently expressed at early developmental stages, 
followed by gradual decay of expression (pseudotime; Fig. 2b). By 
contrast, Cited1 expression was restricted to late gestation, when neu-
ronal morphogenesis commences19. Cumulatively, our scRNA-seq data 
reliably resolved neuronal fate progression along both pseudotime 
and real-time scales.

Beside fast neurotransmission by GABA and glutamate, dopamine 
and neuropeptides are chief signalling units in the adult hypothala-
mus20. We assigned 27 neuropeptides specifically to GABA, gluta-
mate and dopamine neuronal subtypes (Fig. 2c, d and Extended Data 
Fig. 3b–e). Our data demonstrate a transient increase in expression of, 
for example, Sst, Tac1, Bdnf, Adcyap1, Pnoc, Nmu and Trh in juvenile mice 
(P10)21 (Fig. 2c) along with the rapid induction of their cognate receptors 
during the early postnatal window (Fig. 2d). Finally, we used OxtrVenus/+ 
mice to show that the onset of Venus expression (used as a surrogate 
for Oxtr) in, for example, Pomc+ neurons in the arcuate nucleus (Arc)22, 
DMH and ventromedial hypothalamus (VMH) occurs at about E18.5 with 
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a gradual increase postnatally (Fig. 2e, Extended Data Fig. 3f). These 
findings substantiate the precision of scRNA-seq in resolving hormone 
receptor expression in even the smallest neuronal contingents.

Regulons typify cell-type specificity
Cellular identities are shaped by developmentally timed GRNs (‘regu-
lons’) that are centred on a ‘master’ TF that activates its targets through 
DNA-binding and transcriptional induction23. Therefore, we assigned 
regulons to each ectodermal cluster by combining 1,962 TF chroma-
tin immunoprecipitation and sequencing (ChIP–seq) assays for gene 
interactions and our scRNA-seq data23 (Fig. 3a, Extended Data Fig. 4), 
enriched positive interactions within 395 active regulons and estimated 
their prevalence per cell. Pleiotropic regulons with the highest rep-
resentation defined the major cell lineage to which a progenitor was 
destined: for example, Hes5, Sox9 and Nfia for prospective astroglia 
versus Dlx1/2/5/6 and Sox11/12 for neurons (Fig. 3a). Accordingly, Nfia−/− 
mice showed impaired formation of hypothalamic tanycytes and astro-
cytes but not neurons at E18.5 (Fig. 3b). Subordinate cell group-specific 
regulons defined select cell clusters (Fig. 3a). Co-existent regulons at 
all levels (for example, the Pura and Fosl2 regulons in Oxt+ neurons) 
produced combinatorial codes for cellular fate decisions (Fig. 3a shows 
at least three, from general to particular developmental processes).

We then evaluated the robustness and penetrance of hypothalamic 
regulons by testing whether their mutations (at all gene levels) manifest 
as clinical perturbations by focusing on metabolic and psychiatric 
diseases9,24 in the genome-wide association study (GWAS) of the UK 
biobank (738 phenotypes; Extended Data Fig. 5a). We adapted existing 
methods in adults9 by replacing stationary cell identities with regulons. 
By selecting multiple genes that co-define particular regulons as input, 
we substantially reduced selection bias due to strongly deleterious 
mutations (‘survivorship bias’25). Regulons driven by pro-neurogenic 
genes were characterized by the lowest rate of mutated master genes 
(Extended Data Fig. 5b) with the Foxo4 (cluster 29) and Onecut3 (cluster 
18) clusters completely depleted of mutations (Fig. 3a, c). Meanwhile, 
the Onecut2/Onecut3 regulons correlated positively with the incidence 
of obesity (Fig. 3d).

Next, we confirmed that Nr4a2, Ptfmb1a, Sncg, Lancl3 and Zic5 (genes 
in the mutual Onecut2/Onecut3 regulon) co-existed with Onecut3 in 
differentiated neurons but were restricted to periventricular nucleus 
(PeVN) cell groups (Extended Data Fig. 6a–c). In addition, overexpres-
sion of Onecut3 in Neuro2A cells in vitro stopped cell proliferation 
(Extended Data Fig. 6d, e), substantiating its role in neuronal speci-
fication. Cumulatively, these data assign regulon screens as a prime 
strategy to functionally annotate hypothalamic neurons and predict 
their linkages to metabolic (and psychiatric) disorders. The identifi-
cation of a spatially restricted Onecut3+ regulon to the PeVN suggests 
that neurons specified by the Onecut3 regulon could be sensitive to 
developmental signalling cues that shape midline structures.

Regulons instruct chemotropic signalling
Within laminated structures, transitions from progenitor to commit-
ted progeny occur in a sequential unidirectional order7,26. We inves-
tigated whether similar gene sets14,16,17, intercellular interactions and 
spatial arrangements could apply to the non-laminar hypothalamus. 
Early-expressed glial genes (Hes1, Fabp7, Slc1a3, Vim) marked progeni-
tors (cells expressing, for example, Sox2, Dll1/3) in the innermost (‘ven-
tricular’) zone of the third ventricle at E14.5–E15.5 (Fig. 1c, Extended Data 
Fig. 7a, b). Committed progeny then unidirectionally distanced them-
selves laterally (Extended Data Fig. 2d–g) and expressed protogenes for 
neuronal migration (Dlx1/2/5/6, Rbfox3; Fig. 1d). Plotting regulons along 
developmental age assigned Sox2 to progenitors (clusters 6, 9), Sox11 
to bridge neurons (cluster 19) and Dlx1/2 to both bridge and immature 
neurons (clusters 11, 19; Fig. 3e), confirming determination of function 

by regulons16. These data suggest that regulons show temporal and 
spatial segregation in an onion skin-like layered configuration (Fig. 3e).

Next, we investigated the complexity of chemotropic signalling sys-
tems27 that facilitate neuronal positioning and differentiation, with 
evidence for the expression of Ephrin–ErB, Cbln1/Cbln2, semaphorin–
plexin–neuropilin, neurotrophin (Bdnf, Gdnf, Cntf), draxin, netrin 
(Ntng1/Ntng2) and endocannabinoids. Unexpectedly, we noted wide-
spread expression of the Slit1/2–Robo1/2 signalling cassette (Fig. 3e, f), 
which dictates direct (as opposed to indirect) neurogenesis in antago-
nism with Dll26, and controls long-range axonal patterning in dorsal 
(cortical) structures5. Reconstruction of mRNA expression placed 
Slit2 into neural progenitors at early developmental stages (Fig. 3f). 
Conversely, pseudotime analysis suggested that Slit1 expression domi-
nated early in postmitotic neuroblasts (Fig. 3f). Coincidently, Robo2 
expression defined a developmental trajectory specific to neurons 
(Fig. 3f). To genetically tie temporal variations in Slit–Robo signalling 
to neuronal differentiation, we show that major regulons include SLIT2 
ligand synthesis for cell proliferation and gliogenesis (in the Sox2/Dbx
1/Rfx2/Rfx3/Myc regulons that are specific to glia and progenitors) and 
SLIT1 for neuronal migration and morphogenesis (the Dlx1/Dlx2/Rbpj 
regulon). Meanwhile, the Sox11 regulon is a chief determinant of both 
Robo1 and Robo2 expression as early as in bridge neurons (clusters 
11, 19). At the level of terminal differentiation, Lhx5/Emx2/Lhx1 and 
Nkx2-1/Otp/Isl1 controlled expression of Robo1 and Robo2, respectively 
(Fig. 3e). In situ hybridization confirmed the reciprocal distribution 
of Slit2 and Slit1, with the former being restricted to ventricular pro-
genitors (Extended Data Fig. 7b). Moreover, expression of Slit2 (and 
to a lesser extent Slit1) was concentrated in the VMH by E17.5 or later 
(Extended Data Fig. 7b, bottom right). Indeed, both Slit1−/− and Slit2−/− 
mice showed increased cellular density in the subventricular zone at 
the level of the VMH, whereas Robo1−/− mice did not (Fig. 3g). Instead, 
Robo1−/− mice, in which SLIT ligands no longer act as repulsive axon guid-
ance cues5, showed a reduced density of Slc17a6+/Vglut2+ synapses in the 
VMH relative to wild-type controls, but unchanged levels at the median 
eminence, an area devoid of Slit gene expression (Fig. 3h). In sum, our 
data suggest that SLIT–ROBO signalling is involved in hypothalamic 
neurodevelopment, pointing to conserved SLIT–ROBO functions in 
ventral brain areas.

Molecular identity of dopamine neurons
Finally, we investigated how molecularly distinct subtypes of phenotyp-
ically uniform neurons arise during development of the hypothalamus. 
We took advantage of the at least nine morphologically and electro-
physiologically distinct subtypes of parvocellular dopamine neurons 
in the A12 (Arc; three subtypes), A13 (zona incerta; two subtypes) and 
A14 territories (PeVN, four subtypes; Extended Data Fig. 8) of Thgfp 
and Slc6a3-Ires-cre::Ai14 mice, which are segregated from midbrain 
dopamine neurons that are chiefly regulated by Lmx1a/b and Nr4a228 
(Fig. 3a).

First, we tested whether hypothalamic dopamine neurons that 
co-express tyrosine hydroxylase (Th), dopa decarboxylase (Ddc) and 
vesicular monoamine transporter 2 (Slc18a2) share a developmental 
trajectory. RNA velocity vector embedding for all Th+ cells unequivo-
cally identified ten molecularly distantly segregated neuronal clusters, 
of which clusters 4, 7 and 8 differentiated before E15.5 (Fig. 4a, Sup-
plementary Note).

Considering that both pleiotropic and specific genetic programs con-
tribute to molecular diversity among hypothalamic dopamine neurons, 
we addressed the earliest and uniform genetic codes in putative progeni-
tors. Cascading Ascl1 and Isl1 expression was present in all dopamine 
neurons (Fig. 4b, c, Extended Data Fig. 9a–d), assigning these TFs to 
defining the entire dopamine class. Indeed, both Ascl1-creERT2::Ai14 and 
Isl1-cre::Ai14 mice produced tdTomato+ dopamine cells, particularly in the 
PeVN (Fig. 4b, Extended Data Fig. 9a, b, d), when induced at E12.5–E15.5. 
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The lack of Th+ neurons in the hypothalamus but not midbrain of Ascl1−/− 
mice confirmed that the hypothalamus depends on an ASCL1-driven 
transcriptional pathway (Fig. 4b, c, Extended Data Fig. 9a, b).

Second, we investigated whether the dopamine phenotype evolves 
from the GABA lineage (Figs. 2d, 4a, d), a hypothesis that is consistent 
with data from adult mice4,29. Th+/Ddc+/Slc18a2+ dopamine neurons 
arise from seven spatially segregated groups of GABA cells (clusters 
1, 3, 4, 6, 7, 8 and 9; Fig. 4a). Our hypothesis was corroborated by the 
approximately 90% co-expression of Th and Gad1 in immature neurons 
(Fig. 4d, e, Extended Data Fig. 9e), including in (BAC)GAD65–eGFP 
and GAD67–GFP mice (Extended Data Fig. 10a). To identify genes that 
promote GABA-to-dopamine phenotypic transitions, we screened 
hypothalamic regulons for Th as target and found that the expression 
patterns of master genes for the Meis2, Nfe2l1, Dlx1 and Pbx3 regulons 
cover the broad initiation of Th expression at embryonic time points 
(Extended Data Fig. 10b).

