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CHAPTER 1

Introduction

This chapter introduces the concept of view interpolation, defines our asso-
ciated research statement, and summarizes our key contributions.

1.1 View interpolation in a nutshell

View interpolation refers to the process of synthesizing images that would be
seen from a different viewpoint than the ones captured by real cameras. As
illustrated in Figure 1.1, it aims at generating a virtual view of a scene based
on a set of images representing it and having a common field of view.

Figure 1.1: View interpolation aims at synthesizing novel views of a scene
from a set of images representing it.

By reconstructing a continuous and smooth sequence of virtual views, the
most general form of view interpolation, called Free-Viewpoint Rendering
(FVR) [212][196], allows to freely navigate within a real world scene.

Although some basic notions such as perspective distortion [6] and binocal
vision [236] have been discovered several centuries ago, the first virtual im-
ages have been numerically generated about 25 years ago on simple controlled-
environment cases [54] [184] [52] [185].

9



10 CHAPTER 1. INTRODUCTION

The industry has directly shown a great interest in this technology, es-
pecially in the sport entertainment and film making markets. The earliest
commercial product attempting to give to the viewer the feeling to navigate
around a scene was the TimeTrack system [214], which rapidily jumped be-
tween a few hundreds of consecutive cameras placed along a 360◦ arc sur-
rounding the scene, as illustrated in Figure 1.2(a). This system, specially de-
signed to give the astonishing illusion of stopping the time and turning around
the characters in the movie “The Matrix” (see Figure 1.2(b)), had to be or-
ganized much in advance. Indeed, not only the viewpoint trajectory had to
be planned weeks in advance, to install the 120 precisely-mounted cameras,
but hundreds man-hours were also required for the intensive manual post-
smoothing of the transitions [84].

(a) The “bullet-time” setup (b) The “bullet-time” effect

Figure 1.2: The “bullet-time” effect, as seen in the movie “The Matrix”, was
the first one to give the feeling of navigating around a scene.

This principle was then transferred from the small and controlled studio
environment to the large, illumination variant sport arenas based on the work
of Kanade et al. [106] [107]. The new associated product was called the Eye-
Vision System and has been used at the Super Bowl XXXV (2001). It was
composed of more than 30 motorised pan-tilt cameras, which were manually
controlled to ensure looking towards the action. However, such hardware
transitions were still producing noticeable jumps when switching between
the cameras [86].

Nowadays, thanks to the theorical and technological advances detailed in
Chapter 2, companies such as Vizrt1 (previously called LiberoVision2) and
freeD™3 offer to the consumers the ability to generate a smooth transition
between some fixed cameras, by numerically interpolating in-between these
views. Those applications only focus on stadium sport events (e.g., soccer
games [80] [73] [86] [101] [147]), giving to the viewer the feeling of being “in-
side the scene”.

1http://www.vizrt.com/products/viz_libero/
2Their technology is principally based on the results obtained during the FP7 European project

named “FINE”.
3http://replay-technologies.com/

http://www.vizrt.com/products/viz_libero/
http://replay-technologies.com/
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As main drawbacks that slow down their entry on the market, these digital
technologies still require either to:

• observe the scene with a large amount of fixed cameras, called the refer-
ence cameras [73]. For example, the freeD™ technology uses from 8 to 32
full-HD reference views.

• observe and interpolate the scene from very distant viewpoints, with re-
spect to the maximum thickness of the object/scene to synthesize [113].

To lower these requirements, virtual view synthesis has become, since a few
years, an extensive research domain at the intersection of computer vision,
image processing and computer graphics.

While reducing the amount of required cameras decreases the produc-
tion cost, reducing their distances to the scene allows to consider new mar-
kets, such as the intermediate view synthesis in confined environments. One
might directly think of the immersive rendering of cultural or indoor sport
events, such as the generation of intermediate views in small theatres, around
a dancer, around a martial art fighter, etc. But there also exists a plenitude of
more hidden applications. Here, we only describe two easy examples, namely
videoconferencing and virtual navigation through cities. In video conferences,
high-end remote collaborations are made possible by generally capturing the
faces and voices of the participants and transmitting them to all the mem-
bers, located on different sites [85]. One of the most disturbing artefact of
the most current practical systems is the loss of eye contact. This is due to
the fact that the participants generally look towards their screens, instead of
looking towards the camera which records their face. It implies that, while re-
transmitting their images to the other members, the presenter’s gaze is not
directed towards these members, leading to an uncomfortable feeling. By
placing a few reference cameras around the presenter’s screen, the interpola-
tion of frontal views of its face [169] can create instantaneous views of remote
speakers which are consistent with the local member’s viewpoint [103].

The second example follows the actual trend of companies like Apple,
Google, Accute3D, Blom, etc. to permit to the users to virtually navigate in
cities, for example to visually discover a place before really visiting it [199].
Nowadays, these companies generally offer to navigate either through large-
scale city models typically observed based on aerial images, which do not
capture street level details, or through simple panoramic pictures of street-
levels pictures captured by a car. This last feature, the most-demanded one4,
however exhibits strong artefacts when passing in-between the reference im-
ages of the panoramic composition. These artefacts, caused by the large depth
changes of the buildings, with respect to the small depth separating them with
the car, illustrate the necessity of improving the current view interpolation
techniques, briefly introduced in the next section.

4http://www.theguardian.com/technology/appsblog/2012/jun/06/
google-maps-3d-street-view1

http://www.theguardian.com/technology/appsblog/2012/jun/06/google-maps-3d-street-view1
http://www.theguardian.com/technology/appsblog/2012/jun/06/google-maps-3d-street-view1
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1.2 How to interpolate a virtual view?

When it comes to synthesize numerically a virtual view, two fundamental
questions arise: which algorithm should be used and what are the associated
hardware requirements in terms of camera deployment? This section aims
at giving a succinct answer to those two questions and concludes with the
observation that the distance between the camera and the scene to render fun-
damentally affects the method adopted to interpolate images in-between the
cameras.

1.2.1 Image-based rendering versus model-based rendering

In the literature, the methods that interpolate intermediate views of a 3D scene
are often classified as a continum in-between two groups, namely model-based
rendering and image-based rendering methods. The reader is refered to Chapter
2 for a detailed technical presentation of the different algorithms and methods
composing the main software trends adapted to generate intermediate views.

In model-based rendering, the 3D geometry of the observed scene is ex-
plicitly estimated from the reference images. In most cases, this 3D geometry
is represented on the basis of 3D point clouds, 3D squared area (called voxels)
representing the occupancy of the scene in a predefined 3D grid, or based on
smoother 3D meshes [213]. Adequate textures are then mapped on this 3D
model, consistently with the observation in the reference views. Finally, this
textured 3D model can be projected onto any arbitrary viewpoint, similarly to
what is done when generating synthetic images in classical computer graph-
ics. Model-based rendering offers thus a full freedom on the virtual viewpoint
selection, at the price of requiring an accurate and robust 3D reconstruction of
objects and scenes, which can often not be guaranteed [197] [147].

The other extreme group is called image-based rendering (IBR) and does
not use any 3D model at all. It directly interpolates the virtual view in the
image color space without explicit reconstruction of a 3D surface [108] [190].
It aims at finding a relation among the reference images, such as a (mutliple)
predefined geometric transformation(s) (e.g., rigid, affine, projective, etc.). The
parameters of such relation(s) are extracted based on the determination of pix-
els or regions representing the same part of the scene, which are called corre-
spondences. Image stitching, also well-known as panoramic image synthesis,
is one of the most easy image-based rendering method that allows to gen-
erate an intermediate viewpoint by cropping in the reconstructed panoramic
image. It generally refers to the process of gathering different overlapping im-
ages captured by a set of cameras (or a unique camera) that differ in their rel-
ative viewing poses and positions, which is generally modeled as a homogra-
phy and requires four (or more) pixel correspondences to be determined. The
panoramic image is then generated by transfering all the reference images into
a common coordinate frame, based on the estimated homographies. How-
ever, as in most image-based rendering methods, image stitching requires a
tremedeous amount of references images captured with relatively close view-
points [197] to interpolate a large transition in-between two extreme reference
images. Moreover, the trajectory of this transition is strongly constrained, as
detailed in Sections 2.5.2 and 2.5.3.
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In-between model-based rendering and image-based rendering, there ex-
ists a wide range of methods that attempt to combine the advantages of both
groups. They represent the 3D of the scene based on grayscale images, called
depth or disparity maps. Each pixel value of such maps is inversely propor-
tional to the depth value, with respect to the camera view, of the 3D point
which is imaged at this pixel location. Brighter areas are closer from the ref-
erence cameras, while darker areas are further in the background. From these
maps, virtual views can be generated in a limited operating range around
the real cameras, based on depth image-based rendering (DIBR) methods [197].
Those methods achieve realistic results already from a relatively small
number of images, as long as those images are captured from similar view-
points [77].

All those methods share a common challenge: the search of correspondences
among the reference images. The difficulty of this task, which is still a very
active and important research area, directly depends upon the spatial organi-
zation of the reference cameras, the discriminant nature of the scene content,
and the type of sensors used, as introduced in the next section.

1.2.2 Acquisition setups

Intermediate view synthesis approaches rely on specific acquisition systems,
composed of mutliple camera sensors whose images are captured synchro-
nously. Generally, these cameras only observe the scene without interfering
with it, and are thus called passive cameras. These are sometimes completed by
depth sensors [13], which emit light onto the 3D scene to measure its depth,
and are thus called active cameras. These active cameras generally use infrared
wavelengths and estimate the depth of the scene either by measuring the time-
of-flight of a light ray5 between the camera and the scene for each point of
the image, or by observing how a structured light pattern is distorted when
projected on the 3D scene. Typical time-of-flight depth sensors have either a
relatively low resolution, or a low depth range, or a very high cost (tens to
hundreds of thousands dollars). Moreover, to exploit their captured 3D in-
formations, their measured depth maps have to be registered with the color
images acquired by the reference passive cameras, which is not an easy task
since both types of cameras are inherently located at different positions [35].
Finally, low-price depth sensors are very sensitive to noise (e.g., other infrared
sources, such as the sun) and temperature. The impact of the noise is empha-
sized by the intrinsic non-linear distortions of those sensors [197]. Because of
these limitations, this thesis focuses on the synthesis of intermediate views
captured only by passive cameras.

Four spatial layouts are generally considered for passive camera networks,
as illustrated in Figure 1.3: the cameras can be placed along a 3D line (Figure
1.3(a)), along an arc (Figure 1.3(b)), on a plane (Figure 1.3(c)) or spread (for-
ward or outward) on a dome (Figure 1.3(d)).

The spatial organization is chosen according to the area of the 3D scene
and the degree of freedom that are desired to be covered by the virtual view.

5The propagation speed of the light ray is assumed to be known.
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(a) Linear configuration (b) Circular configuration

(c) Planar configuration (d) Dome configuration

Figure 1.3: There exists multiple spatial configuration for networks of passive
cameras (images from the courtesy of M. Tanimoto [212]).

Because of the difficulty to install large linear, planar or dome configurations,
all of them are generally restricted to confined spaces, such as theatres [202],
TV studios, or laboratories [212]. At the opposite, circular (arc) settings have
mainly been used to cover large area, such as sport stadiums, in which only a
few widely spaced cameras are used as reference views.

