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Visualization and Dimensionality Reduction



Visualization is key to understand data easily.

Data of house areas in m? and price in 1000s of euros.

Area price Area price Area price

43.69 | 298.71 59.04 | 324.48 65.2 | 323.43

28.82 308. 90.13 | 373.8 92.38 | 379.56

102.22 | 426.68 59.24 | 325.71 77.86 | 337.77

36.32 | 307.53 94.89 | 396.69 73.48 | 349.15

48.35 | 315.4 27.72 | 313.53 52.19 | 311.86
Question

Is the relation linear?




Visualization is key to understand data easily.
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Dimensionality Reduction is a helpful tool for
visualization.

» Dimensionality reduction algorithms
» Map high-dimensional data to a
lower dimension
» While preserving structure
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They are used for -
» Visualization
» Performance
» Curse of dimensionality
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A ton of algorithms exist
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t-SNE is specialised for visualization

> ... and has gained a lot of popularity




Dimensionality Reduction is a helpful tool for

visualization.

» Dimensionality reduction algorithms
» Map high-dimensional data to a
lower dimension
» While preserving structure

» They are used for
» Visualization
» Performance
» Curse of dimensionality
» A ton of algorithms exist
» t-SNE is specialised for visualization

> ... and has gained a lot of popularity
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Intuition behind t-SNE



Dimensionality Reduction techniques solve
optimization problems.

X = {X]_,X27 ey Xp € Rh} — y - {Y17YZ,-~,)/n € RI}
min C(X,
in C(.)

Three approaches for Dimensionality Reduction:
» Distance preservation
» Topology preservation

> Information preservation



Dimensionality Reduction techniques solve
optimization problems.

X = {Xl,Xg, ey Xp € Rh} — Y= {yl,yg, . Yn € RI}
min C(X,))
Y
Three approaches for Dimensionality Reduction:
» Distance preservation

» Topology preservation

> Information preservation

t-SNE is distance-based but tends to preserve topology



SNE computes pair-wise similarities.

SNE converts euclidean distances to similarities, that can be
interpreted as probabilities.

by = exp(— || xi — x; ||” /207)
S kiexp(= | xi —xk |12 /207)

exp(— [l yi =y %)
Zk;«éiexp(_ Iyi = yx II?)

piji = 0,q;; =0

9ji =

Hence the name Stochastic Neighbor Embedding...



Pair-wise similarities should stay the same.

Data in high-dimensional space
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Pair-wise similarities

Data in high-dimensional space
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Pair-wise similarities should stay the same.

Data in high-dimensional space Similarity in high dimension
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Pair-wise similarities

Data in high-dimensional space

Data in low-dimensional map
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Pair-wise similarities should stay the same.

Similarity in high dimension

Data in high-dimensional space
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Kullback-Leiber Divergence measures the
faithfulness with wich g;; models p;;.

v

P = {p1|i7p2|i> '--7pn|i} and Q; = {q1|i7 Q2|5 -+ qn|i} are the
distributions on the neighbors of datapoint i.

v

Kullback-Leiber Divergence (KL) compares two distributions.

€= ZKL(PHQI —ZZPA:

v

KL divergence is asymmetric

v

KL divergence is always positive.

v

We have our minimization problem: miny C(X,))



Some remaining questions.

G Pt ) M /71
= S el - x [P /202) " W= 5, e(— i — i IP)

1. Why radial basis function (exponential)?
2. Why probabilities?

3. How do you choose o;?



Some remaining questions.

G Pt ) M /71
= S el - x [P /202) " W= 5, e(— i — i IP)

1. Why radial basis function (exponential)?

Similarity in high dimension

Focus on local
geometry.

This is why t-SNE
can be interpreted as
topology-based

0 11 12



Some remaining questions.

exp(— || xi — x; ||? /207) exp(— 1 yi — i [I)

p' i — 5 q s =
I zreom(= 1 xi—xc [P /202) "0 s iexp(= v =y IP)

1. Why radial basis function (exponential)?
2. Why probabilities?

Small distance does not
mean proximity on manifold. an 0

L/

Probabilities are appropriate -2
to model this uncertainty
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Some remaining questions.

G Pt ) M /71
= S el - x [P /202) " W= 5, e(— i — i IP)

1. Why radial basis function (exponential)?
2. Why probabilities?

3. How do you choose o;?
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The entropy of P; increases with o;.

Entropy

H(P) = —>_; pilog, pi

Dirac probability
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Perplexity, a smooth measure of the # of neighbors.

Perplexity

Perp(P) = 2H(P)
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Perplexity of 13.929
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From SNE to t-SNE.

SNE = Symmetric SNE

Modelisation:
P ki (=X —xk[?/207)

exp(—lyi—y;11°)

Gli = 5y en Ty
Cost Function:

C =32 KL(Pi||Qi)

Derivatives:

G =25 (pi — i + Py — )i — )

=

t-SNE

14



From SNE to t-SNE.