Third, we searched for TFs that segregate dopamine subclasses. We 
focused on Onecut3, which specifies dopamine neurons in the PeVN4. 
Developmentally, Onecut3 serves as the master gene of the regulon 
that typifies Th/Slc6a3 neurons (cluster 9), and is detectable in the 
preoptic progenitor area by E10.5 (Fig. 4f, g). Histochemistry specifi-
cally tied the co-existence of Onecut2/Onecut3 and Sncg, Pmfbp1a and 
Nr4a2 to PeVN dopamine neurons (Fig. 4g, Extended Data Fig. 10c, 
d). To further resolve the segregation of A14 neurons, we identified 
substantial Sst expression prenatally (with a gradual decay after birth) 
in Onecut3+ dopamine neurons (Fig. 4h, Extended Data Fig. 10e). On 
the basis of Robo1 expression in the pseudotime scale, we integrated 
chemotropic cues for the final positioning of Onecut3+/Th+ neurons 
by showing that there were many more of these cells in Robo1−/− mice 
than in their wild-type littermates (Fig. 4i). Finally, Onecut3 expression 
distinguishes PeVN Th+ neurons that produce a uniform electrophysi-
ological signature that sets them apart amongst the nine dopamine 
subtypes tested (Fig. 4j, Extended Data Figs. 8, 10f), thus completing 
a differentiation trajectory that segregates PeVN dopamine neurons 
from all other dopamine subtypes.

Discussion
Our study provides an overview of ectodermal cell identities in the 
developing hypothalamus during pre- and postnatal periods. We show 
that a constellation of and temporal dependence on regulon activity, 
neurotransmitters and neuropeptides shapes ectodermal clusters. 
Large-scale GWAS-based disease assignment linked GRN activity to the 
life-long determination of neuronal functionality and consequently to 
predisposition to metabolic illnesses. In addition, transient waves of 
neuropeptide expression were synchronous with critical junctions of 
neuronal fate progression, thus generating long-lasting imprints on 
neuronal circuit complexity.

We found that a periventricular cellular reserve persists throughout 
life to generate hypothalamic neurons, with a contingent of GABA pro-
genitors acting as a source for dopamine subtypes. We suggest that the 
existence of quasi-stable immature intermediates for GABA neurons, 
their provisional positioning for protracted periods, and sequential 
depletion until after birth are poised to assure flexibility in expanding 
functionally distinct neurocircuits by the insertion of neurochemically 
specialized cellular subtypes. Thus, the fundamental rules of neuronal 
specification in the hypothalamus could differ substantially from those 
found in laminated structures6,7,26. Nevertheless, we found that chemo-
genetic cues that have been classically viewed as dominating in cortical 
areas, particularly SLIT–ROBO signalling, also dictate neurogenesis, 
cell migration5 and synaptogenesis (even if at the microscale) during 
development of the hypothalamus. Overall, combining differential 
gene expression analysis, screens for spatially restricted genes and 

GRN profiling into a discovery pipeline showcases the level of preci-
sion achievable to disentangle developmental processes that shape 
neuroendocrine centres and provides a template for studying both the 
origins of hypothalamic circuit operations and the molecular underpin-
nings of congenital and acquired metabolic disorders.
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Methods

Mouse strains
All mice were housed in groups in clear plastic cages on a 12 h–12 h light–
dark cycle (lights on at 08:00 h) and in a temperature (22 ± 2 °C) and 
humidity (50 ± 10%) controlled environment. Food and water were avail-
able ad libitum. Embryos and tissues were obtained from timed matings 
with the day of vaginal plug considered as embryonic day (E) 0.5. The day 
of birth was always registered as postnatal day (P)0. Postnatal animals 
were weaned on P21. Commercial mouse lines were: C57Bl/6J wild-type 
(RRID:IMSR_JAX:000664), Ai14 (RRID:IMSR_JAX:007914), Ascl1-creERT2 
(RRID:IMSR_JAX:012882), Th–Gfp (RRID:IMSR_RBRC03162),  
(BAC)GAD65–eGFP (RRID:MMRRC_011849-UCD), GAD67 (RRID:IMSR_
RBRC03674), Pomc–Gfp (RRID:IMSR_JAX:009593), Slc6a3-Ires-cre 
(RRID:IMSR_JAX:006660), Nfia−/− (RRID:MMRRC_010318-UNC), Robo1−/− 
(RRID:IMSR_APB:5320), Slit1−/− (RRID:MMRRC_030404-MU), Slit2−/− 
(RRID:MMRRC_030405-MU), Isl1-cre (RRID:IMSR_JAX:024242) and 
OxtrVenus/+ (MGI:3838764)30–41. Ascl1-creERT2 knock-in mice were used as 
heterozygotes when performing lineage tracing and as homozygotes 
to study developmental consequences of the lack of Ascl1 since both 
copies of the gene were replaced by the Cre coding region (referred to 
as Ascl1 ko). Nfia−/− mice were provided by J. Bunt and L. J. Richards as a 
mechanism to re-use tissue (QB/356/17). Nfia−/− mice were bred for work 
conducted under National Health and Medical Research Council project 
grant GNT1100443 and Principal Research Fellowship GNT1120615. 
Tracing experiments for all other Cre lines were performed using het-
erozygotes. No statistical methods were used to predetermine sample 
size. The experiments were not randomized and the investigators were 
not blinded to allocation during experiments and outcome assessment.

Tissue collection and fixation
Whole heads of embryos (E10.5–E15.5) or dissected brains (E16.5 
and older) were collected and fixed in 4% paraformaldehyde (PFA) in 
phosphate-buffered saline (PBS, 0.05 M, pH 7.4) at 4 °C for 4 h for E13.5 
and 16–24 h for E16.5 or older. For postnatal stages and adult brain 
samples, animals were transcardially perfused with 4% PFA in 0.1 M 
phosphate buffer (PB; pH 7.4) and dissected brains post-fixed overnight. 
Samples were then washed in PB and cryoprotected by incubating in 
30% sucrose in distilled water at 4 °C overnight.

Ethical approval of animal studies
Experiments on live animals conformed to the 2010/63/EU European 
Communities Council Directive and were approved by the Austrian 
Ministry of Science and Research (66.009/0145-WF/II/3b/2014, and 
66.009/0277-WF/V/3b/2017). Particular effort was directed towards 
minimizing the number of animals used and their suffering during 
experiments.

Tamoxifen injection and tissue processing
Ascl1-creERT2::Ai14 dams were injected with tamoxifen (150 mg/kg) on 
one of the days of E11.5–E16.5 to induce Cre-mediated recombination. 
The brains of the embryos were collected and immersion fixed in 4% 
PFA in PB (pH 7.4) for 12–24 h before being immersed into 30% sucrose 
for cryoprotection (48 h). Embryonic brain tissues were cut at 16 μm 
thickness and mounted on fluorescence-free glasses. Postnatal animals 
were perfusion-fixed with 50–100 ml of 4% PFA in PB, followed by cryo-
protection as above. Brains were then cut on a cryostat as 50-μm-thick 
serial free-floating coronal sections.

Cell capture, lysis and RNA-seq
C57Bl/6NRj mice (E15.5–P23, Janvier Labs Cat# SC-C57N-F) of both 
sexes were used for cell collection. Embryos were removed by Cae-
sarean section and immersed in ice-cold pre-oxygenated (95% O2/5% 
CO2) cutting solution containing (in mM): 90 NaCl, 26 NaHCO3, 2.5 KCl,  
1.2 NaH2PO4, 10 HEPES-NaOH, 5 Na-ascorbate, 5 Na-pyruvate, 0.5 CaCl2, 

8 MgSO4 and 20 glucose. Postnatal animals were deeply anaesthetized 
(5% isoflurane) and transcardially perfused with 40 ml of the same 
solution. Entire hypothalami were isolated manually under microscopy 
guidance from serial 300-μm-thick coronal slices and then dissoci-
ated using the Papain Dissociation System (Worthington) according 
to the manufacturer’s recommendations with additional mechanical 
dissociation using Pasteur pipettes with 600-, 300- and 150-μm open 
tips. After the cells were re-suspended in sterile cutting solution sup-
plemented with 0.1% BSA, they were fixed in ice-cold methanol for  
10 min and stored at −80 °C until library preparation.

For the preparation of cDNA libraries, cells were re-suspended in PBS 
(0.01 M, pH 7.4) and concentrated to a range of 105–700 cells per μl. 
Thirty-three microlitres of the cell suspension together with 1 μl cellular 
spike-ins (lymphocytes) were added to the reverse transcription mix. 
cDNA synthesis, library preparation and sequencing were performed 
according to the instructions for the 10x Genomics Chromium Single 
Cell Kit (version 2). High-throughput RNA sequencing was on an Illu-
mina HiSeq3000 instrument.

10x Genomics data pre-processing
Data derived at each time point were processed independently (Sup-
plementary Fig. 1, Supplementary Note). Raw files were processed with 
Cell Ranger42 (version 2.2.0) following default arguments for velocyto.
py13. Reads were mapped to the Cell Ranger mm10-1.2.0 genome and 
counted with complimentary annotation (Supplementary Figs. 2, 3, 
Supplementary Note). To derive unique molecule count (UMI) expres-
sion matrices, we additionally compared two advanced computational 
approaches. First, we read raw matrices from the Cell Ranger pipe-
line (Supplementary Fig. 3, Supplementary Note) into emptyDrops43 
implemented in the DropletUtils R package. We used a false discovery 
rate (FDR) of 0.01 with 2 × 105 permutations (Supplementary Fig. 4, 
Supplementary Note). Second, we pre-processed raw fastq-files using 
the dropEst pipeline44 with the UCSC mm10 mouse genome and default 
dropEst parameters for 10X (Supplementary Fig. 5, Supplementary 
Note). In brief, dropEst utilizes Bayesian correction of cell barcodes 
and UMIs, taking into account Hamming distance distribution for cell 
barcodes and probability distribution by sequential estimation of errors 
with maximal likelihood between different barcodes within each gene 
on multiple metadata sources. These include sequencing quality of 
nucleotide in position (Phred score) and the number of reads for each 
barcode (coverage) as the most critical parameters. When collision 
targets are merged, the pipeline estimates damaged and low-quality 
cells in two steps. First, it automatically assigns cells based on cell size 
(Supplementary Fig. 5, Supplementary Note). Cell labels were marked 
with two estimated thresholds: lower than first for ‘low-quality’ (red), 
then, 75% of cells higher than second as ‘high-quality’ (green) with the 
remaining cells considered as ‘unknown’ (grey). Second, initial labels 
together with sets of biological and technical factors (mitochondrial 
fraction, mean number of reads per UMI, mean number of UMIs per 
gene, fraction of drop-out genes, fraction of intergenic reads, fraction 
of not-aligned reads) were deciphered by the kernel density estimate 
(KDE) classifier to endow each cell with a quality score (0–1 range).

emptyDrops and dropEst algorithms hold substantially more cells 
than the default Cell Ranger approach without a crucial difference 
between them. Thus, we used the dropEst pipeline44 throughout, which 
additionally provides quality control metrics for the cells albeit at the 
cost of high computational load. As a result, we used a corrected matrix 
with cells that passed filters of both emptyDrops and Cell Ranger and 
possessing dropEst’s ‘high-quality’ label (upper quartile) together with 
all cells above the 90th percentile of quality score (Supplementary 
Fig. 5, Supplementary Note).