The distance separating two reference cameras is measured along the line
joigning their (optical) centers, which is called the baseline of the cameras. The
length of the baseline is one of the most important parameters of an acqui-
sition setup, because it imposes practical limitations on both the navigation
range and the quality of the synthesized virtual views [218]. This measure
is sometimes compared relatively to the minimum depth of the 3D scene,
and leads to 3 groups of acquisition setups: narrow-baseline, small-baseline and
wide-baseline. Practically, the term narrow-baseline setups generally refers to
configurations in which the reference cameras are separated from a few mi-
crons (microlens arrays) to a few centimeters while the 3D scene is situated
away from centimeters to meters. The second group refers to reference cam-
eras separated of a several centimeters, while the 3D scene is situated away
from centimeters to meters. The last group is typical to stereo setups in which
the reference cameras are separated by meters, while the 3D scene is situated
away from centimeters to meters. Each of these configurations have their own
advantages and disadvantages, which are detailed in the next section.
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1.2.3 Narrow/small-baseline versus wide-baseline camera net-
works

One of the main advantages of narrow and small baseline setups is that their
high camera density ensures to observe the scene with large overlaps and low
perspective distortions, simplifying the search of correspondences, at the core
of all intermediate view synthesis techniques. This also makes narrow and
small-baseline stereo well understood since decades [29] [181] [127] and al-
gorithms are generally designed for small-baseline stereo pairs and their al-
most fronto-parallel scenes [110]. In contrast, its wide-baseline counterpart is
much more challenging due to large perspective distortions and increased oc-
cluded parts [219]. Wide-baseline setups are nevertheless worth investigating
because:

• they require fewer images to reconstruct the complete scene, facilitating
the camera system deployment. Indeed, not only the cameras have to be
mounted, synchronized, geometrically and colorimetrically calibrated
(see Sections 2.1 and 2.3), but also the CPU processing the images, the
network rooter, hard disks and cables have to be adapted to sustain high
image flow rates (e.g., tens of gigabytes per second) when working with
a dense camera network, as it is the case in narrow and small-baseline
setups.

• their 3D estimation is less impacted by unprecise correspondences6, de-
termined for example at the pixel level instead of the subpixel level. This
principle is illustrated in Figure 1.4, in which the plain lines represent the
3D projection of accurately located 2D corresponding points, the dashed
lines represent an uncertainty interval around the accurately located 2D
points and the shaded regions is the 3D uncertainty region. The compar-
ison of the area of the shaded regions shows that wide-baseline setups
yield to more accurate 3D models than narrow/small-baseline ones.

(a) Wide-baseline setup (b) Narrow/small-baseline setup

Figure 1.4: Wide-baseline setups are less sensitive to inaccurate 2D cor-
respondences, yielding to more accurate 3D estimations (smaller uncer-
tainty shaded regions) than narrow/small-baseline setups [92].

6Wide-baseline setups are also less impacted by calibration errors, detailed in Section 2.1.
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To benefit both from the easier search of correspondences of small-baseline se-
tups and the accurate 3D associated to these correspondences in wide-baseline
setups, the two types are more and more often used simultaneously. In this
case, the small-baseline disparity/depth map is generally used to bias and
complete the search of correspondences in the wide-baseline stereo pair [249].

1.3 Problem statement

Even when combining small and wide-baseline setups, depth estimation is
still a challenging problem, which is still a very active and important research
area. One of the main reason is that this problem can not be solvable uniquely,
as explained in the next section.

1.3.1 Ill-posedness of virtual view interpolation in wide-base-
line setups

One of the challenges of intermediate view synthesis lies in the fact that mul-
tiple different 3D models can generate the same reference images. It implies
that recovering the 3D scene from multiple reference views does not admit a
unique solution, and is thus an ill-posed problem. This phenomenon is illus-
trated in Figure 1.5, where the two presented 3D models are imaged indistin-
guishably by two reference views located on the left and on the right of the
scene.

Figure 1.5: These two 3D models are consistent with the reference images cap-
tured by two reference cameras, facing respectively the left wall of the build-
ing and the water mill. Recovering a 3D model from 2D reference images is
thus an ill-posed problem.

This ill-posed nature obviously results from the irreversible loss of infor-
mations when imaging a 3D scene onto a 2D image. This ambiguity does not
only concern the 3D shape of the scene, but also its color [186]. The level of
the ambiguity depends thus on the geometrical structure of the scene, on its
textures and on the camera configuration, as deeply explained in [10].
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1.3.2 Research questions

The ambiguity of the 3D model can be decreased by using some additional
prior knowledge and constraints, when available, or by using more reference
views in the reconstruction process [11]. The central and federative research
question of this thesis consists in investigating how priors can help to disam-
biguate the view interpolation ill-posedness. Three different priors are consid-
ered. As introduced in the next section, the first one is related to the spatial or-
ganization of the scene, while the two others consider its 3D geometry, either
through planar approximation of a far-away/man-made scene or by learning
the plausible 2D projected silhouettes of a dynamic object of interest.

1.4 Contributions and thesis outline

As we have seen in the previous sections, the more reference cameras are used,
the less ambiguous is the interpolation of intermediate views, but the more
costly the setup is. Also, the wider is the distance separating these reference
cameras, the larger can be the scene to reconstruct, and the more precise the
reconstruction will be, but at the price of a more challenging search of corre-
spondences. This thesis tackles the combination of these two most challeng-
ing cases: we aim at synthesizing intermediate views of a scene captured
by only two widely spaced cameras. Chapter 2 first reviews the background
material, including the modeling of a camera as a “pin-hole” sensor, the differ-
ent ways of representing the images and how to find correspondences among
them, the different priors used to disambiguate the correspondence problem,
and finally, how to generate a virtual view when these correspondences are
known. Then, the next three chapters detail the main contributions of this
thesis, which are:

1. the relaxation of one of the most well-known small-baseline stereo prior
to the wide-baseline stereo case. This prior, called the ordering constraint,
enforces the strict preservation of the “left-right relations”7 between the
elements composing the reference images. It is valid in small-baseline
setups, but appears to be violated in a wide-baseline stereo pair [202], as
illustrated in Figure 1.6.

In Chapter 3, we propose to disambiguate the search of correspondences
in wide-baseline stereo setups based on a relaxed version of the order-
ing constraint, which only favors the preservation of the order of the el-
ements without necessary strictly forcing it. To the author’s best knowl-
edge, this soft ordering constraint has never been investigated in the mat-
ching litterature, which led us to introduce an original energy-based op-
timization framework to address it.

7Quotes are used to emphase on the fact that these relations are only valid along corresponding
epipolar lines, as detailed in Chapter 3.
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Figure 1.6: The “left-right relations”, e.g., the tractor is on the right of
the tower, are strictly preserved among the reference views captured by
a small-baseline stereo pair. However, the wider is the distance separat-
ing the reference cameras, the more likely those “left-right relations” are
violated, although they still enable to disambiguate the search of corre-
spondences.

2. the piecewise planar approximation of the background of a 3D scene
captured by only two wide-baseline cameras. This light-weighted, au-
tomatically generated 3D model is composed of the minimum set of 3D
planes that jointly best describe the 3D scene, and is specially appropri-
ate to interpolate intermediate views of man-made scenes. The associate
energy minimization problem is described in Chapter 4.

3. the intermediate view interpolation of dynamic (foreground) objects cap-
tured by only two widely spaced cameras. The interpolation is disam-
biguated based on a prior knowledge about the plausible shapes of the
2D projected object silhouettes. This prior is learnt before the interpo-
lation, only from the images observed by the reference views. As ex-
plained in Chapter 5, it guides both the definition of pair-wise corre-
spondences between the reference views, and the synthesis of interme-
diate views in regions that get occluded while going from one reference
view to the other. To the best of our knowledge, our work is the first
one to propose a solution to synthesize intermediate views of occluded
parts, without a specific 3D model.

Although being presented in independent chapters for the sake of clarity,
these three complementary contributions permit, altogether, to synthesize in-
termediate views of an arbitrary scene. Precisely, the wide applicability of
the relaxed ordering prior (Chapter 3) permits to reconstruct the 3D of an ar-
bitrary scene, at the price of inaccuracies in the depth estimation. For im-
proved accuracy, Chapters 4 and 5 propose more specific priors (respectively
the piecewise-planarity and object shape priors) to reconstruct separately the
background and the foreground of a scene, when such separation is possible.



CHAPTER 2

Background and state-of-the-art

This chapter reviews the background material needed for the developments
of this thesis, as well as the mathematical frameworks of the seminal and
state-of-the-art methods in view interpolation.

In the literature, state-of-the-art methods that interpolate intermediate
views of a 3D scene are often classified as a continuum in-between two groups,
namely model-based rendering and image-based rendering methods. In model-
based rendering, the 3D geometry of the observed 3D scene is explicitly es-
timated from the reference images. Adequate textures are then mapped on
this 3D model and projected onto any arbitrary viewpoint. Image-based ren-
dering (IBR) methods interpolate directly the virtual view in the image color
space without explicit reconstruction of a 3D surface [108] [190]. Although
being based on very different concepts, all of these methods require to:

1. Estimate the (relative) position, orientation, etc. of the reference cam-
eras, i.e., their projective geometry. This allows, for example, to define the
parameters of a virtual view with respect to the reference ones (see Sec-
tion 2.2.3) or to avoid topologically incoherent deformations during the
transition from one view to another (see Section 2.5.2), as illustrated in
Figure 2.1.

Figure 2.1: Any (unconstrained) interpolation in-between two views
can cause topologically inconsistent geometrical deformations of the
observed 3D scene (first row, generated by linearly interpolating in-
between corresponding points in the two extreme views), which can be
avoided by considering the (projective) geometry linking the two views
(second row, see Section 2.5.2, image courtesy from S. Seitz [182]).

2. Estimate correspondences between the reference images, either to trian-
gulate a 3D model (see Section 2.2.2) or to use them as anchor points for
the 2D interpolation (see Section 2.3.3).

3. Generate the intermediate views, either based on the estimated 3D model
(see Section 2.5.1) or on these anchor points (see Sections 2.5.2 and 2.5.3).

19
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The rest of the chapter surveys the earlier key contributions related to those
three points. Precisely, while the estimation of the (projective) geometry of a
single camera, detailed in [92], is summarized in Section 2.1, Section 2.2 in-
vestigates how to exploit this knowledge to constrain the set of possible corre-
spondences in-between the reference views. Given such a set of possible cor-
respondences, the colorimetric information is generally used to determine the
best matches of points between two views. However, as explained in Section
2.3, this information is not invariant with respect to the camera’s viewpoint,
meaning that the same (infinitively small) 3D surface can be represented with
a different color in the two reference images. To mitigate this problem, image
descriptors that tend to be robust to this change of viewpoint have been de-
signed. They characterize the local appearance of 3D points on the reference
images, and Section 2.3 details their state-of-the-art for wide-baseline config-
urations. As explained previously in Section 1.3.1, even if the correspondence
is determined on (a geometrically constrained set of) projective-invariant de-
scriptors, the 3D reconstruction remains an ill-posed problem. To regularize
this ill-posed problem, Section 2.4 surveys the state-of-the-art priors generally
used to disambiguate the solution. Finally, Section 2.5 shows how to synthe-
size a virtual view based on a set of optimal correspondences.

2.1 The pinhole camera model

To capture an image, a camera projects the 3D world onto a 2D plane, called
the image plane, on which photosensitive sensors (generally CCD or CMOS)
are located. By measuring the energy of the light that is either generated or
reflected by the observed 3D scene, these sensors amass the photometric in-
formation composing the image. Assuming that the propagation of the light
is rectilinear, it can be represented as a set of light rays, each one starting at a
3D world coordinate and passing through the 3D coordinate of one of these
photosensitive sensors. This thesis focuses on pinhole cameras, meaning that
it considers that all of these light rays converge through a common single 3D
point, called the optical center of the camera. As mentionned by its name, such
camera can be obtained by drilling a small hole on one side of a light-proof
box. As illustrated in Figure 2.2, the light rays coming from a 3D scene pass
through this single point and project an inversed image on the opposite of the
box. However, the reversed images observed by such a simple device, imag-
ined approximatively 300 years before Christ1, are either dark or unsharp.
This trade-off is relative to the size of the hole, known as the aperture size.

For a fixed distance between the image plane and the hole, i.e., a fixed focal
length, reducing the aperture size allows less light rays to enter in the light-proof
box, resulting in a darker image, as illustrated in Figure 2.2(a). Nowadays,
the choice of aperture size is still one of the crucial parameters when taking
pictures, because the less entering light, the smaller is the SNR of the image2.

1At this time, the device was used to project the 3D world onto a plane, and the projected
contours were manually highlighted to draw the image.

2For a fixed focal length, a fixed sensibility of the photometric sensors, expressed in ISO units,
and a fixed shutter speed.
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(a) Small aperture (b) Large aperture (c) With lens

Figure 2.2: Pinhole cameras (see Section 2.1.1) use a lens to capture more col-
limated light rays, allowing brighter and sharper images, at the price of chro-
matic and geometric abberations (see Section 2.1.2).