SNE = Symmetric SNE
Modelisation: Modelisation:

_ _ ep(=lxi—xl?/20?) _ PjlitPi
Pili = 55, epl TP 2) Py =gy

exp(—|lyi—y;l1%)

B exp(=lyi—y;*)
Ui = 5= e (- Tyl

Cost Function: Cost Function:

C =32 KL(Pi||Qi) C = KL(P||Q)
Derivatives: Derivatives:
ZS =23 (pyji — @i + Piy — an))vi — v3) ZTC, =43P — ai)(vi — 1)
» Faster
Computa-
tion

i = = e~y

=

t-SNE
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From SNE to t-SNE.

SNE N

Modelisation:
P ki (=X —xk[?/207)

exp(—lyi—y;11°)

Ui = 3 exp(—Tyi—yilP)

Cost Function:
C =37 KL(Pi|| Q)

Derivatives:

9 =25 (pi — qii + piy — an)vi — )

Symmetric SNE

Modelisation:
PjlitPil
pj = 5
exp(—|lyi—y;l1?)

9 = 5 o=yl

Cost Function:
C = KL(PI|Q)

Derivatives:

G =455 — a)vi — ;)

» Faster
Computa-
tion

t-SNE

Modelisation:

Pij = 2n

qi = <yl
Y >k AHlyk=yil?)~*

Cost Function:
C = KL(P|IQ)

Derivatives:

9€ = 4525(py — @) i — )+ | yi =y )7

» Even Faster
Computation

» Better
Behaviour
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The " Crowding problem”

Similarity in high dimension

Similarity in low dimension
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There is much more space in high dimensions.
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Mismatched Tails can Compensate for Mismatched
Dimensionalities

Asymmetric RBF Asymmetric Student-t
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Student-t distribution has heavier tails.



Last but not least: Optimization

m)in c(x,y)

C = KL(P||Q) = Zij‘,log Pili

» Non-convex

» Gradient descent + Momentum + Adaptive learning rate
6C
(t) — y(t=1) el (t=1) _ )(t=2)
YO = YD 4 (1) 5 + a9 - 3e2)
» Two tricks:
» Early Compression
» Early Exaggeration
» lllustration Colah’s blog

17
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Visualizing representations



Mapping raw data to distributed representations.

> Feature engineering is often laborious.

» New tendency is to automatically learn adequate features or

representations.

» Ultimate goal: enable Al to extract useful features from raw

sensory data.

Language
Signals

Images

=

High-

dimensional
vector

t-SNE can be used to make sense of the learned representations!
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Using t-SNE to explore a Word embedding.

» System outputs 1 if central word is in right context, 0
otherwise.

» Algorithms learns representation and classification
simultaneously.

3]

cat sat song the mat

From Machine Learning to Machine Reasoning, L. Bottou (2011)

Goal

Representation captures syntactic and semantic similarity.

20



Using t-SNE to explore a Word embedding.
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http://colah.github.io/

Explore a Wikipedia article embedding.

Large Clusters Small Clusters

‘e
e 3
. - .
. oo N _Sde.
.-'.-‘ . k;ollywood cph "
5, M s
.
. o

M5 O P

S . s X
% ‘e . .‘-

. AR v
. o
P g
"‘ ~ albums ’

http://colah.github.io/

22


http://colah.github.io/

Exploring game state representations.

Google Deepmind plays Atari games.

Playing Atari with deep reinforcement learning, V. Mnih et Al.

Goal

Learning to play Space Invaders from score feedback and raw pixel
values.

23



Exploring game state representations.
Google Deepmind plays Atari games.

> A representation is learned with a convolutional neural network
> From 84x84x4 = 28.224 pixel values to 512 neurons.
» Predicts expected score if a certain action is taken.

Convolution Convolution Fully connected Fully connected
- - - v

No input

Batbn I ddooobh  dodonba

digoone G

Human-level control through deep reinforcement learning, V. Mnih et Al. (Nature,2015)
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Exploring game state representations.
Google Deepmind plays Atari games.
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Human-level control through deep reinforcement learning, V. Mnih et Al. (Nature,2015)
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Using t-SNE to explore image representations.
Classifying dogs and cats.

https://indico.io/blog/visualizing-with-t-sne/

» Each data point is an image of a dog or a cat

» red = cats, blue = dogs

26


https://indico.io/blog/visualizing-with-t-sne/

Using t-SNE to explore image representations.
Classifying dogs and cats.

Representation

Convolutional net trained for Image Classification (1000 classes)

https://indico.io/blog/visualizing-with-t-sne/
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Using t-SNE to explore image representations.
Classifying dogs and cats.

Representation

Convolutional net trained for Image Classification (1000 classes)

https://indico.io/blog/visualizing-with-t-sne/
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https://indico.io/blog/visualizing-with-t-sne/

Conclusion

» The t-SNE algorithm reduces dimensionality while preserving
local similarity.

» The t-SNE algorithm has been build heuristically.

» t-SNE is commonly used to visualize representations.
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