Expression matrix filtering
We performed an exploratory analysis of dropEst output matrices 
in sequential steps of annotation and filtering. First, we checked 



known genes, which indicate diverse sources of bias, such as riboso-
mal, immediate-early stress-responsive and gender-specific genes 
(Gm42418, Rpl26, Gstp1, Rpl35a, Erh, Slc25a5, Pgk1, Eno1, Tubb2a, Emc4, 
Scg5, Ehd2, Espl1, Jarid1d, Pnpla4, Rps4y1, Xist, Tsix, Eif2s3y, Ddx3y, Uty, 
Kdm5d)8,45. Furthermore, we assessed the expression level of HuR (also 
known as Elavl1) to distinguish damaged neurons46,47. Thus, the above 
gene profiles were indicative of low-quality (potentially apoptotic) 
cells as well as identified cells of blood origin. Second, after removing 
biasing genes, we manually explored and annotated cell clusters with 
pagoda213 as described previously44 using known marker genes8,9,48–50 
(https://doi.org/10.6084/m9.figshare.11867889). Third, we defined 
differentially expressed genes (DEG) for ‘ribo-rubbish’, ‘excluded’, 
‘duplets’, ‘endodermal and mesenchymal-related clusters’ by com-
parison against putative ectodermal cell types using the model-based 
analysis of single-cell transcriptomics (MAST) test51,52. We repeated 
normalization, negative-binomial scaling, PCA dimension reduction, 
‘Jackstraw’ pc-selection and kNN-graph construction steps after every 
cell–molecule matrix subsetting.

Integration of expression profiles against a time factor
We followed the lead design initially implemented for paired CCA-based 
integration of data on embryonic and adult cortical interneurons6. The 
crucial differences were: 1) intercalated nuclei in hypothalamus versus 
laminar cortical architectures; 2) higher adult stage transcriptional 
heterogeneity of neurons (for example, mixed GABA/glutamate pheno-
types and magnocellular/parvocellular neurons)4,53; 3) distant volume 
transmission as additional factor54,55; 4) six developmental stages. We 
aimed to derive a manifold according to known adult cell types and line-
ages. We integrated datasets from successive time points (E15.5–P23) to 
discover the succession of developing cell lineages. This allowed us to 
apply retrospective analysis to distinguish ‘ancestor’ cells. We removed 
mature and myelin-forming oligodendrocytes, which existed only in 
late postnatal stages, from our analysis. We additionally filtered cells 
with <300 genes or 2.5 × 104 RNA molecules (taking into account only 
ectoderm-related genes). Finally, we used a variance-stabilizing transfor-
mation of the SCTransform method to find anchor-candidate genes6,51.

Comparison of integration algorithms
Despite a recently published approach6 for the integration of embryonic 
and adult scRNA-seq data, we additionally tested all presently available 
algorithms. To match our criteria, the algorithm should 1) provide a mix-
ture of time and batch factor and 2) at the same time keep a defined cell 
type local structure. Therefore, we benchmarked 11 different solutions 
of integration using their default parameters (Supplementary Fig. 6, 
Supplementary Note): default balanced batch k-nearest neighbours 
(BBKNN)56; BBKNN with a neighbours trimming procedure based on 
their connectivity scores, which were derived by the UMAP algorithm57 
(BBKNN_TRM); BBKNN with exact neighbour identification via faiss58 
(BBKNN_FAISS); BBKNN based on k-dimensional-tree (cKDTree)59; 
Scanorama60; LIGER61; Harmony62; mutual nearest neighbour (MNN)63; 
CONOS64; Seurat 3 CCA-based integration of negative binomial fit scaled 
matrixes (SeuratCCA)65; and Seurat 3 CCA-based integration of scTrans-
form derived matrixes of Pearsons residuals (SeuratCCAonSCT)51. We 
found that the updated version of the conventional Seurat approach 
performed similarly to CONOS, Harmony and LIGER, overperformed as 
compared to other algorithms in terms of the MixingMetric and undera-
chieved compared to 1) Harmony (with Harmony over-fitting the batch 
factor, which we could not optimize against time and batch factors at 
the same time) and 2) its own more advanced version (Seurat 3.165) in 
terms of the local structure metric, leading us to a more conservative 
way of integrating adult and embryonic stages.

CCA-based integration with Seurat 3.1
We integrated cells from different time points into a single manifold using 
the latest version of the Seurat 3.1 CCA-based integration pipeline65. The 

new version allowed us not to set the order of integration explicitly and 
thus determined the optimal order automatically. Thereby, we obtained 
the united manifold of 50 CC components from filtered and weighed 
integration anchors and linearly scaled genes used for integration into 
the CCA space. Subsequently, we performed cell-cycle difference regres-
sion: S-phase score minus G2M-phase score, according to the alternative 
Seurat workflow to remove differences in cell cycle phases amongst 
proliferating cells, following the available gene set annotation66. Next, 
we derived 50 principal component (PC) matrices from the corrected 
matrix. From this PC matrix, we selected PCs having >25 percentile of 
s.d. and learned UMAP embedding57,67 (Fig. 1a, Extended Data Figs. 3a,7a, 
d, e, Supplementary Note). As a result, we obtained a 37-dimensional 
manifold of all cells and its two-dimensional embedding.

Annotation of the collective manifold for hypothalamus 
development
Our next aim was to annotate putative cell lineages that pivot the 
hypothalamus through development to adulthood. Therefore, we 
used MetaNeighbour68 in supervised mode to evaluate area under 
the recovery curve (AUC) scores of cross-explanation for different cel-
lular annotations4,8,9,69,70 that exist for adult hypothalamic scRNA-seq 
data (Supplementary Fig. 8, Supplementary Note). Thus, we expected 
to find putative replicative subtypes, but found an unexpected lack 
of consensus for cellular annotations, meaning that top calls were 
assigned to the same studies.

Therefore, we have chosen a recent dataset8 as reference because 
of its completeness of anatomical sampling (another anatomically 
complete study of hypothalamus69 was inferior in terms of cell numbers 
and their variability). Additionally, the label transferring approach of 
Seurat was used to verify the absence of possible contamination with 
cells from the thalamus in the filtered dataset. To this end, we integrated 
the expression profiles with signatures derived from the mouse brain 
atlas spanning the diencephalon8.

Integration of juvenile data with default parameters for Seurat CCA 
revealed comprehensive coverage of the diversity of terminally dif-
ferentiated progenies of reference8 (Supplementary Fig. 9a, Supple-
mentary Note). Next, we attempted to incorporate the adult reference 
to the entire developmental dataset (Supplementary Fig. 9b, Supple-
mentary Note). We observed substantial disparities that suggest the 
existence of convergence processes during hypothalamus develop-
ment, which necessitated an unbiased strategy of annotation. For this 
reason, we used clustering factors from the integration manifold by all 
field prevalent algorithms (graph-based algorithms mostly from the 
igraph package used in Pagoda2 with default parameters on 37 PCs 
and separately on the corrected UMI counts matrix, and a small local 
movement algorithm with different resolutions via Seurat’s FindClus-
ters function) for comparison (Supplementary Fig. 10, Supplementary 
Note). We observed robustness in the inner structure of the integrated 
manifold for all used algorithms, except infomap, by estimating infor-
mation metrics in a cross-annotation manner (due to lacking a correct 
one) and silhouette scores using the R packages aricode71 and clues72. 
As most algorithms produced similar results (with only minor differ-
ences between them), and our approach proved accurate (except for 
the infomap), we decided to proceed with walktrap73.

Finally, we decided to split cells by major lineages: an exploratory 
analysis was performed in Pagoda213 after transferring our gene–
cell integrated matrix and UMAP embedding. We used the standard 
Pagoda2 pipeline with the integrated manifold matrix clustered by walk-
trap73. We annotated the final 45 clusters by DEG testing with MAST52 
(Figs. 1a, 2a and Extended Data Fig. 1) on the scTransform-corrected6,51 
log-normalized UMI matrix (data slot in a Seurat object).

Dendrogram construction (gene-based)
A dendrogram was constructed for neuronal and glial cells separately 
with Seurat 3 with different feature sets as input: for the neuronal tree 
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we used a list of genes from ref. 74. The glial tree was based on genes from 
ref. 75. For both trees, we used gene sets defined in ref. 76, which were 
filtered by taking only the upper 95th percentile for the correspond-
ing cell types (neurons, astrocytes, oligodendrocytes), the upper 95th 
percentile for cell types in diencephalon and the upper 50th percentile 
of MeanExpression. We excluded housekeeping genes77 for both trees. 
We used dendrograms to order our dot plots (Extended Data Fig. 1).

Neuropeptide and neurotransmitter assignment
Density plots on UMAP embedding for signalling molecules were 
assembled by ggalt78 (Extended Data Fig. 3a, d, e). We manually split 
neuropeptides to prevalent GABAergic or glutamatergic co-existence. 
Top-ranked neuropeptides of the corrected UMI matrix were plotted 
with a threshold of ten molecules in colour and shape-coded manner 
for two groups separately.

Abstraction graph on repartitioned integrated data
We redistributed bridge cell (cluster 19) and immature neuron (clus-
ter 11) populations by applying a combination of two methods: the 
Leiden network clustering algorithm79 and PAGA12. Repartition-
ing immature-to-adult allowed us to negotiate selection bias80. We 
excluded clusters 3, 5, 7, 38, 39, 42 and 45 as oligodendrocytes and 
pars tuberalis from the integrated manifold matrix and performed 
clustering with Scanpy81 wrapper with iterations until full optimiza-
tion. These partitions were used for the construction of an abstrac-
tion graph (non-directed) with a threshold of 0.365. Nodes were not 
established as common clusters. Instead, we derived them to obtain the 
topological structure of cell ensembles. We analysed the projection of 
our preliminary clusters of each developmental stage on partitions of 
the abstraction graph and transformed it by Leiden algorithm (using 
time_slices_to_layers() function and then optimise_partition_multi-
plex() for class la.Optimiser()) to a connection-based annotation of cell 
lineages with consistent colours. Next, we used abstraction graph nodes 
as starting points for the UMAP algorithm with maxiter = 1,000, nega-
tive_sample_rate = 20, min_dist = 1, spread = 2 parameters to prepare 
embedding corresponding to cell lineage relations (Figs. 1b–d, 2a, b, 
3f, 4a, Supplementary Fig. 11, Supplementary Note).