At the opposite, increasing the aperture size lets enter more uncollimated light
(unparallel rays), which increases the blurryness of the image, as illustrated
in Figure 2.2(b). To reduce the effect of this compromise, lenses have been
added in front of the aperture. As illustrated in Figure 2.2(c), convex lenses
have the advantage to concentrate the light rays into a unique point, making
them more collimated, while capturing the same amount of light. However,
they practically generate some colorimetric and geometric distortions of the
observed scene, which have to be estimated, to be compensated. The rest of
the section introduces the basic notions of multi-view camera geometry, such
as presented in [92], by defining independently the mathematical model of a
pinhole camera, and the lens distortion compensation.

2.1.1 Projective camera parameters and calibration

This section details how an arbitrary 3D point projects onto a 2D camera im-
age. As done all along this thesis, it refers to 3D coordinates by capital letters,
while 2D coordinates are defined by lower case letters. The 3D coordinates
are defined with respect to a reference orthonormal basis, centered on the op-
tical center C ∈ R3 of the camera. As illustrated in Figure 2.3, the Z axis of
this basis is chosen aligned with the camera’s viewing direction, defined by
the camera optical axis. The 2D image coordinates are first defined with re-
spect to a 2D basis, called the image’s referencial. As illustrated on the left
side of Figure 2.3, the origin of this basis is centered on the image principal
point p, defined by the intersection of the camera optical axis with the image’s
plane, considered located at a focal length Z = f . The image’s abscissa u
is defined to be parallel to the X axis of the 3D basis, while its ordinate v is
defined to be parallel to its Y axis. In this configuration, the central projec-
tion from the 3D point XCAM = (XCAM, YCAM, ZCAM)> ∈ R3, onto the image
plane, considered located at a focal length Z = f , is described by the mapping
(XCAM, YCAM, ZCAM)> 7→ ( f XCAM/ZCAM, f YCAM/ZCAM, f )>.

The non-linear mapping from the 3D coordinates, expressed
in the camera’s coordinate system, to the image’s coordinates, i.e.,
(XCAM, YCAM, ZCAM)> 7→ ( f XCAM/ZCAM, f YCAM/ZCAM)>, can be linearly
expressed by adding an extra dimension to the coordinates.
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Figure 2.3: Central projection of a 3D point, expressed with respect to the
camera’s optical center, onto the image plane.

This procedure, called the projective completion, defines an equivalence be-
tween the point X = (x1, x2, · · · , xN)

> ∈ RN and the set of points X̃ =

(xN+1 · X, xN+1)
> ∈ RN+1 for any xN+1 ∈ R∗, called the homogeneous coordi-

nates of X. Given an arbitrary homogeneous vector X̃ = (x1, x2, · · · , xN , xN+1)
>,

its equivalent point of dimension N can be recovered by dividing X̃ by its last
coordinate, in such a way to transform it into its inhomogeneous coordinates
X = (x1/xN+1, x2/xN+1, · · · , xN/xN+1)

>. For example, the Cartesian point
(1, 2)> can be equivalently represented in homogeneous coordinates as (1, 2, 1)
or (2, 4, 2). Adding xN+1 = 0 in the admissible set of values for xN+1 creates
a singularity in the equivalence class, in the form of additional points called
points at infinity. Such points complete the N dimensional space in such a way
that any pair of lines always crosses at one point, which is called a point at
infinity (or vanishing point) if the lines are parallel. The projective completion
extends the Euclidean plane R2 to a projective plane [63], which enables to
model, for example, the fact that a railway track, composed of two parallel
rails, appears to cross at infinity. This projective completion also enables to
express the (non-linear) transformation from a 3D coordinate (defined with
respect to the camera’s referencial) to the 2D homogeneous image plane co-
ordinates (XCAM, YCAM, ZCAM)> 7→ ( f XCAM/ZCAM, f YCAM/ZCAM, 1)> as a
linear operation:

X̃CAM =


XCAM
YCAM
ZCAM

1


︸ ︷︷ ︸

3D homogeneous camera coordinates

7→

 f XCAM
f YCAM
ZCAM

 =

 f 0 0 0
0 f 0 0
0 0 1 0




XCAM
YCAM
ZCAM

1


︸ ︷︷ ︸

2D homogeneous image’s coordinates

.

(2.1)
Equation (2.1) considers that the origin of the image’s referencial is at the prin-
cipal point p = (pu, pv) ∈ R2 (see Figure 2.3), while conventions generally
refers to the upper-left image’s corner as the origin (0, 0).
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To translate the origin to the upper-left corner, the mapping is transformed
into:

X̃CAM =


XCAM
YCAM
ZCAM

1

 7→
 f XCAM + ZCAM · pu

f YCAM + ZCAM · pv
ZCAM

=

 f 0 pu 0
0 f pv 0
0 0 1 0




XCAM
YCAM
ZCAM

1

 .

Also, the previous model assumes that the images coordinates are Euclidean
coordinates and that the image’s axes (u, v) are orthonormal. In practice, the
CMOS (or CCD) sensors constituting the unit of reference, i.e., the pixel, might
be non-squared. For this reason, the image’s axes u and v are respectively
normalized by the abscissa pixel density mu and ordinate pixel density mv,
transforming the mapping into:

X̃CAM 7→

 f ·mu s pu ·mu 0
0 f ·mv pv ·mv 0
0 0 1 0

 X̃CAM ,

αu s u0 0
0 αv v0 0
0 0 1 0

 X̃CAM,

(2.2)
where s is the skewing factor of the image’s axes, allowing to generalize the

sensor from rectangular to parallelogram shapes. Because the last column of
the matrix is null, the added dimension in the homogeneous coordinates X̃ is
not considered in the matrix multiplication, meaning that Equation (2.2) can
be written in inhomogeneous coordinates:

XCAM︸ ︷︷ ︸
3D inhomogeneous camera coordinates

7→

αu s u0
0 αv v0
0 0 1

XCAM , KXCAM = x̃

︸ ︷︷ ︸
2D homogeneous image’s coordinates

.

(2.3)
Historically, the 5 degrees of freedom matrix K ∈ R3×3 has been called the

intrinsic matrix of a pinhole camera, because these parameters are invariant for
a fixed CMOS or CCD camera’s sensor and a fixed focal length. Nowadays,
many camera objectives allow to zoom by changing the focal length, mean-
ing that the f parameter is not invariant anymore. However, such objectives
usually numerically return this value, allowing to automatically adapt the in-
trinsic matrix.

Finally, we relax the assumption that the origin of the 3D world is consid-
ered on the camera’s optical center C, and looking towards the Z direction.
Imagine that the inhomogeneous 3D coordinates of a point X are expressed
relatively to an arbitrary 3D basis defined at the origin O = (0, 0, 0)>, and
that XCAM represents the same point in the previously defined camera basis.
These two basis are related via a 3D rotation R ∈ R3×3 and 3D translation C,
such that XCAM = R (X−C) with

R = RZ ·RY ·RX ,
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with

RX =

1 0 0
0 cos(γX) − sin(γX)
0 sin(γX) cos(γX)



RY =

 cos(γY) 0 sin(γY)
0 1 0

− sin(γY) 0 cos(γY)



RZ =

cos(γZ) − sin(γZ) 0
sin(γZ) cos(γZ) 0

0 0 1

 ,

where γX , γY and γZ represent respectively the yaw (about the X axis), pitch
(about the Y axis) and roll (about the Z axis) Euler angles.

In homogeneous coordinates, the relation XCAM = R (X−C) can be ex-
pressed as:

X̃CAM =

(
R −RC
0> 1

)
X
Y
Z
1

 ,
(

R t
0> 1

)
X̃,

which is equivalent, in inhomogeneous coordinates, to:

XCAM = [R | t] X̃ = R [I | −C] X̃, (2.4)

where [I | −C] denotes the column concatenation of the 3 × 3 identity ma-
trix I with the inhomogeneous 3D world coordinates of the camera’s optical
center C. The part R [I| −C] defines the extrinsic camera parameters, because it
englobes the external parameters of the camera, i.e., its orientation and trans-
lation with respect to an arbitrary 3D basis.

Putting Equations (2.3) and (2.4) together, the pinhole camera projection
of an arbitrary 3D homogeneous world coordinate X̃ to the homogeneous im-
age’s coordinates x̃ is given by:

x̃ = KXCAM = KR [I | −C] X̃ , PX̃. (2.5)

The P ∈ R3×4 matrix, known as the camera’s projection matrix, fully de-
scribes the projective geometry in between a 3D point X and the position of x,
i.e., the 2D coordinate that represents this 3D point on the image plane of a
camera. It has 11 degrees of freedom and requires thus (at least) 6 point cor-
respondences Xi ↔ xi to be determined3, since each inhomogeneous image’s
coordinate xi leads to two independent equations (one in the abscissa coordi-
nate u, the other in the ordinate v). The solution is obtained by solving the
linear system PX̃i = x̃i for the 6 homogeneous points correspondences. Note
that these equations involve homogeneous coordinates, meaning that PX̃i and
x̃i may differ by a non-zero factor while still satisfying the equation. Precisely,

3The reader is referred to the 3D generalization of the Chasles’ theorem [92] for the definition
of the degenerated configurations, e.g., induced when two selected points lie on a twisted cubic.
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equivalent vectors always have the same orientation, although they might dif-
fer in amplitude, and their cross product must thus be equal to zero. If we
denote P>i as the ith row of the projection matrix (i ∈ {1, 2, 3}), the projection
matrix can be determined by imposing:

PX̃i × x̃i =

P>1 X̃i
P>2 X̃i
P>3 X̃i

×
ui

vi
wi

 =

wiP>2 X̃i − viP>3 X̃i
uiP>3 X̃i − wiP>1 X̃i
viP>1 X̃i − uiP>2 X̃i

 =

0
0
0

 , (2.6)

and can thus be written as: 0> wiX̃>i −viX̃>i
−wiX̃>i 0> uiX̃>i

viX̃>i −uiX̃>i 0>

P1
P2
P3

 =

0
0
0

 . (2.7)

Because the matrix in Equation (2.7) is of rank 2, each correspondence
X̃i ↔ x̃i provides 2 constraints on the projection matrix, and an exact solution
for P can thus be obtained by solving the linear system Apv = 0, i.e., by deter-
mining the right null-space of the matrix A, with A ∈ R11×12 denoting the row
concatenation of the constraints provided by the 6 correspondences (one of the
constraint must be ignored), and pv = vec(P>) where vec(.) : Rm×n 7→ Rmn×1

is the matrix vectorization operator. However, the exactness of the estimated
projection matrix depends on the accuracy of the measured coordinates Xi and
xi. Because these measures are error-prone, e.g., due to the precision of the
manually annotated coordinates (ui, vi), which is limited to the pixel level, a
least-squares minimization of the algebraic error of the over-determined sys-
tem Apv = 0, with A ∈ R2n×12 englobing the constraints imposed by the
n ≥ 6 correspondences Xi ↔ xi, generally leads to a more accurate estimation
of pv. To determine a unique solution to this ill-posed problem and to reject
the trivial solution pv = 0, multiple constraints on pv have been proposed [92].
The most famous one is the normalization constraint ‖pv‖2 = 1 with ‖.‖2 the
`2 norm. In this case, the solution pv is the unit singular vector corresponding
to the smallest singular value in the SVD decomposition of the matrix A.

Instead of minimizing ‖Apv‖2, one may want to minimize the geometric
error between the selected 2D image’s coordinates and the projection of the
corresponding 3D coordinates onto the image plane:

argmin
P

n

∑
i=1

∥∥∥∥x̃i −
1
λi
· PX̃i

∥∥∥∥2

2
, (2.8)

where λi ∈ R are equal to λi = P>3 X̃i to ensure the equality between the ho-
mogeneous terms, and make Equation (2.8) a non-linear least-squares prob-
lem. Its solution corresponds to the maximum likelihood of P, if we consider
that the measurement errors are normally distributed [92], and can be esti-
mated using an iterative algorithm, such as Levenberg-Marquardt, after hav-
ing centralized and normalized the root mean square (RMS) of the 2D (3D)
data points to

√
2 (respectively

√
3) and after having estimated the matrix P



26 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

that minimizes the algebraic error to use it as initial point in the iterative algo-
rithm. The procedure to obtain the camera’s projection matrix P is called cam-
era calibration. Although the two previous calibration methods are the most
well-known, multiple other procedures have been proposed in the literature,
by using for example the line of sight in the image [215].

