Pour calculer le champ H en un point M de l'entrefer de position angulaire q, il suffit d'appliquer le théorème d'Ampère à un contour G,
traversant l'entrefer respectivement en q
et p-q (cf. Figure
1).
|
(1)
|
|

figure 1
|
Comme on suppose la perméabilité du fer infinie,
le champ H est nul dans le fer (on a en effet H = B /
m), les seules portions du contour G
qui nous intéressent sont donc les traversées de l'entrefer.
|
Comme l'entrefer est mince, on peut admettre que le champ y est
purement radial. Pour un courant I positif, le champ est
positif (se dirige du rotor vers le stator) pour < q < et négatif (se dirige du stator vers le rotor)
pour < q < .
|
|
L'équation (1) devient alors :
|
(2)
|
De plus, par raison de symétrie, la valeur du champ H
en q est égal à l'opposée
de celle du champ H en p - q.
|
(3) |
|
|
On en déduit finalement :
|
|
|