RNA velocity analysis 1
We performed RNA velocity analysis of time points separately, following 
the original deterministic approach of the velocyto.R/py packages13. 
Currently, it is not possible to split an UMI-matrix obtained by Bayesian 
correction of dropestR44. Thus, we exported metadata for filtering of a 
default matrix and our cellular annotations (walktrap algorithm derived 
45 cell groups). They were then sub-grouped to relocate cells, which 
passed our filters and removed ‘rubbish’ and mesenchymal-related 
genes. Last, we applied the original RNA velocity method13 with a few 
modifications: 1) we filtered out all non-DEGs, which were present in 
<20 spliced/unspliced molecules, and 2) to obtain a velocyto grid we 
exported the UMAP embeddings67,73 of our high-quality cells from the 
previous step for visualization purposes (Extended Data Fig. 2b, c).

RNA velocity analysis 2
To perform RNA velocity analysis of the integrated dataset, we applied 
the scvelo python package using a generalized dynamical model82. As 
input, we used filtered to ectodermal cells and gene loom files, which 
were merged using loompy (version 2.0.17) and filtered to cells used 
for PAGA construction (see above). In brief, spliced and unspliced reads 
were separately size-normalized to the median of total molecules across 
cells. Additional gene filtering comprised those that passed a minimum 
threshold of ten expressed counts for spliced and two for unspliced 
mRNA. We quantified a 30-nearest neighbour graph based on Euclid-
ean distances in 30-PC space (PCA performed on logarithmic spliced 
counts). Therefore, for each cell across its neighbours, we obtained 
first and second-order moments (means and uncentred variances), 

then estimated RNA velocity with the explicit fitting of inferred splic-
ing reaction rates. As a result, transition probabilities were estimated 
to form a velocity graph. Thus, we plotted individual cell velocities 
embedded in UMAP space (Figs. 2a, 3f, Extended Data Fig. 7a). Subgraph 
analysis of both the glial lineage (clusters 1, 10, 18, 24, 34 and 51) and 
bridge cells (we subset only the first entering node of the abstraction 
graph) was performed as described previously12,82. To this end, we sub-
set cells of interest and transformed PAGA to a directed abstraction 
graph using a default constructed velocity graph as described above. 
Finally, we allocated root cells by using the backward Markov process 
on the transition probability matrix to define excessive density area, 
estimated the latent time on a learned transcription dynamic model 
and plotted a velocity grid and individual cell velocities embedded in 
UMAP space (Fig. 1c). We completed all steps using built-in functions 
with default parameters.

Estimation of developmental regulons
We prepared a subset of putative glial (astroependymal, tanycyte and 
progenitor) and neuronal clusters (as described above under ‘Abstrac-
tion graph on repartitioned integrated data’). A spliced UMI count 
matrix of the integrated dataset was input into the pySCENIC23,83 pipe-
line with default settings to infer active TFs and their target genes. In 
brief, the pipeline was implemented in three steps. First, we identified 
gene co-expression modules of TFs83. Second, we pruned each mod-
ule based on a regulatory motif near a transcription start site (TSS). 
Cis-regulatory footprints could be obtained with positional sequencing 
methods (for example, from ChIP–seq motif calling with an antibody 
against a TF). Binding motifs of TFs across multiple species were then 
used to build an RCisTarget database. Precisely, modules were retained 
if the TF-binding motif was enriched among its targets, while target 
genes without direct TF-binding motifs were removed. Third, we scored 
the impact of each regulon for each single-cell transcriptome using the 
AUC score as a metric. Each step of this pipeline used rank statistics, 
and the last classification step ran independently for each cell, avoid-
ing a batch effect.

Moreover, regulons tended to highlight higher-order similarities 
across cells. Thus, we determined whether the target genes in each regu-
lon were enriched in each cell using the distribution of regulon activity 
across all cells in the dataset. The input list of TFs was downloaded 
from the RIKEN database84–86. As a result, we derived the AUC score 
matrix (AUCell) to validate our clustering and prepared annotation 
by 395 identified regulons. Inferred regulons and their activity across 
cells in the integrated dataset are reported at https://doi.org/10.6084/
m9.figshare.11867889. Wilcoxon test, Logreg test87 and dot-plot visu-
alization of differentially recruited regulons across 45 identified cell 
groups (described above) were done in the Scanpy package81 (Fig. 3a, 
Extended Data Fig. 4). GRN plots of the Onecut2/3 regulons were done 
using the Gephi software package88 (Extended Data Fig. 6a).

Dendrogram construction (regulon-based)
Next, a dendrogram was constructed for neuronal and glial cells 
together using Seurat 3 on the AUCell matrix of 395 regulons to observe 
subtler changes. We deciphered the diverging composite rules of a 
regulon-based dendrogram by testing each branching node for dif-
ferential regulon importance. Therefore, we performed the Wilcoxon 
test and Logreg test87 of every node with min.pct = 0.01, logfc.thresh-
old = 0.01 of Seurat’s function FindAllMarkers to derive the action 
propagation program of the regulons (https://doi.org/10.6084/
m9.figshare.11867889). We used dendrograms to order dot-plots 
(Fig. 3a, Extended Data Fig. 4).

Regulon assignment to clinical phenotypes
To understand the potential involvement of regulons in human dis-
ease phenotypes, we analysed the properties of human polymorphic 
variants (SNPs) located within regulon genes. Recently, a robust 
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correspondence between human and mouse regulons was reported23. 
To uncover associations between regulon-specific variants and human 
phenotypes we used Gene Atlas: a database with summary statistics of 
GWAS between millions of variants and hundreds of traits in the UK 
Biobank cohort (http://geneatlas.roslin.ed.ac.uk/)89. First, we converted 
a subset of mouse regulon genes with one-to-one orthologues into 
human Ensembl gene IDs. Here, we used mouse notation for regulons 
(only the first capital letter and the remaining lowercase letters) to 
clarify their source. Second, we extracted all SNPs belonging to regulon 
genes and analysed the distribution of their P values. Third, we char-
acterized regulons in terms of the total number of SNPs that affected 
their master gene, as well as SNPs that affected other regulon-recruited 
genes. We observed that master genes tended to have a deficit in SNPs as 
compared to the downstream general representatives of these regulons 
(median number of SNPs that affect master genes across all regulons is 
less than the median number of SNPs that affect general representative 
genes). Some regulons showed zero SNPs (at least in the UK Biobank 
cohort) in their master genes but a substantial, close to the median, 
number of SNPs in regulon-recruited genes. Using the number of SNPs 
that affected master genes and the number of SNPs that affected other 
regulon-recruited genes as a metric of evolutionary constraint, we split 
all regulons into four quadrants that reflected the ratio of constraints 
between masters and members of regulons (Extended Data Fig. 5b). 
Next, we asked where hypothalamus-related regulons appeared in this 
plot. Thus, to focus on the hypothalamus, we used weights of genes in 
regulons output by the SCENIC workflow, which were interpreted as the 
importance of a given gene in a given regulon. To highlight the most 
important regulons, we chose ones with a median weight higher than 
the median weights of all individual genes from all regulons.

Henceforth, the logic behind our analysis is similar to pi1 statistics, 
estimating an excess of low P values90. To make a fast approximation 
of the excess of low P values for 778 phenotypes and each gene of 395 
regulons, we estimated the fraction of P values that were <0.1. Limited 
testing demonstrated a strong correlation between our excess of low P 
values and pi1 estimated in the qvalue R package91. Also, limited testing 
demonstrated similar trends, observed when we changed the thresh-
old from 0.1 to 0.01. Therefore, we manually selected clinical pheno-
types related to the hypothalamus, subset to regulons with importance 
(weight) higher than the median and aggregate weighted pi1 statistics 
to the regulon level. For visualization purposes, we selected three con-
trast regulons from each quadrant by choosing distant regulons in the 
two-dimensional PCA space of phenotypes (red labels in Extended 
Data Fig. 5a, black spheres in Extended Data Fig. 5b) and plotted their 
normalized values via the heatmaply R package92 (Fig. 3d).

Estimation of developmental genes and regulon dynamics
Next, we took the spliced molecule count matrix of the same subset of 
cells as for the PAGA subgraph analysis of progenitors and their near-
est offspring. First, we size-normalized to the median of total mol-
ecules across cells. Second, a logarithmic matrix was used to estimate 
pseudo-time order and probabilities for cells to propagate through the 
subgraph of glial lineages or bridge cells. For this purpose, we used a 
probabilistic approach, Palantir93, which we implemented as an external 
module to the Scanpy Python package81 (Figs. 1d, 4b, Extended Data 
Fig. 7a, Supplementary Fig. 12 in Supplementary Note). Similarly, we 
applied this method to the Pomc cell group (Fig. 2b) and every distinct 
Th containing group (Fig. 4b–d, f, h, i, Extended Data Fig. 9c, Supple-
mentary Fig. 13 in Supplementary Note) guided by PAGA topology. In all 
cases, we selected early cells by taking the upper 99th percentile of the 
Sox2 regulon of AUC scores distribution and used default parameters 
for estimations with the exception of the waypoints parameter: for 
glia and bridge neurons, 500; for the Pomc+ cell lineage, 1,200; and for 
Th+ trajectories: cluster 1, 750; cluster 2, 500; cluster 3, 1,000; cluster 
4, 500; cluster 5, 350; cluster 6, 1,000; cluster 7, 200; cluster 8, 200; 
cluster 9, 1,000; cluster 10, 800. Finally, we estimated the impact of 

regulon dynamics along the identified trajectories using the AUCell 
matrix as input for Palantir’s function compute_gene_trends, which 
uses a generalized additive model. Both the trends of genes and regu-
lon actions were clustered for each trajectory with default parameters 
using the Phenograph python package94.