The estimation of a projection matrix P does not only relate any 3D co-
ordinate X to its 2D representation x, but also defines uniquely (almost) all
the intrinsic and extrinsic parameters of the camera. Indeed, according to the
Equation (2.5), the projection matrix P can be seen as the horizontal concate-
nation of two sub-matrices:

P = [KR | −KRC] , [M | −MC] .

Based on the fact that R is an orthogonal matrix and K is upper-triangular,
two pairs of solutions for (K, R) are given by the RQ-decomposition of P. The
two acceptable solutions come from the fact that we can always multiply the
kth column of K by −1 and the kth row of R also by −1 without changing the
product M = KR. This ambiguity is removed by imposing that the diago-
nal entries of K are positive, due to the positivity of their physical interpre-
tation. Specifically, according to Equation (2.3), the first diagonal element is
αu = mu · f , where mu > 0 and f > 0. Two tuples of possible Euler’s an-
gles (γX , γY and γZ) are associated to the rotation matrix R, obtained by RQ-
decomposition of M, requiring the knowledge of an additional 3D information
(for example, the approximate direction of the observed 3D scene) to isolate
the correct one. Some internal parameters of the cameras are also not uniquely
defined. Indeed, while Equation (2.3) shows that the camera’s skewing factor
s is uniquely determined based on the intrinsic matrix K, there exists a depen-
dency between the value of the focal f and the pixel density factors mu and
mv. To obtain a unique solution, it is usual to assume a uniform pixel density
along one of the axis of the sensor, e.g., mu = 1, or to fix the focal length f based
on the characteristics of the mounted lens. Finally, the camera’s optical center

can either be determined by solving the linear system −MC =
(
(P)>4

)>
, or

based on the fact that its projection determines the origin of the 3D referencial:

PC = 0.

C is thus the right-null vector of P, and can be obtained from its SVD decom-
position.

2.1.2 Lens distortion compensation

In the previous section, we have assumed the linearity of the light rays start-
ing from an arbitrary 3D point and going through the camera’s optical center.
However, as illustrated in Figure 2.2(c), this assumption does not hold when
the pinhole camera uses a lens, meaning that the projection of a straight line
is not always represented as a straight line onto the image plane. One of the
most important optical abberation is called the radial distortion, which can be
classified either in barrel distortion (see Figure 2.4(a)) or in pincushion distortion
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(see Figure 2.4(c)) and transform a straight line into a curved one. In prac-
tice, such kinds of distortions, as illustrated in Figure 2.4(b), are prominant in
low-price and/or wide-angle (small focal length) lenses.

(a) Barrel distortion (b) Barrel example (c) Pincushion distortion

Figure 2.4: The projective geometry of a camera is disturbed by geometric
abberations of the lens, which should be cancelled.

Because of the lens central symmetry, the distortion is uniform along the
circles centered at the lens center’s point, defined by the intersection of the cam-
era optical axis with the lens surface. These distortions are thus expressed
as a function of the radial `2 distance with respect to the lens center’s point,

i.e., relatively4 to r =
√
(u− uc)

2 + (v− vc)
2. If there were no distortion,

an ideal lens should uniformely transform these circular level curves into
other circular level curves. The scaling factor of this transformation is called
the lens magnification factor, and is constant along r when there is no distor-
tion. In barrel distortion, the lens magnification decreases with the distance
from the lens center’s point, while this magnification increases in pincushion
distortion. The inverse magnification of these equipotentials is denoted by
L(r) : R+ 7→ R, and defines the transformation of the pixel coordinates (u, v)
with respect to its distance from the lens center’s point. Hence, given the co-
ordinates (uc, vc) of the lens center’s point, the undistorted coordinates (û, v̂)
are given by:

û = uc + L(r) · (u− uc) v̂ = vc +
(

mu
mv

)−1
· L(r) · (v− vc)

where mu
mv

is the aspect ratio of the captured image. By estimating (uc, vc) and
L(r), the captured image can be unwarped, i.e., its pixel coordinates can be
transformed, in such a way to compensate those distortions.

Instead of determining the arbitrary analytical expression of L(r), L(r) is
approximated by its Taylor k-th order expansion:

L(r) ≈ L(0) + κ1r + κ2r2 + · · ·+ κkrk,

in which L(0) = 1 to map the lens center’s point onto the camera’s princi-
pal point. The set of coefficients {κ1, κ2, · · · , κk} can either be estimated by

4Practically, the `2 distance with respect to the lens center’s point (uc, vc)
> is normalized with

respect to diagonal of the image, meaning that r ∈ [0, 1].
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including them in the minimization of the projection geometrical error (cfr.
Equation (2.8)), or by maximizing iteratively a measure of the straightness of
the corrected projection of 3D lines. In practice, only the first four coefficients
{κ1, κ2, κ3, κ4} are not negligeable (> 10−6) even for low-quality lenses, and
the estimation is restricted to these fourth ones. Lenses that produce a barrel
distortion typically have κ1 < 0, while the ones showing a pincushion effect
have κ1 > 0.

2.2 Multi-view geometry and 3D reconstruction

This section presents how calibrating (at least) two cameras imposes geomet-
ric dependencies between them, and how to exploit these dependencies to de-
termine the scene’s 3D. In this section, we assume that the observed 3D scene
is composed only of Lambertian 3D surfaces, meaning that their surface’s lu-
minances are isotropic in all directions in the exterior half-space adjacent to
the surface’s tangent. Because the apparent brightness5 of such a surface is
the same regardless of the observer’s angle of view, it is necessary that two
observations of the same (infinitively small) 3D surface have the same bright-
ness value. Section 2.3 shows how to relax this assumption by introducing
some state-of-the-art image’s representations that tend to describe geometri-
cally and colorimetrically similar regions/pixels by a set of similar features,
while representing dissimilar regions/pixels by dissimilar descriptors.

2.2.1 Space carving (3D to 2D)

Historically, the first steps of intermediate views synthesis have begun with
the 3D reconstruction of a single object from a set of calibrated cameras. The
first breakthrough method, called space carving [59], is based on the simple fact
that the projection of the object’s 3D surface is always included in the object’s
silhouette, such as observed by extracting the binary mask of the foreground
object from the background in the reference images6. Complementarily, if a
3D coordinate does not project to the foreground mask of (at least) one view,
it must belong to the 3D background. Instead of applying this binary consistent
test on the set of all possible 3D coordinates X ∈ R3, space carving methods
discretize the 3D space, included in the convex-hull spanned by the cameras’
optical centers, as a regular tesselation of non-overlapping cubes of predefined
length, called voxels [50]. Each voxel is represented by the 3D coordinates of
its centroid, that we denote Xi for the ith voxel. A voxel for which any projec-
tion of its centroid x̃(j)

i = P(j)X̃i on the jth camera lies outside the foreground
silhouette (or outside the image) of the jth view is carved away, leaving only
the voxels inside the 3D surface.

5The definition of the brightness has evolved gradually along the history, from the average of
the (R,G,B) values to the luminance Y of the YUV color space, while passing through the value V
of the HSV color space and the lightness L of the HSL color space.

6Generally, this foreground extraction is simplified by placing the 3D object in an environ-
ment with a controlled background, e.g., in a green-screened studio, allowing to easily detect the
background and thus its complementary foreground.
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Figure 2.5 illustrates the space-carved 3D reconstruction from the Dino
dataset [183] composed of 35 cameras uniformelly spanned along the 45◦ lati-
tude of a sphere centered on a 3D figurine of a dinosaur.

(a) One view (b) Two small-baseline
views

(relative angle of 10◦)

(c) Two wide-baseline
views

(relative angle of 30◦)

(d) 35 views

Figure 2.5: N-views space-carving of a 4cm×4cm×16cm figurine discretized
in voxels of approximatively 1.5mm×1.5mm×1.5mm.

Space-carving methods have four main limitations. As illustrated in Figure
2.5, the first important limitation is that space-carving requires a large density
of cameras spreaded around the object to reconstruct, limiting the method to
confined spaces. Matsuyama et al. [142] proposed, for example, to reconstruct
the 3D volume of human beings captured in a 2m×2m×2m studio using 16
cameras and quantifing the 3D space into cubes of 1cm×1cm×1cm. The sec-
ond main limitation is that space-carving cannot reconstruct the concavities
of a 3D model. The third main limitation is that the accuracy of the 3D re-
construction directly depends upon the accuracy of the silhouette extraction
and the fact that the foreground is entirely observed in all the views: any hole
in a silhouette foreground mask will cause voxels to be carved away, drilling
holes in the 3D object. As a consequence, a compact 3D model for which the
foreground mask are noisy could be reconstructed as a set of unconnected 3D
components, leading to a topologically incoherent reconstructed 3D model,
for example human beings with their arms/legs/head detached from their
body. Although surface smoothing methods [213], such as the marching cubes
algorithm [133] [128], tend to reduce these discontinuities by fitting a contin-
uous and smooth polygonal mesh [65] to the quantized voxel space, these
methods do not use topological priors, others than the smoothness, mean-
ing that they do not guarantee a topologically coherent final 3D model. To
avoid that, Carranza et al. [31] have proposed to use a predefined 3D model
of the object to reconstruct, and to determine its configuration by optimizing
its degrees of freedom to maximize the overlap between the projection of the
transformed 3D model and the 2D foreground silhouettes. Precisely, by deter-
mining, at time t, the optimal parameters of a 35 degrees 3D model of a hu-
man’s actor7, based on a grid-search around the optimal parameters obtained
at time t− 1, their method reconstructs a topologically coherent, but not nec-
essary accurate, plausible 3D model of the human, captured in a controlled
studio equiped with 7 calibrated cameras. Imposing such a strict temporal co-
herence, as exploited recently in [94], has the disavantage of propagating the

7i.e., a fixed 3D human silhouette in which the rotation of the articulations (arms, legs, neck,
etc.) can be modified.
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error and being very sensitive to the initialization state, which generally im-
poses the model to be in a predefined configuration. The last main limitation
of space-carving is its linear trade-off between computational time (or mem-
ory) and accuracy of the reconstruction with respect to the amount of voxels.
To increase the accuracy8 without increasing the number of tests, Seitz et al.
[186] have proposed to replace the binary consistent test by a (necessary but
not sufficient) photo-consistency test. They consider the richer color information
(instead of a foreground mask) by defining a voxel X as occupied if it projects
on pixels with similar brightness I , e.g., when |I

(
PX̃
)
− I

(
P′X̃
)
| ≤ ε with

an arbitrary but small threshold ε ∈ R+ (when the photo-consistency test is
evaluated in-between two cameras having respectively a projection matrix P
and P′). To speed up the algorithm, multi-resolution approaches based on
octrees [210] that successively subdivide a 3D voxel if detected as occuped,
have also been proposed. A more interesting approach has been the use of a
visibility constraint [119]. This principle associate, to each pixel of a given cam-
era, a binary value describing if a previously-tested voxel was projecting on
this pixel, by testing the voxels X(λ) (expressed with respect to the camera’s
position) along the light ray

X̃(λ) = P+x̃ + λ · C̃, (2.9)

where P+ is the Moore-Penrose pseudoinverse of P, i.e., the matrix P+ =
P>(PP>)−1 for which PP+ = I in which I is the 3× 3 identity matrix. With
λ ∈ R+, starting from the ones which are the closest from the camera’s view
(smallest predefined λ, according to the whished quantization of the 3D space),
there is no need to test for the projection, on this camera, of a next voxel fur-
ther away on this light ray, if a previous voxel was already observed (visibility
value set to one). Incorporating the 2D to 3D mappings P+ (instead of relying
only on the 3D to 2D projections P) in the 3D reconstruction, such as done by
this last method, is the key principle underlying triangulation methods.

2.2.2 Triangulation (2D to 3D)

In the previous section, we have seen that space-carving methods investigate
the coherence from the 3D world to the 2D image to estimate the 3D of a single
object. Instead of a (computational) investigation of this 3D space, triangula-
tion methods determine the 3D coordinates of a point lying on a 3D surface
directly from the 2D coordinates of its representations in the two reference
views.

