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Visualization is key to understand data easily.

Data of house areas in m2 and price in 1000s of euros.

Area price

43.69 298.71
28.82 308.

102.22 426.68
36.32 307.53
48.35 315.4

Area price

59.04 324.48
90.13 373.8
59.24 325.71
94.89 396.69
27.72 313.53

Area price

65.2 323.43
92.38 379.56
77.86 337.77
73.48 349.15
52.19 311.86

Question

Is the relation linear?
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Dimensionality Reduction is a helpful tool for
visualization.

I Dimensionality reduction algorithms
I Map high-dimensional data to a

lower dimension
I While preserving structure

I They are used for
I Visualization
I Performance
I Curse of dimensionality

I A ton of algorithms exist

I t-SNE is specialised for visualization

I ... and has gained a lot of popularity
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Dimensionality Reduction techniques solve
optimization problems.

X = {x1, x2, ..., xn ∈ Rh} → Y = {y1, y2, ..., yn ∈ Rl}

min
Y

C (X ,Y)

Three approaches for Dimensionality Reduction:

I Distance preservation

I Topology preservation

I Information preservation

t-SNE is distance-based but tends to preserve topology
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SNE computes pair-wise similarities.

SNE converts euclidean distances to similarities, that can be
interpreted as probabilities.

pj |i =
exp(− ‖ xi − xj ‖2 /2σ2

i )∑
k 6=i exp(− ‖ xi − xk ‖2 /2σ2

i )

qj |i =
exp(− ‖ yi − yj ‖2)∑
k 6=i exp(− ‖ yi − yk ‖2)

pi |i = 0, qi |i = 0

Hence the name Stochastic Neighbor Embedding...
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Pair-wise similarities should stay the same.

⇓
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Kullback-Leiber Divergence measures the
faithfulness with wich qj |i models pj |i .

I Pi = {p1|i , p2|i , ..., pn|i} and Qi = {q1|i , q2|i , ..., qn|i} are the
distributions on the neighbors of datapoint i .

I Kullback-Leiber Divergence (KL) compares two distributions.

C =
∑
i

KL(Pi ||Qi ) =
∑
i

∑
j

pj |i log
pj |i
qj |i

I KL divergence is asymmetric

I KL divergence is always positive.

I We have our minimization problem: minY C (X ,Y)
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Some remaining questions.

pj |i =
exp(− ‖ xi − xj ‖2 /2σ2

i )∑
k 6=i exp(− ‖ xi − xk ‖2 /2σ2

i )
, qj |i =

exp(− ‖ yi − yj ‖2)∑
k 6=i exp(− ‖ yi − yk ‖2)

1. Why radial basis function (exponential)?

2. Why probabilities?

3. How do you choose σi?

8



Some remaining questions.

pj |i =
exp(− ‖ xi − xj ‖2 /2σ2

i )∑
k 6=i exp(− ‖ xi − xk ‖2 /2σ2

i )
, qj |i =

exp(− ‖ yi − yj ‖2)∑
k 6=i exp(− ‖ yi − yk ‖2)

1. Why radial basis function (exponential)?

2. Why probabilities?

3. How do you choose σi?

Focus on local
geometry.

This is why t-SNE
can be interpreted as
topology-based
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Some remaining questions.

pj |i =
exp(− ‖ xi − xj ‖2 /2σ2

i )∑
k 6=i exp(− ‖ xi − xk ‖2 /2σ2

i )
, qj |i =

exp(− ‖ yi − yj ‖2)∑
k 6=i exp(− ‖ yi − yk ‖2)

1. Why radial basis function (exponential)?

2. Why probabilities?

3. How do you choose σi?

Small distance does not
mean proximity on manifold.

Probabilities are appropriate
to model this uncertainty
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The entropy of Pi increases with σi .

Entropy

H(P) = −
∑

i pi log2 pi
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Perplexity, a smooth measure of the # of neighbors.

Perplexity

Perp(P) = 2H(P)

⇒ Entropy of 1.055
Perplexity of 2.078

⇒ Entropy of 3.800
Perplexity of 13.929
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From SNE to t-SNE.