Tissue preparation and immunohistochemistry
After rinsing in 0.1 M PB, specimens were exposed to a blocking solu-
tion composed of 0.1 M PB, 10% normal donkey serum, 5% BSA and 
0.3% TX-100 for 3 h followed by 48 h incubation with select combina-
tions of primary antibodies: rabbit anti-TH (1:500; Millipore AB152, 
lot 2593900, 3199177), sheep anti-TH (1:1,000, Novus Biologicals, 
#NB300-110, lot ajo1217p), sheep anti-ONECUT2 (1:250; R&D Systems, 
AF6294, lot CDKS0116081), guinea pig anti-ONECUT3 (1:5,000)95, 
rabbit anti-VGLUT2 (1:800; a gift from M. Watanabe)96, goat anti-GFP 
(1:1,000; Abcam, #ab6662, lot GR311622-15, GR311622-7), chicken 
anti-GFP (1:500, Aves Labs Inc., #GFP-1020, lot GFP697986), rab-
bit anti-SOX2 (1:500, Abcam, #ab97959, lot GR3244885-1), chicken 
anti-mCherry (1:1,000; EnCor Biotech, #CPCA-mCHERRY, lot 7670-4), 
mouse anti-MASH1 (1:100, BD Pharmingen, 556604, clone: 24B72D11.1), 
guinea pig anti-GFAP (1:500, Synaptic Systems, 173004, lot 2-15, 2-17), 
rabbit anti-phospho-histone H3 (1:500; Cell Signaling Technology, 
9701, lot 7), chicken anti-NeuN (1:500, Merck Millipore, ABN91, lot 
3132967), mouse anti-FLAG-tag (1:1,000; Sigma, F1804, lot SLBR7936V), 
mouse anti-HA-tag (1:600; Cell Signaling Technology, mAb2367, lot 1). 
Secondary antibodies were from Jackson ImmunoResearch, including 
Alexa Fluor 488-AffiniPure donkey anti-goat (705-545-147, lot 131669), 
Alexa Fluor 488 donkey anti-mouse (715-545-151, lot 127820), Alexa 
Fluor 488-AffiniPure donkey anti-guinea pig (706-545-148, lot 138058), 
Alexa Fluor 647-AffiniPure donkey anti-guinea pig (706-605-148, lot 
135631), Alexa Fluor 647-AffiniPure donkey anti-rabbit (711-605-152, 
lot 127614), carbocyanine (Cy)2-AffiniPure donkey anti-rabbit (711-
225-152, lot 139999), Cy3-AffiniPure donkey anti-chicken (703-165-
155, lot 142225), Cy3-AffiniPure donkey anti-goat (705-165-147, lot 
134527), Cy3-AffiniPure donkey anti-guinea pig (706-165-148, lot 
134844), Cy3-AffiniPure donkey anti-mouse (715-165-150, lot 116881), 
and Cy3-AffiniPure donkey anti-rabbit (711-165-152, lot 141941) and 
applied at a dilution of 1:300 in 0.1 M PB supplemented with 2% BSA 
(20–22 °C, 2 h). Nuclei were routinely counterstained with Hoechst 
33,342 (1:10,000; Sigma). Tissues were photographed on a Zeiss 
LSM880 laser-scanning microscope. Images were acquired in the 
ZEN2010 software package. Multi-panel images were assembled in 
CorelDraw X7 (Corel Corp.).

RNA-scope in situ hybridization
C57Bl6/J mice were used to verify scRNA-seq candidate gene expres-
sion as described97. Dissected embryonic mouse heads were fixed in 
4% PFA (pH 7.4) overnight. RNAscope 2.0 was performed according 
to the manufacturer’s instructions (ISH, RNAscope, Advanced Cell 
Diagnostics)98. RNAscope probes for detection of Slc1a3, Rax, Dll1, 
Dll3, Neurod1, Slit1, Slit2, Draxin, Prdm12, Nhlh2, Sox10, Ddc, Lancl3, 
Pmfbp1, Sncg, Sst, Th and Trh were designed commercially by the manu-
facturer and are available from Advanced Cell Diagnostics. Imaging 
was performed using an LSM880 Zeiss confocal microscope equipped 
with a 40× objective.

Fluorescent in situ hybridization (HCR 3.0)
Staining was performed on fresh-frozen tissue sectioned at 16 μm fol-
lowing the HCR v3.0 protocol for ‘generic sample on the slide’ (Molec-
ular Instruments)99. The pre-treatment of tissue sections included 
fixation with 4% PFA for 15 min, two washing steps with PBS and dehy-
dration using an ascending EtOH gradient (25%, 50%, 75% and 100%, 
each step for 5 min with subsequent drying for 15 min). The tissue 
used for these experiments was obtained from E12.5, E15.5, E16.5 and 
E18.5 embryos or P2 and P7 pups. The probes used (Ddc, Gad1, Meis2, 
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Onecut3, Sncg, Th, Trh and Zic5) were designed and purchased from 
Molecular Instruments.

In vitro overexpression of Onecut3
Neuro2A cells (ATCC; negative for mycoplasma upon visual inspection) 
were propagated in DMEM containing 4.5g/l glucose, glutamax, 10% 
FBS, 100 U/ml penicillin and 100 μg/ml streptomycin (all from Gibco). 
Prior to transfection, cells were plated on glass coverslips (coated with 
poly-d-lysine (Sigma) at 37 °C overnight) at a density of 75,000 cells/well 
in a 24-well format. Cells were transfected with 500 ng of either OC3 or 
ABCD2 (an ATP-binding cassette transporter located on peroxisomes 
as CMV control) using the jetPRIME transfection system. The medium 
was replaced after 30 min with growth medium containing 2% FBS (to 
limit excessive proliferation) and cells were either immersion fixed for 
immunocytochemistry in 4% PFA in PBS (pH 7.4) for 20 min or lysed for 
qPCR after 3 days in vitro. Note that no cell death was observed due 
either to overexpression or the transfection reagent.

For immunocytochemistry, cells were permeabilized and blocked 
before adding a primary antibody cocktail overnight at 4 °C. Staining 
was performed with phospho-histone H3 (rabbit host; 1:500; Cell Sign-
aling Technology), FLAG-tag (mouse host; 1:1,000; Sigma) or HA-tag 
(mouse host; 1:600; Cell Signaling Technology) and counterstained 
with Hoechst 33,342 (1:10,000; Sigma). After mounting with glyc-
erol gelatine (Sigma), random overview images (20× magnification) 
were taken on an Zeiss LSM880 confocal microscope. Hoechst+ and 
phospho-histone H3+ cells were counted using ImageJ1.52a (cell counter 
plugin) and normalized to Abcd2.

For qPCR quantification, RNA was extracted with the Aurum Total 
RNA Kit (BioRad). A cDNA library was prepared by transcribing 2 μg 
RNA with the High Capacity RNA-to-cDNA Kit (Applied Biosystems). For 
qPCR reactions, 20 ng cDNA was amplified using SYBR green (BioRad) 
on a CFX Real Time Amplifier (BioRad) with [Th forward: TGTTTCAGTG 
CACACAGTAC]; [Th reverse: CCAATGTCCTGGGAGAACTG], [Cxxc5 for-
ward: AGTGGACAAAAGCAACCCTA]; [Cxxc5 reverse: TTAGCATCTCTG 
TGGACTGT], [Tmprss9 forward: GCTTGGTGCGACCCATCT]; [Tmprss9 
reverse: CATGGAGCCTCCCTCGC] and [Tbp for: CCTTGTACCCTTCACC 
AATGAC]; [Tbp rev: ACAGCCAAGATTCACGGTAGA] primers as loading 
control.

Preparation of acute brain slices
All experiments were performed in 300-μm-thick coronal slices 
prepared on a VT1200S vibratome (Leica) using a protective recov-
ery method for slice preparation100. All constituents were from 
Sigma-Aldrich. Solutions were aerated with carbogen (5% CO2/95% O2).

Patch-clamp electrophysiology
Whole-cell recordings were carried out using borosilicate glass 
electrodes (Hilgenberg, Germany) of 3–4 MΩ pulled on a P-1000 
instrument (Sutter). Electrodes were filled with an intracellular 
solution containing (in mM): 130 K-gluconate, 3 KCl, 4 ATP-Na2, 0.35 
GTP-Na2, 8 phosphocreatine-Na2, 10 HEPES, 0.5 ethyleneglycol-bis
(2-aminoethylether)-N,N,N′,N′-tetraacetate (EGTA), (pH 7.2 set with 
KOH) and 0.5% biocytin (Sigma) for post hoc cell identification. After 
recordings, brain slices were immersion fixed in 4% PFA in 0.1 M PB at 
4 °C overnight. Recordings were carried out on an EPC-10 triple ampli-
fier (HEKA) controlled by PatchMaster 2.80.

Sample sizes, statistics and reproducibility
Sample sizes for scRNA-seq experiments: n = 8 (E15.5), n = 7 (E17.5), 
n = 4 (P0), n = 4 (P2), n = 3 (P10), n = 3 (P23). SCTransform corrected 
UMI-count matrices were statistically tested to obtain DEGs using 
log-normalized values with pseudocount = 1 for 45 identified cell groups 
as previously described6,51 using MAST test52. We used the Wilcoxon test 
and Logreg test87 to define upregulated regulons. Results of the DGE 
tests are specified at https://doi.org/10.6084/m9.figshare.11867889.

For Fig. 1a, a UMAP plot was built for n = 51,199 cells of ectodermal 
origin integrated by canonical correlation analysis (CCA). For Fig. 1c, 
n = 5,070 cells were used for UMAP. For Fig. 1d (right), we sampled 
cell-ordering (n = 5,070 cells) to 500 bins to compute gene expression 
trends. For each bin, mean ± s.e.m. expression was estimated by gener-
alized additive models. For Fig. 1e, n = 2 animals for E12.5, 3 n = animals 
for E13.5, and n = 3 animals for E15.5 were used for embryonal tracing of 
Ascl1 at corresponding time points. For Fig. 1f, n = 2 animals were used to 
trace Ascl1+ cells in (BAC)GAD65–eGFP:Ascl1-creERT2::Ai14 mice (tamox-
ifen injection at P14, sample collection at P21). For Fig. 2b (top right), 
to compute gene trends we sampled the trajectory for POMC neurons 
(n = 1,643 cells from progenitors to mature POMC cells) to 500 bins. 
Each single trajectory shows mean ± s.e.m. estimated by generalized 
additive models. For Fig. 2b (bottom), RNA scope in situ hybridization 
was performed on samples from POMC–GFP mice (n = 4 for Prdm12 and 
n = 3 for Nhlh2). For Fig. 2e, experiment was performed in triplicate with 
n = 2 animals per time point. For Fig. 3b, images are representative of 
wild-type (n = 3) and Nfia−/− (n = 3) mice. For Fig. 3f, n = 5,070 cells belong 
to glia (excluding oligodendrocytes) or bridge neurons. To compute 
gene expression trends, we sampled cell-ordering to 500 bins. For each 
bin, mean ± s.e.m. was estimated by generalized additive models. For 
Fig. 3g, n = 5 (wild-type), n = 5 (Robo1−/−), n = 3 (Slit1−/−) and n = 3 (Slit2−/−) 
mice were used. Data are presented as percentile box-whisker plots 
(10th, 25th, 50th, 75th and 90th percentiles). Data were statistically 
analysed using one-tailed Student’s t-test of raw data: P = 0.0019 for 
wild-type versus Slit1−/−; P = 0.0006 for wild-type versus Slit2−/−. For 
Fig. 3h, the experiment was performed in duplicate with wild-type 
(n = 3) and Robo1−/− (n = 4) mice. For Fig. 4b–d, f, h, i, to compute gene 
trends we independently sampled seven differentiation trajectories 
containing neurons (for group 1: 1,506 cells, for group 2: 997 cells, for 
group 3: 1,453 cells, for group 5: 948 cells, for group 6: 1,779 cells and for 
group 9: 1,181 cells) to 500 bins. For each bin, mean ± s.e.m. expression 
was estimated by generalized additive models. For Fig. 4b (right), n = 2 
animals for E12.5, n = 3 animals for E13.5. The experiment was performed 
in duplicate. For Fig. 4e, n = 2 animals were used. The experiment was 
reproduced twice. For Fig. 4f (right), n = 3 animals were used in the 
experiment. For Fig. 4g (right), n = 2 animals were tested in each inde-
pendent experiment. For Fig. 4h (right), n = 2 animals were tested in 
the experiment. For Fig. 4i, n = 5 (wild-type) and n = 6 (Robo1−/−) mice 
were tested. Data are visualized as error bar plots with individual data 
point information. Data were statistically evaluated using one-tailed 
Student’s t-test on raw data: P = 0.015 for wild-type versus Robo1−/− at 
the anatomical (rostral-to-caudal) level of the SCN. For Fig. 4k, post 
hoc neuroanatomical reconstruction identified that all n = 9 Onecut3+ 
neurons were of ‘type C’ in A14 (n = 15 cells were characterized as ‘type 
C’ within 62 cells recorded in total from A14).