The triangulation of a 3D point relies on Equation (2.9), which illustrates
the fact that the 3D point X represented by the 2D (sub-)pixel x must belong to
the light ray X(λ). The determination of this 3D point from one view is thus
ill-posed, due to the fact that all the 3D points belonging to X(λ) project onto
x. Imagine now that this 3D point is observed with (at least) two cameras,
having respectively the projection matrices P and P′, and let x and x′ denote
the coordinates of these 2D observations. As long as these two views do not

8The accuracy of a 3D model can be, for example, defined by the Hausdorff distance between
the reconstructed model and its ground-truth 3D measure.
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share the same optical center, i.e., C 6= C′, the 3D point X must belong to the
intersection of the corresponding 3D light rays X(t) and X(t′), in which t , 1

λ

and t′ , 1
λ′ :

X̃(t) = C̃ + t · P+x̃ X̃(t′) = C̃′ + t′ · P′+x̃′ .

In general, because of the error-prone 3D to 2D calibration of P and P′, the
two 3D lines X(t) and X(t′) might be skew. The closest 3D point to the two
skew lines X̃(t) and X̃(t′) is defined to be the center of the shortest segment
separating the two lines, which is, by definition, orthogonal to these lines, and
is thus given by:

X̃ =

(
C̃ + t∗ · P+x̃

)
+
(

C̃′ + t′∗ · P+′x̃′
)

2
,

in which the parameters t∗ and t′∗ are the ones that minimize the least squares
distance separating the two light rays:

t∗ = (P+ x̃)·(P′+ x̃′)−(P′+ x̃′)·(P′+ x̃′)·(P+ x̃)·(C−C′)

(P+ x̃)·(P+ x̃)·(P′+ x̃′)·(P′+ x̃′)−((P+ x̃)·(P′+ x̃′))2

t′∗ = (P+ x̃)·(P+ x̃)·(P′+ x̃′)·(C−C′)−(P+ x̃)·(P′+ x̃′)·(P+ x̃)·(C−C′)

(P+ x̃)·(P+ x̃)·(P′+ x̃′)·(P′+ x̃′)−((P+ x̃)·(P′+ x̃′))2 .

If the calibration is considered as noiseless, Hartley and Zisserman [92] have
proposed another simple method, called the linear triangulation method, to ap-
proximate the 3D coordinate of a 3D point X observed at the 2D coordinates
x and x′ in the two reference views. It models the fact that the vector, defined
by the homogeneous coordinates of x̃ = (u, v, 1)>, must coincide with the
light ray PX̃, meaning that their cross-product x̃× PX̃ must be null (similarly,
x̃′×P′X̃ = 0). Because the homogeneous coordinates X̃ have 4 degrees of free-
dom, at least 4 of these constraints are required to determine X̃, which can be
expressed as a linear system AX̃ = 0 (solved similarly to the one in Equation
(2.6)), with for example:

A =


uP>3 − P>1
vP>3 − P>2

u′P′T3 − P′T1
v′P′T3 − P′T2

 .

Visual hull

Visual hull methods also use the 2D to 3D back-projection, but determine the
coordinates of the 3D points lying on a 3D surface simultaneously, as opposed
to triangulation methods, which determine them independently. The con-
cept of 3D visual hull was introduced by Laurentini [123]. The visual hull
is defined as the smallest 3D convex-hull (in term of 3D volume) that, once
projected on the reference camera views, fully overlaps the reference silhou-
ettes. To determine the visual hull, the 2D to 3D mappings (cfr. Equation (2.9))
are used to back-project the shape of each 2D silhouette into the common 3D
space.
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Figure 2.6: The intersection of the back-projections of the 2D foreground sil-
houettes forms the 3D visual hull [169].

As illustrated in Figure 2.6, each projection forms a visual cone encasing
the 3D object and the intersection of these individual cones gives the approx-
imated visual hull [77]. Although requiring much less projections than the
space-carving methods, the computational bottleneck of the visual hull meth-
ods comes from the volumes intersections [193]. Matsuyama et al. [142] pro-
pose to restrain the back-projections of the silhouettes to the ground-plane, de-
fined at Z = 0, and to reproject this ground-plane silhouette onto a set of pre-
defined planes, or polyhedrons [145]. The computational estimation of the 3D
intersections is thus simplified into the determination of planar cross-sections
in the quantized 3D space. Visual hull methods also share three of their weak-
nesses with space carving methods, namely the (very) large number of views
required to attain convincing rendering results [113], the inability to model
concavities, and the dependence between the accuracy of the reconstructed
model and the accuracy of the foreground silhouettes [112], easily corrupted
for example by shadows [77]. To counter this last dependence, Guillemaut et
al. [87, 86] have recently proposed to jointly optimize the foreground segmen-
tation and its 3D reconstruction. Although their approach is leading to a more
accurate 3D visual hull, it still requires a fairly large amount of 12 reference
cameras. Stark et al. [201] reduce the amount of required cameras to 8 by im-
posing a spatio-temporal coherent 3D geometry during a post-processing step.
However, due to the inaccuracy of the calibration of a wide-baseline camera
setup when specifying 3D to 2D correspondences [84], the wide-baseline vi-
sual hull tends to produce topologically incoherent 3D models. This is due to
the fact that a small calibration error generally produces a large error in the
3D reconstruction and that only a few intersecting cones define the 3D model.
Given the (very) sparse amount of shape’s prior insered in [201], imposing a
spatio-temporal coherence between such topologically incoherent 3D models
may also lead to a final topologically incoherent 3D model [43]. Matuski et
al. [146] were the first ones to propose a method that performs the geometric
computations in the 2D image space (instead of in the 3D space, that requires
multiple error-prone projections, due to the inaccuracy of wide-baseline cali-
bration). Their method, called image-based visual hull, relies on the simple fact
that any 3D point X belonging to the visual hull’s 3D surface and observed
at the image point x must belong to the light ray X(λ) (cfr. Equation (2.9)),
meaning that the projection x̃′ = P′X̃ of this 3D point onto another camera
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view defined by the projection matrix P′ must belong to the projection of the
3D light ray l′ = P′X̃ (λ), as illustrated in Figure 2.7.

X( 1)

X( 2)

l'x1' x2'

x

C

C'

Figure 2.7: Image-based visual hull relies on the intersection between pro-
jected light rays and the reference foreground silhouettes to determine the 3D
convex-hull of a given object.

For each pixel xv in a virtual view (for which the calibration is detailed in
Section 2.5.1), i.e., a camera view that does not exist in reality, the associated
light ray Xv (λ) is projected onto each of the reference images. If this pro-
jected light ray overlaps a foreground silhouette in a specific reference view,
the overlapping segment represents the projection of the set of possible 3D
points that lie in the visual hull and are represented by the pixel x in the vir-
tual view. The depth (with respect to the image plane of the virtual camera) of
all these 3D candidates, obtained separately on each reference view, are stored.
Among these 3D points, the pixel x represents only the one that is the closest
from the image plane of the virtual camera, because of the visibility constraint
(cfr. Section 2.2.1), and its depth is associated to this pixel.

Image-based visual hull, and its color extension called image-based photo
hulls [194], do not suffer from the computation complexity, limited resolution,
or quantization artifacts of the previously presented volumetric approaches,
while achieving lower average 3D errors than other visual hull methods [148].
This increase of performance comes from the fact that almost all the men-
tionned (error-prone) 2D to 3D projections can be avoided by exploiting the
epipolar geometry that exists between the virtual view and each of the reference
views, as explained in the next section.

2.2.3 Epipolar geometry

The epipolar geometry refers to the geometric constraint that associates, to a
given 2D point x in a view, a restricted set of corresponding 2D points x′ rep-
resenting the 3D points that can be associated to x. Such constraint is funda-
mental for general 3D reconstruction, due to the fact that the reconstruction
of an arbitrary 3D scene, e.g., composed of multiple objects, requires to deter-
mine pixel correspondences to reconstruct the 3D based on their triangulation
(cfr. Section 2.2.2). As explained in the previous section, to each 2D image co-
ordinates x in one view is associated a line in another view, which represents
the projection, on this other view, of the light ray associated to the 2D point x.
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There exists thus a mapping R3 → R3 : x̃ 7→ l′, where l′ is called the epipolar
line of the 2D point x. This mapping x̃ 7→ l′ is represented by the fundamental
matrix F ∈ R3×3, detailed in the next section.

Fundamental matrix

The epipolar geometry, i.e., the projective geometry between two camera views,
is fully represented by the 3× 3 fundamental matrix F, which maps a given 2D
point x in one view onto a 1D line l′, called an epipolar line, in the other view.
The algebraic expression of this operator can be defined in two steps: first,
Equation (2.9) is considered to express how a 2D coordinate x back-projects
onto a light ray in the 3D space, and then, this 3D light ray is projected in the
other view. Because the projective geometry conserves the lines, we focus on
the projection of only two points of the 3D light ray onto the other view and
determine the algebraic expression of the line l′ passing through these two
points. We arbitrary focus on the 3D points defined at λ = ∞ and λ = 0 in
Equation (2.9). The first one corresponds to the 3D coordinates of the camera’s
optical center C, and its projection ẽ′ = P′C̃ is called the epipole of the second
view. The projection of the second point P+x̃ onto the second view is given
by P′P+x̃, and the line joigning this 2D point with the first one (the epipole) is
given by the homogeneous parameters of its normal vector l′ = ẽ′ × (P′P+x̃).
By expressing this vector product by its skew-symetric matrix form, the line l′

can be expressed as l′ = [ẽ′]×P′P+x̃ with

[ẽ′]× =

e′1
e′2
e′3


×

=

 0 −e′3 e′2
e′3 0 −e′1
−e′2 e′1 0

 .

The fundamental matrix, which expresses the mapping l′ = Fx̃, is thus
algebraically determined as

F = [ẽ′]×P′P+. (2.10)

It is interesting to note that any epipolar line l′ of the second view will
always pass through the epipole e′, due to the fact that any 3D light ray ob-
served by the first camera will always pass through the camera’s optical cen-
ter C, which is projected in the second view on e′. The fundamental matrix
F represents thus a mapping, in an inhomogeneous space, from R2 to the 1-
dimensional pencil of lines passing through the epipole, and is thus of rank
2. Also, ẽ′T is the left null-vector of F, due to the fact that all epipolar lines
l′ = F · x̃ intersect at the epipole e′ and thus ẽ′Tl′ = ẽ′T (F · x̃) =

(
ẽ′T · F

)
x̃ = 0

for all x̃ 6= ẽ, imposing that ẽ′T · F = 0 9.
Another very important property of the fundamental matrix concerns the

fact that, if a 3D point X is imaged as x in the first view and as x′ in the second
view, x′ must belong to l′ = Fx̃ and must thus satisfy x̃′Tl′ = 0, which defines
the fundamental relation of the epipolar geometry:

x̃′TF · x̃ = 0. (2.11)
9Similarly, F · ẽ = 0 and ẽ if the right null-vector of F
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In other words, if x and x′ represent the projections of the same 3D point X,
i.e., x and x′ are two corresponding points, they must satisfy the fundamental
relation (2.11). If we want to find corresponding point to x in the second view,
only the epipolar line l′ needs to be searched, as opposed to the entire image.
Reciprocally, the 2D point x must belong to the epipolar line l associated to the
corresponding 2D point x′ in the other view, imposing x̃>l = 0 and thus

x̃TF′x̃′ = 0. (2.12)

By combining (2.11) and (2.12) together, we obtain

F′ = F>. (2.13)

Analogously to the fact that there exists correspondences between 2D co-
ordinates x ↔ x′ in multi-view geometry, there also exists correspondences
between the epipolar lines. Two epipolar lines are said to be corresponding
if all the 2D coordinates belonging to the first epipolar line have correspon-
dences that belong to the second one, and vice-versa, such as illustrated in
Figure 2.8.

e'e

C C'

Figure 2.8: Epipolar lines are corresponding if all the 2D coordinates belong-
ing to the first epipolar line have correspondences that belong to the second
one, and vice-versa.