SNE

Modelisation:
pj |i =

exp(−‖xi−xj‖2/2σ2
i )∑

k 6=i exp(−‖xi−xk‖2/2σ2
i )

qj |i =
exp(−‖yi−yj‖2)∑
k 6=i exp(−‖yi−yk‖2)

Cost Function:
C =

∑
i KL(Pi ||Qi )

Derivatives:
dC
dyi

= 2
∑

j(pj |i − qj |i + pi |j − qi |j)(yi − yj)

⇒ Symmetric SNE

Modelisation:
pij =

pj|i+pi|j
2n

qij =
exp(−‖yi−yj‖2)∑
k 6=l exp(−‖yk−yl‖2)

Cost Function:
C = KL(P||Q)

Derivatives:
dC
dyi

= 4
∑

j(pij − qij)(yi − yj)

I Faster
Computa-
tion

⇒ t-SNE

Modelisation:
pij =

pj|i+pi|j
2n

qij =
(1+‖yi−yj‖2)−1∑
k 6=l (1+‖yk−yl‖2)−1

Cost Function:
C = KL(P||Q)

Derivatives:
dC
dyi

= 4
∑

j(pij − qij)(yi − yj)(1+ ‖ yi − yj ‖2)−1

I Even Faster
Computation

I Better
Behaviour
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The ”Crowding problem”

There is much more space in high dimensions.
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Mismatched Tails can Compensate for Mismatched
Dimensionalities

Student-t distribution has heavier tails.
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Last but not least: Optimization

min
Y

C (X ,Y)

C = KL(P||Q) =
∑
i

∑
j

pj |i log
pj |i
qj |i

I Non-convex

I Gradient descent + Momentum + Adaptive learning rate

Y(t) = Y(t−1) + η(t)
δC

δY
+ α(t)(Y(t−1) − Y(t−2))

I Two tricks:
I Early Compression
I Early Exaggeration

I Illustration Colah’s blog
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Mapping raw data to distributed representations.

I Feature engineering is often laborious.

I New tendency is to automatically learn adequate features or
representations.

I Ultimate goal: enable AI to extract useful features from raw
sensory data.

t-SNE can be used to make sense of the learned representations!
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Using t-SNE to explore a Word embedding.
I System outputs 1 if central word is in right context, 0

otherwise.

I Algorithms learns representation and classification
simultaneously.

From Machine Learning to Machine Reasoning, L. Bottou (2011)

Goal

Representation captures syntactic and semantic similarity.
20



Using t-SNE to explore a Word embedding.

http://colah.github.io/
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Explore a Wikipedia article embedding.

http://colah.github.io/
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Exploring game state representations.
Google Deepmind plays Atari games.

Playing Atari with deep reinforcement learning, V. Mnih et Al.

Goal

Learning to play Space Invaders from score feedback and raw pixel
values.
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Exploring game state representations.
Google Deepmind plays Atari games.

I A representation is learned with a convolutional neural network
I From 84x84x4 = 28.224 pixel values to 512 neurons.
I Predicts expected score if a certain action is taken.

Human-level control through deep reinforcement learning, V. Mnih et Al. (Nature,2015)
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Exploring game state representations.
Google Deepmind plays Atari games.

Human-level control through deep reinforcement learning, V. Mnih et Al. (Nature,2015)

25



Using t-SNE to explore image representations.
Classifying dogs and cats.

https://indico.io/blog/visualizing-with-t-sne/

I Each data point is an image of a dog or a cat

I red = cats, blue = dogs

26
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Using t-SNE to explore image representations.
Classifying dogs and cats.

Representation

Convolutional net trained for Image Classification (1000 classes)

https://indico.io/blog/visualizing-with-t-sne/
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Using t-SNE to explore image representations.
Classifying dogs and cats.

Representation
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Conclusion

I The t-SNE algorithm reduces dimensionality while preserving
local similarity.

I The t-SNE algorithm has been build heuristically.

I t-SNE is commonly used to visualize representations.
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