For Extended Data Fig. 1, we used the dataset of n = 51,199 ectodermal 
cells for dot-plot representation (Extended Data Fig. 1a, b) and UMAP 
visualizations (Extended Data Fig. 1b, c). For Extended Data Fig. 2a, we 
used the same dataset of n = 51,199 ectodermal cells for each alignment 
algorithm. For Extended Data Fig. 2c, n = 6,314 cells from E 15.5 passed 
filters of original RNA velocity analysis and are presented in the figure 
panels for each analysis of gene expression. For Extended Data Fig. 2d, 
numbers of animals used for embryonal tracing are: n = 2 for E12.5, n = 3 
for E13.5, n = 3 for E15.5 and n = 2 for E16.5. For Extended Data Fig. 2d, 
freely available data from Allen’s Mouse Developmental Brain Atlas 
were used. For Extended Data Fig. 2f, images are representative of Ascl+/− 
(n = 3) and Ascl1−/− (n = 3) mice. For Extended Data Fig. 2g, three animals 
were checked for each developmental stage. For Extended Data Fig. 2h, 
two Ascl1+ cells were traced in (BAC)GAD65–eGFP:Ascl1-creERT2::Ai14 
animals for the time-point shown (tamoxifen injection at P14, sample 
collection at P21). For Extended Data Fig. 3d, e, analysis was done based 
on n = 33,893 cells of neuronal and glial origin (excluding oligoden-
drocytes). For Extended Data Fig. 3f, the experiment was reproduced 
three times with n = 2 animals per time-point. For Extended Data 
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Fig. 4, n = 33,893 cells in total were tested with two-tailed Wilcoxon 
rank sum test. For Extended Data Fig. 6b, images are representative 
of samples from n = 2 animals. For Extended Data Fig. 6c, images are 
representative of n = 2 animals per experiment. For Extended Data 
Fig. 6d (top), images are representative of the experiment reproduced 
twice with n = 6 coverslips. For Extended Data Fig. 6d (bottom), the 
sample size was n = 12 for each group. Data were statistically evaluated 
using two-tailed Student’s t-test on raw data. P = 0.0000292 for the 
density of Hoechst-positive cells; P = 0,0000000103 for the density 
of pHH3+ cells. For Extended Data Fig. 6e, there were three biological 
and three technical replicates for each probe. Data are visualized as 
error bar plots (mean ± s.e.m.) with individual data point information. 
Data were statistically evaluated using two-tailed Student’s t-test on 
raw data. P = 0.0210 for Th expression; P = 0.000153 for Cxxc5 expres-
sion. For Extended Data Fig. 7a (UMAP), n = 33,893 cells were used for 
graph construction. For Extended Data Fig. 7a (bottom), to compute 
gene expression trends we sampled n = 5,070 cells to 500 bins. For 
each bin, mean ± s.e.m. expression was estimated by generalized addi-
tive models. For Extended Data Fig. 7a (right), b, all images represent 
results from n = 3 animals for each experiment. For Extended Data 
Fig. 8a, we recorded n = 20 cells from A12 (including n = 12 of type A, 
n = 3 of type B, n = 5 of type C), n = 8 cells from A13 (n = 5 cells of type 
A and n = 3 cells of type B) and n = 62 cells from A14. Specifically for 
A14, we distinguished four electrophysiological profiles: n = 32 cells of 
type A, n = 9 cells of type B, n = 15 cells of type C and n = 6 cells of type 
D. Post hoc neuroanatomical reconstruction identified that all n = 9 
Onecut3+ neurons were of type C in A14. For Extended Data Fig. 8b, 
images are representative of the experiment reproduced nine times. 
For Extended Data Fig. 9a, images are representative for Ascl+/− (n = 3) 
and Ascl1−/− (n = 3) mice. The immunohistochemical experiment was 
reproduced twice. For Extended Data Fig. 9b, n = 3 animals from E13.5 
tamoxifen injection, n = 3 animals from E15.5 tamoxifen injection, and 
n = 2 mice from E16.5 tamoxifen injection were tested for embryonal 
tracing of Ascl1 cells at corresponding time points at E18. For Extended 
Data Fig. 9c, to compute gene trends we independently sampled seven 
differentiation trajectories containing neurons (for group 1: 1,506 cells, 
for group 2: 997 cells, for group 3: 1,453 cells, for group 5: 948 cells, for 
group 6: 1,779 cells and for group 9: 1,181 cells) to 500 bins. For each bin 
mean ± s.e.m. expression was estimated by generalized additive mod-
els. For Extended Data Fig. 9d, n = 3 animals were tested. For Extended 
Data Fig. 9e (images), n = 2 animals were used for each developmental 
time-point. The experiment was reproduced twice. For Extended Data 
Fig. 9e (scatter plot), for both ages n = 2 animals were tested. In total 
86 Th-containing (minimum >2 mRNA molecules) cells were randomly 
analysed. Data are visualized as error bar plots (mean ± s.e.m.) with 
individual data point information. For Extended Data Fig. 9f, images 
are representative of n = 2 animals from each time-point. For Extended 
Data Fig. 10a, images are representative for the experiment performed 
in duplicate on n = 4 for each developmental stage of both mouse lines. 
For Extended Data Fig. 10b, n = 26,316 cells from the neuronal lineage 
(including progenitors) were used. For Extended Data Fig. 10c, n = 3 ani-
mals were tested for each developmental time-point. For Extended Data 
Fig. 10d, n = 2 animals were tested for each independent experiment. For 
 Extended Data Fig. 10e, n = 2 animals were tested for the exper 
iment. For Extended Data Fig. 10f, n = 9 Onecut3+ neurons were recon-
structed.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Raw, processed and supplementary datasets have been deposited in 
GEO (accession number: GSE132730). GEO files include: 1) raw fastq files 

for every sequencing run; 2) filtered matrices for every sample in RDS 
file format including Seurat 3 objects with all processed cells; 3) original 
integrated dataset in RDS file format including Seurat 3 objects with all 
processed cells as well as all used commands; 4) integrated dataset used 
for dynamics analysis (which passed filtering of RNA velocity analysis); 
5) AUCell matrices from pySCENIC pipeline; 6) full regulon hypotha-
lamic network in GraphML file format; 7) metadata protocol describing 
all experimental, computational procedures and quality control. An 
interactive view of the integrated dataset (for processing in Pagoda2) 
can be accessed at https://doi.org/10.6084/m9.figshare.11867889 (~1.1 
GB). All data presented (for example, imaging) will be made available 
by T. Harkany (tibor.harkany@ki.se or tibor.harkany@meduniwien.
ac.at) upon reasonable request.

Code availability
The code used is available at https://doi.org /10.6084/
m9.figshare.11867889.
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Extended Data Fig. 1 | Marker genes to define molecular phenotypes.  
a, Differential gene expression by glia (clusters 1–9) and neurons (clusters 10–
45). Because of the integration of six stages, early-expressed TFs and spatially 
restricted genes amenable to cellular differentiation were identified. For 
neuronal clusters, fast neurotransmitter specificity is shown to the right. The 
relative diameter of the solid circles for each cluster is scaled to the fraction of 
cells that expresses a specific gene. Colour coding and numbering at the top 
correspond to those in Fig. 1a. b, Top, Differential TF expression in 45 
ectoderm-derived cell groups in the hypothalamus. Bottom, subclass-specific 
TFs recapitulate the UMAP positions of neuronal (left) and glial (right) 
subtypes. c, Integrated molecular and anatomical annotation of hypothalamic 

clusters with their specific assignment to hypothalamic areas. ARC-Agrp, 
arcuate nucleus agouti-related peptide+ neurons; ARC-Sst, arcuate nucleus 
somatostatin+ neurons; ARC-TIDA, arcuate nucleus–tuberoinfundibular 
dopamine neurons; Gal, galanin; Ghrh/Vacht, growth hormone-releasing 
hormone/vesicular acetylcholine transporter+ neurons; LH, lateral 
hypothalamus; LH-Lhx9, lateral hypothalamus LIM homeobox 9+ cluster; 
Meis2, meis homeobox 2; MM, mammillary nucleus; MM-Lhx9, mammillary 
nucleus LIM homeobox 9+ neurons; Pomc, proopiomelanocortin; PH, posterior 
hypothalamus; PMM, premamillary nucleus; Tbr1, T-box brain transcription 
factor 1.
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Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | Molecular analysis of TFs involved in neurogenesis 
and neuronal differentiation. a, Comparative and time-resolved analysis of 
the cell bridge by MNN, CONOS and Seurat alignment. In UMAP space on 
separate developmental stages, MNN, CONOS and Seurat algorithms were 
compared for their ability to specifically resolve the transition of progenitors 
to immature cells (bridge). Colour codes correspond to those in Fig. 1a. b, RNA 
velocity at E15.5, E17.5 and P0. Colour codes are consistent with those in Fig. 1a. 
Note the presence of a bridge (grey background) between progenitor/glial and 
neuronal compartments at early developmental stages with its rupture being 

evident by birth. c, Gene expression in UMAP space at E15.5. Note a central role 
for Notch signalling in neurogenesis. d, Genetic tracing of Ascl1+ cells produced 
in the developing hypothalamus during the E12.5–E16.5 period. e, In situ 
hybridization showing the distribution of Tbr1 and Eomes. Image credit: Allen 
Institute (https://www.brain-map.org). f, Genetic tracing of Ascl1+ cells in the 
developing hypothalamus of Ascl+/− and Ascl−/− mice. Sox2 was localized by 
immunohistochemistry. g, Sox2, Ascl1 (Tomato) and Rbfox3 (NeuN) 
immunolocalization at successive developmental stages. h, Genetic tracing of 
Ascl+ cells postnatally (as in Fig. 1f). Scale bars, 200 μm (d), 20 μm (f–h).

https://www.brain-map.org
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Extended Data Fig. 3 | Neurotransmitter and neuropeptide specificity and 
load in the developing hypothalamus. a–c, Coincident profiling of fast 
neurotransmitters (a), neuropeptides (b) and neuropeptide receptors (c, top) 
in 45 cell groups of ectodermal origin. c, Bottom left, given their abundance, 
Ntrk2 and Adcyap1r1 were plotted separately along the developmental timeline 
studied with appropriate scaling. Bottom right, likewise, the distribution of 
both receptors per cell cluster was mapped and scaled separately.  

d, Coincident profiling of neuropeptides in neuronal clusters distinguished as 
GABA (blue) and glutamate (grey) phenotypes. e, Map of Th expression in 
GABA and glutamate neurons. Colour coding as in d. f, Developmental mapping 
of hypothalamic Oxtr expression in OxtrVenus/+ mice. Low-magnification image 
surveys are shown (see also Fig. 2e). Scale bars, 200 μm (f). Data shown as dot 
plots and scaled as previously described6,51,65.