Although this definition relies on the knowledge of 2D correspondences
x ↔ x′, the knowledge of the fundamental matrix is sufficient to determine
the infinite set of corresponding epipolar lines. As a simple proof, let us imag-
ine that the 2D coordinate x1 in a first reference view corresponds to x′1 in the
second view. The epipolar constraint imposes that x′1 belongs to epipolar line
l′ = F · x̃1. Because this epipolar line passes through the epipole e′ and the
2D coordinate x′1, its parametric equation is given by l′(µ) = x̃′1 + µẽ′ . Any
2D point x′2 belonging to l′ corresponds to a specific value of µ, say µ?, and
can thus be expressed as x̃′2 = x̃′1 + µ

?ẽ′. The correspondence of x′2 in the first
view must belong to F>x̃′2 = F>

(
x̃′1 + µ

?ẽ′
)
= F>x̃′1 + F>ẽ′ = F>x̃′1 = l. In

summary, any 2D coordinate x′2 belonging to the line l′ passing through an ar-
bitrary 2D coordinate x′1 and the epipole e′ (obtained as the right-null space of
F>) in the second image has a correspondence x2 that belongs to the epipolar
line l = F>x̃′2. By replacing x′1 with x1, e′ with e and F with F> in the previous
explanation, the reciprocal can be proved. Thus, by selecting any arbitrary
coordinate x, two corresponding lines l = x̃× ẽ and l′ = F · x̃ can be defined.
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This thesis, and more generally stereo vision, extensively uses the three
main advantages of the fundamental matrix, which are summarized here be-
low:

• Given an image’s coordinate x, it restricts the set of possible correspon-
dence x′ in another view to the ones belonging to the corresponding
epipolar line l′ = F · x̃. The general 2D search of correspondences x↔ x′

is thus restricted to a 1D search along the corresponding epipolar lines.

• Given a set of correspondences x ↔ x′ approximated at the pixel level,
the fundamental relation (Equation (2.11) or (2.12)) enables to refine these
2D coordinates to the sub-pixel level, by determination of a pair of cor-
rected correspondences x̂ ↔ x̂′ that minimizes the objective function
(cfr. the golden triangulation method in [92])

C(x̂, x̂′) = ‖x− x̂‖2
2 +

∥∥x′ − x̂′
∥∥2

2

subject to ˆ̃x
′T

F ˆ̃x = 0

• The fundamental matrix fully describes the projective geometry in-bet-
ween two (non-degenerated [92]) camera views, as does a pair of pro-
jection matrices, while its estimation requires much less efforts than cal-
ibrating P and P′ [53].

The last point comes from the fact that the fundamental matrix can not only
be estimated based on the projection matrices (as shown in Equation (2.10)),
but also in terms of corresponding pairs of 2D image coordinates xi ↔ x′i,
which do not require to take 3D precise measurements, as it is the case for
calibrating P and P′. Indeed, the 7 degrees of freedom associated to the funda-
mental matrix F can be estimated based on (at least) 7 correspondences xi ↔ x′i
satisfying the fundamental relation x̃′Ti Fx̃i = 0. If we denote f as the row-
vectorization of F, each of these constraint can be expressed as:(

u′iui u′ivi u′i v′iui v′ivi v′i ui vi 1
)

f = 0,

and the concatenation of (at least) 7 correspondences can form a system Af =
0 which is sufficient to determine the rank-2 F matrix (up to a scaling factor),
uniquely if rank(A) = 8 or by imposing its singularity (null determinant) if
rank(A) = 7. However, if the 2D correspondences xi ↔ x′i are corrupted by
some noise, the rank of A might be equal to 9, implying that f must be esti-
mated as a least-squared solution (e.g., by a rank-2 approximation of singular
vector corresponding to the smallest singular value in the SVD decomposition
of A [92]).

Projective grid space (2D to 2D)

The main advantage of the fundamental matrix is that it constraints the 2D
correspondences without explicitly considering the (error-prone) 3D informa-
tion. For example, instead of applying a voxels occupancy test along a Eu-
clidean 3D grid that requires a precise calibration of the projection matrices,
the occupancy test can be investigated at the 2D pixel level. Indeed, Saito et
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al. [177] have proposed to rely only on the fundamental matrices relating N
camera views (with N ≥ 2) to express the 3D coordinates directly in the image
space and reconstruct a visual-hull of the observed 3D model. Analogously to
Matuski et al. [146] who associate a 3D light ray to each pixel x and enquire
the voxels’ occupancies along this light ray (cfr. Section 2.2.2), [177] associates
a 2D epipolar line l′ =

(
l′1, l′2, l′3

)>
= F · x̃ to each pixel and enquires the vox-

els’ occupancies along this 2D ray. Each voxel is thus not anymore defined
based on the triangulation (cfr. Section 2.2.2) of two correspondences, i.e.,
parametrized with respect to (x, x′, P, P′), but is implicitly defined by the set
of parameters (x, u′) while knowing F, where u′ corresponds to the horizontal
position of the pixel x′ along the corresponding epipolar line10. Two of the N
views are thus chosen to define the voxels’ parametrizations (x, u′, F) on the
projective grid. The pixel representing the projection of the voxel (x, u′) in any
other reference view (if N > 2) can be found based on the fact that this pixel
must belong to both the epipolar line l(i) = F(i)x̃ and l′(i) = F′(i) (u′, v′, 1)>,
where F(i) (respectively F′(i)) represents the predefined fundamental matrix
from the first (respectively second) reference view to the ith reference view
(with i > 2). As done in [146], the voxel defined by (x, u′) is considered as oc-
cupied if its projection belongs to all the object’s foreground silhouettes in the
camera views that could see this voxel, such as detailed in [118]. Although this
method only requires a weak calibration, i.e., the knowledge of the fundamen-
tal matrices linking the reference views, its efficiency still depends directly on
the efficiency of the foreground extraction method, limiting the method to a
controlled environment. Also, the projective grid method still requires an im-
portant amount of cameras (from 16 [241] to 51 [177]) to ensure the accuracy
of the obtained 3D surface.

Epipolar rectification

Practically, any investigation along the corresponding epipolar lines, such as
done in projective grid space, requires to define a sampling step. Because the
orientation of the epipolar lines varies in function of x, any constant sampling
step might make the investigation fall in-between pixel entities. To avoid the
computational overload of a sub-pixel interpolation at each investigation, the
epipolar rectification is a pre-process that transforms the two stereo images in
such a way that all their epipolar lines become parallel to the u axis (image’s
abscissa axis) of the image and that corresponding epipolar lines (cfr. Sec-
tion 2.2.3) share the same v coordinate, as highlighted by the black lines in
Figure 2.9. As a consequence, disparities between the images are only in the
u-direction, i.e., there is no v-disparity. These transformations make the image
planes coplanar and in addition parallel to the baseline, simulating a pair of
identical cameras placed side-by-side with their principal axes parallel.

The general 2D correspondence investigation x = (u, v)> ↔ x′ = (u′, v′)>

is thus simplified into a 1D research of correspondences xR = (uR, vR)
> ↔

x′R = (u′R, vR)
> along the corresponding rectified epipolar lines having the same

v-ordinate.
10Note that because any possible correspondence x′ belongs, by definition, to the epipolar line

l′ = F · x̃, its vertical coordinate is defined by v′ = − (l′1 · u′ + l′3) /l′2 to satisfy l′> · x̃′ = 0.
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(a) Original left view (b) Original right view

(c) Epipolarly rectified left view (d) Epipolarly rectified right view

Figure 2.9: Epipolar rectification transforms two arbitrary views into a pair of
identical cameras, separated by a simple translation along the image’s u-axis.

To estimate the general 2D projective image transformation H ∈ R3×3

(with H being a non-singular matrix) that makes the epipolar lines parallel,
it is important to remember two points:

• Epipolar lines always cross at the epipole.

• Parallel lines cross at a point at infinity, defined by the homogeneous co-
ordinates (u, v, 0)> (cfr. Section 2.1.1).

Specifically, let us consider two transformed epipolar lines being paral-
lel to the u-axis, and arbitrary defined at v = c1 (with c1 ∈ R) and v = c2
(with c2 ∈ R). Their inhomogeneous coordinates are thus given by l1 =

(0, 1, −1/c1)
> for the first line and l2 = (0, 1, −1/c2)

> for the second one.
They intersect at the 2D point defined, in homogeneous coordinates, by l1 ×
l2 = ((1/c1 − 1/c2) , 0, 0)> , (c, 0, 0)> with c ∈ R.

The projective transformation H (respectively H′ for the second image)
must thus send the epipole e (respectively e′) on the infinite point (c, 0, 0)> in
such a way to make them parallel, with c being arbitrary chosen in R, due to
the fact that (c, 0, 0)> always represents the same 2D inhomogeneous point.
The 8 degrees of freedom H must thus satisfy Hẽ = (1, 0, 0)> (respectively,
H′ must satisfy H′ẽ′ = (1, 0, 0)>) ∀ ẽ ∈ R3. Both the non-singular and this
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last constraint lead to a transformation H with 4 degrees of freedom, meaning
that determining H and H′ independently is a 8 degrees of freedom problem.
However, as it is the case for any stereo views, the rectified image coordinates
x̃R = Hx̃ and x̃′R = H′x̃′ must also fulfil the fundamental relation of epipolar
geometry based on the rectified fundamental matrix FR:

x̃′>R FRx̃R = 0 (2.14)(
u′, v, 1

)
FR (u, v, 1)> = 0

for all u, v and u′, which is only valid when

FR =

0 0 0
0 0 1
0 −1 0

 .

Based on the fundamental relation in the original image space,

x̃′>Fx̃ = 0,(
H′ −1x̃′R

)>
F
(

H−1x̃′R
)
= 0,

x̃>R H′ −>FH−1x̃R = 0,

which leads, based on Equation (2.14), to 2 additional constraints on the pair
(H, H′),

H−T′FRH−1 =

0 0 0
0 0 1
0 −1 0

 .

The determination of the optimal set of transformations (H, H′) is thus a
6 degrees of freedom unconstrained problem, for which the solution is not
unique. These 6 degrees of freedom are generally estimated by minimizing a
measure of the distortions, or relative distortion, encountered by the two rec-
tified images [141]. For example, the authors of [93] fix H to be a first-order
approximation of a rigid transform around the image’s origin and determine
H′ such as to minimize the u-disparity, i.e., the distortion ∑N

i=1
∥∥Hx̃i −H′x̃′i

∥∥2
2

of N manually selected corresponding points xi ↔ x′i. In [132], the homogra-
phies H and H′ are decomposed into three successive operations: a specific
projective transform, a similarity transform, and a shearing transform. Not
only these successive operations generalize the transformations to an affine
transformation, but the authors also use the additional degrees of freedom in
the affine component to further reduce the distortions. The authors of [139]
follow a similar idea by minimizing the Jacobian of an affine approximation
of H, that they interpret as the “creation and loss of pixels“ when this approx-
imation is applied. Fusiello et al. [69] estimate that any Euclidean epipolar
transformation, obtained based on the knowledge of the cameras’ fundamen-
tal matrix, overcomes the other types of transformations. Given the lack of
knowledge of the intrinsic parameters, the Euclidean geometry can only be
approximated, this is why they call their method Quasi-Euclidean Uncalibrated
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Epipolar Rectification 11. The approximation is done by non-linear minimiza-
tion of a 6-parameters measure of the image’s distortions.

Because none of the previous methods is clearly superior to the others in
term of 2D v-discrepancy between rectified corresponding pixels, and because
no consensus has been achieved on the optimal distortion criterion, this the-
sis follows the work of [156], who iteratively minimizes an intuitive measure
based on the required rotations to align its epipolar lines. Their method can
be decomposed into three main rotation steps:

1. Both the epipoles e and e′ are send to infinity, and their v coordinates
depend on the applied rotation, which is chosen as having a minimal
rotation angle.

2. The two cameras are rotated so that both [eu ev 0]> and [e′u e′v 0]> are sent
to [1 0 0].

3. Both cameras are finally rotated around their baseline to compensate for
their residual relative rotation.

This method has been chosen not only for its low rectification error12, but
more importantly because this error is almost constant whatever the configu-
ration of the stereo pair (wide to narrow-baseline), while others [139] [93] tend
to fail in wide-baseline cases. This advantage is paid at the price of restricting
the usage of the method to cases for which the epipoles are outside the im-
age domain, instead of treating arbitrary camera geometry as done in [170].
However, wide-baseline configurations tend to follow this geometry [52].