Extended Data Fig. 4 | Hierarchical relationship of GRNs (regulons). An AUC 
separability plot was used to assign regulons that determine cell cluster 
identities identified in SCENIC23. GRNs were reconstructed individually for 
each cell and then assigned as ‘regulon representation’ (Logreg test) to each 

cell group. TFs to the left are representative for each regulon. Marked 
dendrogram branchpoints were estimated by both the Wilcoxon and Logreg 
tests (see also https://doi.org/10.6084/m9.figshare.11867889).

https://doi.org/10.6084/m9.figshare.11867889
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Extended Data Fig. 5 | Relationships between regulons and disease 
phenotypes in humans. a, Complete heat map of associations between 
regulon activity and clinical disease phenotype. Left: classifications of 
diseases as per phenotypic criteria of the UK biobank registry (https:// 
www.ukbiobank.ac.uk). Top, master genes for each regulon. Genes presented 
in Fig. 3 are in red and highlighted in b. Colour coding from deep blue to bright 
yellow shows increasing correlation probability. b, Scatter plot reflecting the 

ratios of mutability in master genes versus all downstream target genes per 
regulon. Mutability and the constrains of TFs were expressed as the total 
number of mutations. Colours represent four quadrants that were separated 
on the basis of the total number of mutations per master gene (medians, y-axis) 
versus target genes (medians, x-axis). Horizontal line corresponds to the 
median of SNPs in all genes. Dot size reflects the median influence of a given 
regulon on its targets as per SCENIC output.

https://www.ukbiobank.ac.uk
https://www.ukbiobank.ac.uk


Extended Data Fig. 6 | Molecular complexity and function of the Onecut3 
regulon. a, Interlinked Onecut2 and Onecut3 regulons in hypothalamic 
neurons. Genes that were biologically validated (see below) are shown in black. 
b, Co-expression of Onecut2 and Onecut3 along the rostrocaudal axis of the 
hypothalamus. c, Co-localization of Onecut3 and its target genes (from a).  
d, Overexpression of Onecut3 (OC3) and ATP-binding cassette D2 (Abcd2, to 
control promoter activity) in Neuro2A cells. Left, representative images by 
multiple fluorescence labelling-differential interference microscopy. Right, 

quantification of Hoechst+ and phospho-histone H3 (pHH3)+ Neuro2A cells 
revealed significantly reduced proliferation upon Onecut3 overexpression. No 
significant cell death was induced by either overexpressed plasmid or the 
transfection reagent alone. e, qPCR analysis of genes regulated by Onecut3: 
Cxxc5, Tmprss9 and Th. All data were normalized to samples transfected  
with Abcd2, which were taken as technical controls. Scale bars, 50 μm (d),  
20 μm (b, f), 10 μm (g).
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Extended Data Fig. 7 | Experimental validation of ventricle-restricted 
genes identified by scRNA-seq. a, Left, expressional dynamics of 
ventricle-associated marker genes: Slc1a3, Rax and Dll3 on UMAP embedding 
(top) and trend lines (bottom). Right, validation by in situ hybridization.  
b, In situ hybridization for the co-existence of Slit2 and Rax in ventricular 

progenitors and consequential medial-to-lateral Slit1–Dll1–Dll3 patterns 
during neuronal differentiation and migration by E15.5 (left, top right). 
Left-to-right orientation corresponds to medial-to-lateral hypothalamic 
positions. Bottom right, localization of Slit1 and Slit2 mRNAs in the VMH at 
E18.5. Scale bars, 200 μm (a), 20 μm (b).



Extended Data Fig. 8 | Physiological and morphological subtypes of 
hypothalamic dopamine neurons. a, Action potential waveforms of 
dopamine neurons within the A12–A14 groups. Note the diversification of A14 
dopamine cells into subgroups A–D with clearly different action potential 

signatures. Morphological reconstruction of biocytin-filled neurons is shown 
with each group. b, Distribution of tdTomato+ neurons in the hypothalamus of 
Slc6a3-Ires-cre::Ai14 mice. Scale bars, 50 μm (b), 20 μm (a).



Article

Extended Data Fig. 9 | Transcriptional and physiological features of 
dopamine neurons in the developing hypothalamus. a, Ascl1-creERT2/+::Ai14 
(control) versus Ascl1-creERT2/ERT2::Ai14 mice (a knock-in mouse line with Cre 
disrupting the Ascl1 gene, referred to as Ascl1 ko), injected with tamoxifen at 
E11.5 and analysed at E13.5. Note the accumulation of tdTomato+ cells in the KO 
relative to controls. b, Genetic tracing in Ascl1-creERT2::Ai14 reporter mice 
identified Ascl1+/Th+ neurons within the preoptic and periventricular nuclei. 
Meanwhile, Ascl1−/Th+ neurons populated the Arc and zona incerta (ZI) by E18.5. 

c, Isl1 and Meis2 transcriptional trends of differentiation for trajectories in Th+ 
groups (clusters 1–9). Amplitudes are shown in log10 scale. Line shading 
corresponds to mean ± s.e.m. d, Genetic lineage tracing using Isl1-cre::Ai14 
mice. e, In situ hybridization for Gad1 and Th revealed anti-parallel expressional 
load for these genes as a factor of medial-to-lateral positioning. Scatter plots 
show the number of fluorescent puncta per cell (threshold >2). f, In situ 
hybridization for Meis2, Th and Ddc in the hypothalami of E18.5 and P2 mice. 
Scale bars, 120 μm (a, f (left)), 12 μm (b, d–f (right)).



Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | GABA origin of hypothalamic dopamine neurons.  
a, Immunohistochemical analysis of TH and ONECUT3 protein expression in 
the hypothalamus of (BAC)GAD65–eGFP and GAD67–GFP mice at the 
developmental time-points indicated. Note a gradual GABA-to-dopamine 
transition as a factor of advancing age with ONECUT3 expression preceding 
that of TH. Dashed rectangles denote the positions of high-resolution insets.  
b, Expression patterns of regulon-forming TFs that directly drive Th 
transcription in the developing hypothalamus. Meis2, Pbx3 and Dlx1 were 
visualized on UMAP embedding for neuronal lineages. c, Histochemical 

localization of the migratory route of prospective PeVN dopamine neurons 
(cluster 9) through the coincident localization of TH and ONECUT3 during 
embryonic development. Dashed lines denote the ventricular surface.  
d, Localization of Onecut2 and Pmfbp1a target genes within the  
Onecut3 regulon to PeVN dopamine neurons by a combination of 
immunohistochemistry and in situ hybridization. e, Sst expression in PeVN 
dopamine neurons. f, Post hoc reconstruction of A14 Onecut3+ dopamine 
neurons after patch-clamp recordings. Scale bars, 200 μm (a, overviews), 
50 μm (a, insets), 20 μm (f), 12 μm (c–e).
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Data collection Cells were sequenced using an Illumina HiSeq 3000/HiSeq 4000 System with corresponding Illumina commercial software (HCS v3.4.0, 
RRID:SCR_016386). For imaging, ZEN2010 (RRID:SCR_013672) was used as control software for a Zeiss LSM880 laser-scanning 
microscope. Patch-clamp recordings were carried out on an EPC-10 triple amplifier (HEKA, Germany) controlled by PatchMaster (v2.80, 
RRID:SCR_000034).

Data analysis Cell Ranger (v2.2.0, RRID:SCR_017344), dropEst v0.8.3, Gephi (v0.9.2, RRID:SCR_004293), ZEN (Black, 2011, RRID:SCR_013672), ImageJ 
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Rtsne (v0.15, RRID:SCR_016342), irlba (v2.3.3), Seurat (v3.1.1, RRID:SCR_016341), ggalt (v0.4.0), heatmaply (v1.0.0), qvalue (v2.18.0, 
RRID:SCR_001073), reticulate (v1.13). 
Bioconductor (RRID:SCR_006442): MAST(v1.12.0, RRID:SCR_016340), org.Mm.eg.db (v3.7.0), GO.db (v3.7.0), topGO (v2.34.0), GOstats 
(v2.48.0), scater (v1.14.3, RRID:SCR_015954), MetaNeighbor (v1.6, RRID:SCR_016727), SC3 (RRID:SCR_015953), schex (v1.0.0), scran 
(v1.14.3, RRID:SCR_016944). 
GitHub packages (RRID:SCR_002630): sctransform (v0.2.0, ChristophH/sctransform@8e48f49), dropestr (v0.7.9), pagoda2 (v0.1.0, hms-
dbmi/pagoda2@dc550f0, RRID:SCR_017094), velocyto.R (v0.6 , velocyto-team/velocyto.R@666e1db), conos (v1.1.2, hms-dbmi/
conos@b9ce17b), kBET (v0.99.6, theislab/kBET@4c9dafa), clustree (v0.4.1 Github (lazappi/clustree@39fd552), RRID:SCR_016293), liger 
(v0.4.2, MacoskoLab/liger@ae5f142), harmony (v1.0, immunogenomics/harmony@1a6d77a),  
Python modules (RRID:SCR_008394): scanpy (v1.4.5.dev180+g5d6f2769), scvelo (v0.1.25.dev10+gdf8ca57), pyscenic (v0.9.19, 
RRID:SCR_017247), arboreto (v0.1.5), leidenalg (v0.7.0), palantir (v0.2), umap-learn (v0.3.10), loompy (3.0.6, RRID:SCR_016666), anndata 
(v0.6.22.post2.dev105+g31659e6), scanorama (v1.5), bbknn (v1.3.6).
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Sample size A sample size of each measurement was determined by the practical limitations of the protocol utilised according to previously published 
criteria for single cell transcriptomics, in vitro and in vivo biological experimentation. While assuring reproducibility, re-sampling, parallel 
processing and repetitive iterations for animal experiments were limited as directed by available legal guidelines for animal ethics (see below). 
For qualitative experiments we utilized minimum n = 2/variable/time-point. For quantitative experiments we used at least n = 3 for each 
factor of comparison and time-point.

Data exclusions The focus of this study was to investigate the development of ectoderm-derived cellular heterogeneity in a specific brain area. Therefore, 
when we identified non-ectoderm-derived populations of endothelial cells, pericytes, immune cells and mature oligodendrocytes, these were 
excluded from further analysis. Cell types unrelated to branches of neurogenesis (pars tuberalis, oligodendrocyte precursor cells) were also 
excluded from the final analysis, as described in detail the on-line methods because of the specific focus of this study. (Nevertheless, the full 
processed dataset with all cell types has been made available on GEO). In addition, exclusion of specific cells was made, in an unbiased 
manner, when data quality was low (see on-line methods and supplementary information for details). Otherwise, no data from bioinformatics, 
in vitro or in vivo experiments were excluded in a biased manner.