Reciprocity between fundamental and projective calibration

While the epipolar geometry fully describes the projective geometry in-bet-
ween two views, their respective projection matrices are often directly re-
quired, e.g., for the interpolation of the parameters of a (virtual) intermediate
camera travelling smoothly in-between the two reference cameras (see Sec-
tion 2.5.1). Fortunately, the projection matrices of the cameras can be retrieved
from F up to a projective transformation of the 3D space. Indeed, compared to
the fundamental matrix, which only describes the relations about the image
coordinates, the projection matrices P and P′ also englobe the chosen position
for the 3D world basis (cfr. Equation (2.4)) and thus the Euclidean geometry
of the 3D scene. In other words, the fundamental matrix F associated to any
projective transformation (called homography, cfr. Section 2.2.4) H ∈ R4×4 of
the 3D space, resulting in projection matrices PH and P′H, is the same than the
one corresponding to the camera pair (P, P′). Thus, although Equation (2.10)
shows that a camera pair uniquely defines a fundamental matrix, the inverse
is not true. To raise this ambiguity, it is common to fix the first view as the
reference basis P = [I | 0]. In this case, the pair (P, P′) is said to be expressed

11Note that the projective space can be upgraded to a metric one, i.e., a Euclidean one, based on
self-calibration [228].

12The rectification error is measured as the average and standard deviation of the v-disparity of
rectified correspondences.
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in its canonical form, and to form a stereo rig. As proved in [136], a good choice
of stereo rig associated to the fundamental matrix F is given by:

P = [I | 0] P′ = [[ẽ′]×F | ẽ′],
(2.15)

with e′ the epipole of the second view.

2.2.4 Homographies

Given any fundamental matrix F relating two views, the previous section has
shown how to determine their relative projection matrices P and P′, which en-
able to constrain the investigation of correspondences x↔ x′. Until now, such
investigation has been considered independently for all x ∈ ΩΩΩI , with ΩΩΩI be-
ing the set of pixel’s coordinates of the image I captured by the first reference
view. However, because 3D structures generally impose local dependencies
between the neighboring 3D points, the depth associated to two neighboring
2D coordinates might be highly correlated. This section considers planar mod-
els as underlying 3D structures, and how this assumption enables to estimate
simultaneously the depth associated to a set of 2D coordinates.

The projective transformation from a 2D coordinate x in one view to an-
other 2D coordinate x′ in another view can always be described [52] [68] by
a homography transformation H : R3 → R3, such that x̃′ = Hx̃. As il-
lustrated in Figure 2.10(a), any homography transformation H can be inter-
preted as the projection (called transfer) of the 2D point x, via a 3D plane
ax + by + cz + d = 0, onto the second image. For this reason, we denote the
homography transfer of x onto x′, via the 3D plane of homogeneous normal
vector πππ = [a b c d]>, by Hπππ.

π

X

C C'

x

x'

Hπ

(a) 3D plane well estimated

π

X

C C'

x

x'

Hπ

(b) 3D plane wrongly estimated

Figure 2.10: Any point x will project on its corresponding point x′ if the 3D
homography approximating the (planary) 3D structure around X is correctly
estimated.

Reciprocally, as illustrated in Figure 2.10(b), if x is the projection, onto the first
reference view, of a given 3D point X that does not belong to the 3D plane
πππ, the homographic transfer Hπππx̃ will not be mapped onto x′, defined as the
projection of X onto the second reference view.

This principle can be extended to a set of points. For example, let us con-
sider two 3D points X1 ∈ πππ and X2 6∈ πππ. Their projections onto the reference
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views form respectively the sets
(
x1, x′1

)
and (x2, x′2), which must fulfil

x̃′1 = Hπππx̃1 x̃′2 6= Hπππx̃2.

In other words, x is correctly transferred onto its correspondence x′ only if the
intersection of the plane πππ with the 3D light ray associated to x perfectly falls
onto X, the 3D point projected at x and x′ onto the reference views. Roughly
speaking, we say that the 3D plane πππ correctly approximates a set of N 3D
points X1, X2, · · ·, XN if Hπππ correctly transfers x1, x2, · · ·, xN onto x′1, x′2, · · ·, x′N .
Figure 2.11 illustrates this principle with different views of a 3D cup lying on
a 3D planar blue panel. Figure 2.11(c) represents the transfer of the first view
(Figure 2.11(a)) onto the second view (Figure 2.11(b)) via the plane πππ induced
by the 3D planar blue panel.

(a) First reference view (b) Second reference view (c) Projection of the first
reference view onto the
second reference view via
the homography induced
by the blue 3D plane

Figure 2.11: Homography defined by the blue plane πππ. Only the points X
that belong to this tested 3D plane will have their 2D coordinates x correctly
transferred on their corresponding points x′. Image from the courtesy of [148].

As pointed by the red line in Figure 2.11(c), because the 3D of the cup is
not correctly approximated by the 3D planar blue panel, its transfer via this
plane does not match the cup in the second reference view. Instead of investi-
gating separately the depth associated to each pixel x, the 3D of a (piecewise-
planar) 3D scene can thus be inferred by projecting one view onto another,
via a set of plausible homographies Hπππi , and associating to x the depth of
the ones which minimizes a measure of the photometric discrepancy, e.g.,
‖I(x̃)− I ′(Hπππi x̃)‖2, as further detailed in Section 2.2.4.

The tremedeous amount of methods estimating the 3D of a scene from a
set of planes, called planar proxies, mainly differ in three points:

• The number of tested planes.

• The investigated orientations.

• How do they consider pixels that have no correspondence in another
view (occluded pixels)?

Also, the division of the 3D object into a set of parts, such as proposed by pose
estimation methods, might not be small enough to accurately approximate the
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3D part by a 3D plane. In general, 3D reconstruction methods based on planar
proxies have the advantage to require only a sparse set of correspondences
(cfr. Section 2.3.3) to assign a penalty function to a given plane, but are limited
to objects with a strong planarity [66] [191] [71] or to stereo setups in which
the depth of the observed object is high compared to the baseline [72] [95],
for which a simple image stitching [192] [27] is sufficient to interpolate an
intermediate view in-between the reference ones. In other environments, the
intermediate views of the object might render an object that looks flat [161],
especially when the plane is not precisely estimated, as illustrated on Figure
2.12.

(a) Left view (b) Right view

(c) Left→ right homography via the
ground plane

(d) Left→ right homography via the
back of the referee

Figure 2.12: When the 3D plane associated to a homography does not correctly
represent the 3D of a (part of a) scene, the rendering of this last one might look
flat. This is especially noticeable on Figure 2.12(c), where the ground plane
does not accurately approximate the basketball players.

Germann et al. [73] have solved this problem by subdividing a planar
proxy (chosen to be triangular and initialized based on Delaunay’s triangu-
lation [46]) recursively as long as the photometric discrepancy of this planar
transfer overcomes a certain threshold.



44 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

Homographies in a calibrated stereo rig

The previous section has introduced the fact that a given 3D plane πππ defines
uniquely13 (up to the scaling factor) a homography Hπππ which transfers one 2D
point x from one view to another. This section assumes that these views are
defined based on their projection matrices P and P′ which can be expressed in
their canonical form:

P = K[I | 0] P′ = K′[R | t] (2.16)

This form can either be obtained through the fundamental matrix, i.e., based
on Equation (2.15), or by decomposing the projection matrices (cfr. Section
2.1.1), and applying the inverse rotation and opposed translation of the first
view on both of them. Given a calibrated stereo rig defined by Equation (2.16),
Hartley and Zisserman have proven that the homography induced by the
plane πππ = [a b c d] is given by:

Hπππ = K′
(

R− t [a b c]
d

)
K−1, (2.17)

and that this homography is equivalently defined based only on the funda-
mental matrix F of the canonical stereo pair (cfr. Equation (2.15)):

Hπππ = A− ẽ′[a b c]
d

, (2.18)

with A = ([ẽ′]×)
−1 F.

Interestingly, to avoid numerical instabilities, the inverse homography H−1
πππ

which transfers a 2D coordinate x′ of the second view onto the first one, i.e.,
x̃ = H−1

πππ x̃′, can be determined based on the Sherman-Morisson formula [188]:

H−1
πππ = A−1

(
I +

ẽ′ [a b c] A−1

1− [a b c] A−1ẽ′

)
.

Homographies by three points and F

Equations (2.17) and (2.18) still require to define the homographic plane πππ =

[a b c d]> in the 3D world’s coordinates, e.g., based on a set of three 3D
points X1, X2, X3 ∈ πππ and thus to define a 3D Euclidean space and calibrate
the camera accordingly. To reduce this time-consuming work, Hartley and
Zisserman [92] have proposed to derive the homography directly in the pro-
jective space, based on a set of three pairs of correspondences {xi ↔ x′i}i=1,2,3.
The homography induced by the plane is given by:

H = A− ẽ′
(

M−1b
)>

,

with A = ([ẽ′]×)
−1 F, M ∈ R3×3 having its ith row defined by x̃>i and b ∈

R3×1 with

bi =

(
x̃′i × (Ax̃i)

)> (x̃′i × ẽ′
)∥∥x̃′i × ẽ′

∥∥2
2

.

13As long as this plane does not contain any of the camera centers.
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Plane sweeping

Plane sweeping methods refer to the ones which investigate the depth of the 3D
scene based on a set of planar proxies having their normal vectors orthogonal
to the image plane of a (reference or virtual) view, as illustrated in Figure 2.13.

De
pth

C

C'

Planar

object

Figure 2.13: In order to estimate the depth of a 3D scene, plane-sweeping
methods investigate successively multiple depth hypotheses by sweeping a
plane through the 3D space. The optimal depths are estimated as the ones
minimizing the discrepancy between the image observed in the other refer-
ence view and the homography projection (via the investigated swept plane)
of the first reference image.

Although this kind of methods is highly parallelizable (and thus often
pushed on GPU hardwares [242] [80] [82] [79]), they generally avoid the com-
putational overhead of reconstructing the 3D of an entire scene, but instead
generally focus on the 3D estimation of a well-localized object, by uniformly
subsampling this restricted space with a set of planar proxies [36] [243]. The
direct extension of this method to multiple well-localized objects tends how-
ever to produce ghosting artefacts (e.g., the appearance of a third leg when
reconstructing a human being), i.e., the merge of non-corresponding textures
during the reconstruction of the intermediate views, due to the mismatches,
which are especially frequent when these objects display similar textures. Also,
the quality of each reconstructed 3D model highly depends on the sampling
step. Goorts et al. [82] have proposed to refine the depth obtained in a first
coarse plane-sweeping phase [243], by investigating around the median depth
of the analyzed object with an adaptative sampling step that is proportional to
foreground density obtained by the first plane-sweeping phase. Although this
method highly reduces the amount of investigate planar proxies, the accuracy
of the reconstruction of the 3D model still highly depends upon the efficiency
of the initial foreground extraction, especially due to the fact that any transfer
falling into the background of only one reference view is considered as be-
longing to the background. While this limit is not restrictive in the soccer’s
environment, because of the simple and constant green background allowing
to simply extract the foreground by thresholding a measure of the amplitude
and color angle with respect to the green color [81], the generalization of the
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method to more complex scene is not straightforward. Guillemaut et al. [87]
have addressed the foreground mask issue by simultaneously optimizing the
segmentation and the 3D estimation, leading to impressive results on soccer
applications.

By considering multiple directions others than the ones parallel to an im-
age plane, plane-sweeping methods have been extended to billboarding meth-
ods [215] [71]. Kitahara et al. [113] were among the first ones to propose to
sample a Euclidean space parallely to the ground plane, defined at Z = 0.
More interstingly, they adjust the sampling step and the resolution of planes
(level of details) based on the relative locations of (i) the observer’s viewing
position, (ii) the multiple cameras, and (iii) the 3D object, based on a measure
of the distortion of the projected 3D shape. This measure also confirms that the
distortion of the projected 3D shape on the virtual viewpoint hardly decreases
when the observing distance increases, allowing to simply approximate a 3D
shape by an single plane when the object is ”far away“ from the reference (and
virtual) cameras (or if the camera’s relative angle is smaller than 10◦ [12]).

Billboarding has also been more recently used in [12] to reconstruct hu-
man beings in virtual view between two reference cameras. In this case, only
2 planes, parallel to two reference cameras, are placed in such a way that their
intersecting line fit the principal direction of the human being they aim to re-
construct. Because two planes are insufficient to accurately approximate the
3D of the human being, the user is restricted to navigate from one reference
view to another only when the colorimetric residue (considered only on fore-
ground masks) is small enough.