Replication Multiple batches or timepoints served as replicates (showing consistency; for sequencing: data with/without pooling and resequencing (see 
below), from both sexes, in vitro: at least duplicate experiments, in vivo: multiple pregnancies for each experiment and processing of >2 
fetuses/pregnancy for improved biological reliability (see below)). 
To minimize technical variability, we checked and combined data during library construction (n = 1 for P10, n = 2 for E15, E17, P0, P2, P10, 
P23, n = 3 for P2) including re-sequencing steps (n = 2 for E15, E17, P0, P2, P10, P23, n = 3 for E15). The hypothesis was tested independently 
on each sample using a published approach (velocito.R). Similarly, the assumption was tested on integrated data by two distinct approaches 
(directed PAGA using RNA velocity information and Palantir), which served as another type of replication to assure desire quality and integrity. 
For the analysis of embryonic hypothalami, the sample size was n = 7-8 embryos from 2 independent litters per time-point. Likewise, many 
adult samples were utilized (n = 3-4) without preference to sex to ensure reproducibility and to reduce the effect of individual variability. 

Randomization Randomization could not be performed due to a high risk of batch effect in case of sample separation.

Blinding We did not use perturbation of conditions, instead we analysed different developmental time points which were processed in parallel. Thus, 
blinding was not possible due to obvious morphological differences between the samples. When processing ensuing datasets, we did not 
incorporate any information about the real age of the samples in any algorithm. Therefore, inferences on developmental trajectories were 
performed in an unsupervised manner as illustrated by Figure 1b.
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Antibodies
Antibodies used Primary: 

rabbit anti-TH (1:500; Millipore Cat# AB152, RRID:AB_390204), #Lot 2593900, 3199177; 
sheep anti–TH (1:1000, Novus Cat# NB300-110, RRID:AB_10002491), #Lot ajo1217p; 
sheep anti-ONECUT2 (1:250; R and D Systems Cat# AF6294, RRID:AB_10640365), #Lot CDKS0116081; 
guinea pig anti-ONECUT3 (1:5,000); 
rabbit anti-VGLUT2 (1:800; a gift from M. Watanabe); 
goat anti-GFP (1:1,000; Abcam Cat# ab6662, RRID:AB_305635), #Lot GR311622-15, GR311622-7; 
chicken anti-GFP (1:500, Aves Labs Cat# GFP-1020, RRID:AB_10000240), #Lot GFP697986; 
rabbit anti-SOX2 (1:500, Abcam Cat# ab97959, RRID:AB_2341193), #Lot GR3244885-1; 
chicken anti-mCHERRY (1:1,000; EnCor Biotechnology Cat# CPCA-mCherry, RRID:AB_2572308), #Lot 7670-4; 
mouse anti-MASH1 (1:100, BD Biosciences Cat# 556604, RRID:AB_396479), #Clone: 24B72D11.1; 
guinea pig anti-GFAP (1:500, Synaptic Systems Cat# 173 004, RRID:AB_10641162), #Lot 2-15, 2-17; 
rabbit anti-phospho-Histone H3 (1:500; Cell Signaling Technology Cat# 3377S, RRID: AB_1549592), #Lot 7; 
chicken anti-NeuN (1:500, Millipore Cat# ABN91, RRID:AB_11205760), #Lot 3132967; 
mouse anti-FLAG-tag (1:1,000; Sigma-Aldrich Cat# F1804, RRID:AB_262044), #Lot SLBR7936V; 
mouse anti-HA-tag (1:600; Cell Signaling Technology Cat# 2367, RRID:AB_10691311) #Lot 1. 
Secondary: 
Cy3-AffiniPure Donkey Anti-Chicken (Jackson ImmunoResearch Labs Cat# 703-165-155, RRID:AB_2340363), Lot# 142225; 
Alexa Fluor 488-AffiniPure Donkey Anti-Guinea Pig (Jackson ImmunoResearch Labs Cat# 706-545-148, RRID:AB_2340472), Lot# 
138058; 
Cy2-AffiniPure Donkey Anti-Rabbit (Jackson ImmunoResearch Labs Cat# 711-225-152, RRID:AB_2340612), Lot# 139999; 
Alexa Fluor 488-AffiniPure Donkey Anti-Goat (Jackson ImmunoResearch Labs Cat# 705-545-147, RRID:AB_2336933), Lot# 
131669; 
Alexa Fluor 488 donkey anti-mouse (Jackson ImmunoResearch Labs Cat# 715-545-151, RRID:AB_2341099), Lot# 127820; 
Cy3-AffiniPure Donkey Anti-Mouse (Jackson ImmunoResearch Labs Cat# 715-165-150, RRID:AB_2340813), Lot# 116881; 
Cy3-AffiniPure Donkey Anti-Goat (Jackson ImmunoResearch Labs Cat# 705-165-147, RRID:AB_2307351), Lot# 134527; 
Cy3-AffiniPure Donkey Anti-Rabbit (Jackson ImmunoResearch Labs Cat# 711-165-152, RRID:AB_2307443), Lot# 141941; 
Cy3-AffiniPure Donkey Anti-Guinea Pig (Jackson ImmunoResearch Labs Cat# 706-165-148, RRID:AB_2340460), Lot# 134844; 
Alexa Fluor 647-AffiniPure Donkey Anti-Guinea Pig (Jackson ImmunoResearch Labs Cat# 706-605-148, RRID:AB_2340476), Lot# 
135631; 
Alexa Fluor 647-AffiniPure Donkey Anti-Rabbit (Jackson ImmunoResearch Labs Cat# 711-605-152, RRID:AB_2492288), Lot# 
127614. 

Validation For goat anti-GFP and chicken anti-mCherry: 
Species: Mouse; Applications: IHC; 
Kastriti, M. E. et al. Schwann cell precursors generate the majority of chromaffin cells in zuckerkandl organ and some 
sympathetic neurons in paraganglia. Front. Mol. Neurosci. 12, 6 (2019). 
 
For guinea pig anti-Onecut3:  
Species: Mouse; Applications: IHC; 
Espana, A. & Clotman, F. Onecut transcription factors are required for the second phase of development of the A13 
dopaminergic nucleus in the mouse. J. Comp. Neurol. 520, 1424–1441 (2012). 
 
For sheep anti-Onecut2: 
Species: Mouse; Applications: IHC; 
Kabayiza, K. U. et al. The Onecut Transcription Factors Regulate Differentiation and Distribution of Dorsal Interneurons during 
Spinal Cord Development. Front. Mol. Neurosci. 10, 157 (2017). 
 
For rabbit anti-VGLUT2: 
Species: Mouse; Applications: IHC;  
Miyazaki, T., Fukaya, M., Shimizu, H. & Watanabe, M. Subtype switching of vesicular glutamate transporters at parallel fibre-
Purkinje cell synapses in developing mouse cerebellum. Eur. J. Neurosci. 17, 2563–2572 (2003). 
 
For rabbit anti-TH:  
Species: Mouse; Applications: IHC; 
Romanov, R. A. et al. Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nat. 
Neurosci. 20, 176–188 (2017). 
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For sheep anti-TH:  
Species: Mouse, Human; Applications: IHC; 
La Manno, G. et al. Molecular diversity of midbrain development in mouse, human, and stem cells. Cell 167, 566-580.e19 (2016). 
 
For chicken anti-GFP: 
Species: Mouse; Applications: IHC;  
Hoye, M. L. et al. MicroRNA profiling reveals marker of motor neuron disease in ALS models. J. Neurosci. 37, 5574–5586 (2017). 
 
For rabbit anti-SOX2, mouse anti-MASH1: 
Species: Mouse; Applications: IHC;  
Hu, X.-L. et al. Persistent expression of VCAM1 in radial glial cells is required for the embryonic origin of postnatal neural stem 
cells. Neuron 95, 309-325.e6 (2017). 
 
For guinea pig anti-GFAP: 
Species: Mouse; Applications: IHC;  
Hofmann, K. et al. Tanycytes and a differential fatty acid metabolism in the hypothalamus. Glia 65, 231–249 (2017). 
 
For rabbit anti-phospho-Histone H3: 
Species: Mouse; Applications: IHC;  
Kim, S.-Y. et al. Cell autonomous phosphoinositide 3-kinase activation in oocytes disrupts normal ovarian function through 
promoting survival and overgrowth of ovarian follicles. Endocrinology 156, 1464–1476 (2015). 
For chicken anti-NeuN: 
Species: Mouse; Applications: IHC;  
Davies, A. J. et al. Natural Killer Cells Degenerate Intact Sensory Afferents following Nerve Injury. Cell 176, 716-728.e18 (2019). 
 
For mouse anti-FLAG-tag: 
Species: Mouse; Applications: IHC;  
Annunziata, I. et al. MYC competes with MiT/TFE in regulating lysosomal biogenesis and autophagy through an epigenetic 
rheostat. Nat. Commun. 10, 3623 (2019). 
 
For mouse anti HA-tag: 
Species: Mouse; Applications: IHC;  
Yang, C. et al. Rewiring neuronal glycerolipid metabolism determines the extent of axon regeneration. Neuron 105, 276-292.e5 
(2020). 

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) Neuro2A (CLS Cat# 400394/p451_Neuro-2A, RRID:CVCL_0470)

Authentication No specific authentication of cell line was performed.

Mycoplasma contamination Microscopy analysis did not reveal any suspicion of mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Lines from ICALC register were not used in this study.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Mus musculus C57BL/6J (IMSR Cat# JAX:000664, RRID:IMSR_JAX:000664), Ai14 (IMSR Cat# JAX:007914, RRID:IMSR_JAX:007914), 
Ascl1-CreERT2 (IMSR Cat# JAX:012882, RRID:IMSR_JAX:012882), Th-GFP (IMSR Cat# RBRC03162, RRID:IMSR_RBRC03162), 
GAD65-GFP (MMRRC Cat# 011849-UCD, RRID:MMRRC_011849-UCD), GAD67-GFP (IMSR Cat# RBRC03674, 
RRID:IMSR_RBRC03674), Pomc-GFP (IMSR Cat# JAX:009593, RRID:IMSR_JAX:009593), Slc6a3-Ires-Cre (IMSR Cat# JAX:006660, 
RRID:IMSR_JAX:006660), Nfia-/- (MMRRC Cat# 010318-UNC, RRID:MMRRC_010318-UNC), Robo1-/- (IMSR Cat# APB:5320, 
RRID:IMSR_APB:5320), Slit1-/- (MMRRC Cat# 030404-MU, RRID:MMRRC_030404-MU), Slit2-/- (MMRRC Cat# 030405-MU, 
RRID:MMRRC_030405-MU), Isl1-cre (IMSR Cat# JAX:024242, RRID:IMSR_JAX:024242; IMSR Cat# JAX:007914, 
RRID:IMSR_JAX:007914), Oxtr-Venus (MGI:3838764) males and females. Ages used: E15.5, E17.5, E18.5, P0(E19.5), P2, P10, P23-
P40.

Wild animals The study did not involve the use of wild animals.

Field-collected samples The study did not involve samples collected from the field.

Ethics oversight Experiments on live animals conformed to the 2010/63/EU European Communities Council Directive and were approved by the 
Austrian Ministry of Science and Research (66.009/0145-WF/II/3b/2014, and 66.009/0277-WF/V/3b/2017). Particular effort was 
directed towards minimizing the number of animals used and their suffering during experiments.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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