2.3 Image representations for correspondences

Given the geometric constraints described in the previous sections, one can
search for correspondences in-between viewpoints. To find such corrrespon-
dences at the pixel level, it sounds natural to assume that the apparent bright-
ness I (x̃) = I

(
PX̃
)

of the same 3D point X is constant whatever the reference
camera P. Such invariance requires that:

• Hypothesis 1: the 3D scene reflects the light rays isotropically and with
equal intensity in all directions.

• Hypothesis 2: all the reference cameras measure the luminance of a (set
of) light ray(s) equally.

• Hypothesis 3: the luminance measure is discriminative enough to dis-
tinguish two pixels that do not represent the same 3D point.

However, all of these three assumptions are in practice violated. Precisely,
even for diffusely reflecting surfaces (i.e., Lambertian surfaces), the luminous
intensity of the reflected light rays depends on the angle between the inci-
dent ray at the normal of the 3D surface [34]. Because this angle can not
be estimated without reconstructing the 3D surface, this chicken-egg prob-
lem is generally neglected. The first hypothesis is also generally assumed for
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non-Lambertian surfaces, e.g., partially reflecting and transparent surfaces, ex-
cepted in very narrow-baseline setups [233], when some specific properties of
these surfaces can be used to estimate their 3D [233].

The second hypothesis assumes a perfect color balance between the refer-
ence cameras, while the camera’s color perception varies not only from one
version to another, but also for a same version of a low-cost camera (due to
the high variability of low cost components). This color discrepancy can be
reduced by precisely adjusting the camera’s acquisition parameters, which is
a labourious and time-consuming task. It has been automated in [161] based
on a Macbeth color-checker [150], and/or by post-correction of the captured
images. Among the most famous post-corrections, white-balancing [19] sim-
ply rescales the RGB components to transform a specific image’s point into a
pure white (no color temperature bias). Instead of independently rectifying
the colors of the stereo images, the stereo images presented in this thesis have
been systematically color rectified. This is explained in Section 2.3.1 below.

The second and third part of this section extend the pixel’s luminance to-
wards more discriminative similarity measures, by completing the observed
colorimetric information with geometric and/or semantic informations sur-
rounding the pixel. Specifically, the state-of-the-art dense descriptors, i.e., that
can be computed at each pixel’s location, are first introduced. Their discrim-
inativeness, obtained by completing the pixel colorimetry with informations
about its neighborhood pixels in an area of predefined shape, is paid at the
price of an increased sensitivity to occlusions and perspective changes. Next,
it is shown how several state-of-the-art methods adapt the neighborhood to
the image content, in such a way to construct region descriptors that are more
robust to photometric and perspective changes.

2.3.1 Color calibration by histogram matching

Histogram matching [55], as its name suggests it, tries to equalize the color his-
togram of one image with respect to the color histogram of another reference
view. This is done by determining a mapping function f (I ′) : R 7→ R that
transforms the luminance value of the first image into the luminance value of
the second image. The procedure can be generalized to color images by ap-
plying it independently on all the color channels of its YCbCr representation.
This mapping function is determined based on the cumulative density func-
tion of the histograms, notated cI and cI ′ and defines the bijective mapping
of the intensities I ′ onto I by posing f (I ′) as:

f (j) = i with i ∈ I , j ∈ I ′

such that cI (i) ≤ cI ′(j) < cI (i + 1)

with cI (i) = # {p : I(p) ≤ i} and # denotes the cardinality of a set. Figure
2.14 illustrates how the mapping function f is estimated and exploited. An
example of color-calibrated stereo pair is illustrated in Figure 2.15.
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Figure 2.14: Color calibration is done by equalizing of the cumulative density
function of the intensity histograms of the two views.

(a) First reference view (b) Second reference view (c) Color-corrected second
reference view

Figure 2.15: Figure (c) illustrates the color-corrected version of Figure (b)
based on the color histogram of Figure (a).

2.3.2 Dense representations

Instead of describing a pixel based only on its brightness, more discrimina-
tive descriptors consider its neighborhood [181]. The pixel comparison, re-
quired to determine correspondences, is then generalized into the measure
of similarity (or dissimilarity) between two templates (regions) centered on
the investigated pixels. In the literature, this procedure is often referred as
template matching, and the comparison is done by translating a reference tem-
plate, captured in one of the views, across the other view, and considering
the position of maximum similarity as the corresponding one. The zero-mean
normalized cross-correlation (ZNCC) [54] is one of the most appreciated sim-
ilarity measure, due to its invariance to an illumination bias between the two
reference views. Such kind of fixed-template matching assumes thus that the
local transformation between the patches, observed in two different views, is a
pure translation. This is almost true for very small-baseline setups, if the focal
length of the two reference views are the same. However, if the focal lengths
differ, the 2D area representing the same 3D region will be k times bigger in
one reference view compared to the other, if this first one has a focal length
equals to k times the focal length of the other camera (with k ∈]0; ∞[). Because
this focal length can not always be precisely estimated (as explained in Section
2.1.1), scale-invariant descriptors have been introduced.
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SIFT [134] and SURF [14] are among the most well-known scale-invariant de-
scriptors. Their invariance comes from the fact that the pixel neighborhood is
defined at a certain scale that varies from patch to patch, in such a way to be
optimal for detecting the specularities. This optimal scale is determined based
on the Laplacian of Gaussian [23], which is approximated as a difference of
Gaussian (DoG) for SIFT, and a difference of squared windows for SURF. In-
stead of collecting the absolute brightness of the pixels included in the region,
SIFT and SURF describe a region based on its gradients (amplitude and direc-
tion for SIFT, analogeously computed as the response to Haar-wavelet filters
in SURF), allowing to be invariant to a constant illumination bias between the
two images.

SURF is generally preferred on SIFT for its fast computation speed, which
comes from the intensive use of integral images [42]. Instead of relying on the
intensity (brightness) image, Abdel et al. have extended SIFT to the RGB color
space by defining an illumination invariant space, called the H invariant space
[74], and determine the descriptors in this space.

When the reference views form a wide-baseline stereo pair, not only the
change of scale should be considered, but also the plausible different rotations
of the cameras, the affine perspective transformation or even the projective
transformation that could make the two views completely different. Rotation
invariance has been achieved in SIFT and SURF, by associating to each de-
scriptor the most common direction of its gradients. A similar idea has been
exploited in [28], in which the squared neighborhood is oriented according to
orientation of a smoothed local gradient around the pixel of interest. Yu et al.
[245] have extended the translation, scale and rotation invariance/robustness
of SIFT to an affine invariance by simulating all the image views obtained by
varying the two camera axis orientation parameters (latitude and longitude
angles). The main disavantages of these descriptors are:

• their lack of discriminativeness generating multiple local minima in their
associated matching function [218], which can attract any optimization
process through erroneous matches.

• their important computation time, making them unadapted for dense
computation.

To counter these facts, the correspondences are generally determined only
on highly informative points, called keypoints. Those points are detected for
example based on the Jacobian matrix [91] or on the Hessian matrix [14].
These sparse correspondences can then be used as seed points to propagate
the matches to the other points.

In [129] and [130], correspondences are propagated in a predefined neigh-
borhood around the keypoints, by considering only as plausible correspon-
dences the ones that respect the epipolar constraint x̃′TFx̃ = 0, while having
a similar relative location with respect to their matched keypoints (defined
based on a threshold) and maximizing the ZNCC. A similar idea has been
exploited by Sun et al. [209], in which the keypoint correspondences are prop-
agated along the scanline of the rectified stereo pair for pixels having a similar
color. The propagation is extended to 2D affine models in [110], while Yao et
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al. [244] drive the propagation in 2D by considering both an illumination in-
variant photoconsistency measure and the smoothness of the matching. How-
ever, the dense matches are generally only guaranted in small neighborhood
around the keypoints, and their accuracies strongly depend on the truthful-
ness of the scene’s prior. For example, the determination of correspondences
based on affine transformations implicitly assumes an affine scene, which is
not valid when it is composed of 3D slanted planes14.

Recently, Tola et al. [217] have proposed a projective-robust descriptor that
can be densely computed, while also being robust to the photometric and pro-
jective changes. This state-of-the-art descriptor, called Daisy, takes the best
of the previously proposed ones (e.g., SIFT, SURF, GLOH, etc.), based on the
conclusions of their multiple comparisons [237] [238] [154]. Precisely, its out-
performing matching performances [218] rely on the combination of four com-
plementary features:

• The description of the pixel neighborhood by the oriented first deriva-
tive of its 2D gaussian smoothing, which ensures its photometric invari-
ance to illumination bias. This oriented-gradient representation is ob-
tained based on steerable filters, which are generally used in the best
descriptors [237].

• The log-polar histograms of the oriented gradients. While SIFT and
SURF define the pixel neighborhood based on a squared grid, and con-
sider independently the oriented-gradients along this grid, Mikolajczyk
and Schmid [154] have shown that circular grids (such as used in GLOH)
have better localization properties [135]. As illustrated in Figure 2.16,
Daisy extends this principle by using multiple circular grids. Its Daisy
shape, which gives its name to the descriptor, has been shown not only
to be optimal for sparse matching [237] but also to remain stable under
projective distortions [238].

Figure 2.16: A Daisy description represents a keypoint (black cross) by
a sampled version (taken on the crosses) of convolutions of the original
image with several oriented derivatives of Gaussian filters. The radius
of each circle is proportional to the standard deviation of the Gaussian
kernels, meaning that high frequencies details of distant neighborhood
tend to be neglected.

14Due to the fact that the 2D projection of any 3D slanted plane is not affine invariant, because
its area varies with respect to the viewpoint.
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An intuitive example concerns the perfect rotational symmetry of log-
polar shapes, which makes the Daisy descriptor naturally robust to rota-
tional perturbations [218]. This stability under perspective transforma-
tions makes the Daisy descriptor powerful, especially in wide-baseline
setups, which suffer from strong projective distortions.

• The log-polar weighting and blurring of the oriented gradients. As illus-
trated in Figure 2.16, Daisy uses larger gaussian kernels to blur the ori-
ented gradients belonging to its outer rings and gaussian kernels with
smaller standard deviation near the keypoint. This adaptive blurring
is strongly inspired from the geometric blur proposed by Berg and Ma-
lik [16], which has been proved to increase the robustness under affine
distortions, always present in-between wide-baseline stereo views.

• Its fast computational speed (e.g., more than 50 times faster than SIFT).
This fast computation is achieved by convolving gradients maps using
2D Gaussian kernels, which have the advantage to be separable in two
1D kernels and to support multiscale computation. Moreover, the his-
tograms of gradients can be computed only once per region and reused
for all the neighboring pixels. It allows the dense description of high
resolution images that exhibits highly textured and discriminative con-
tent at this resolution, while appearing uniform if captured at a smaller
resolution.

Due to the unequalled robustness and discriminativeness of Daisy descrip-
tors on wide-baseline stereo [237] [238] [218] [73], this thesis uses them as soon
as a dense descriptor is required (cfr. Chapter 3 and Chapter 4).

While Daisy has been developped to be fast and robust to the projective
transformations, its main weakness comes from its inconsideration of occluded
areas, in which the neighboring pixels should not be taken into account be-
cause they are not visible in the other view. Estimating the occluded parts
generally requires to estimate the 3D, and is thus a chicken-egg problem. In
[218], occlusion masks are selected during the 3D estimation using an Expec-
tation Maximization (EM) framework and are applied onto the Daisy descrip-
tors to hide the occluded parts.

Because the pixels in the occluded parts generally share similar photomet-
ric/geometric/semantic properties, the next section shows how these groups
can be extracted and described with a high repeatability based on distinguish-
ing, invariant and stable properties in such a way to determine the correspon-
dences not anymore at the pixel level, but at a superpixel (group of pixels)
level.
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2.3.3 Sparse representations and segments/regions matching

Segment-based stereo methods use 2D image regions, called superpixels or seg-
ments, as matching units instead of pixels. When the region is properly de-
fined and described, segments have been shown to include richer and more
discriminative content than pixels, pushing segment-based stereo matching
systematically among the top-ranked algorithms in stereo [144] during the
last years. Segment-based stereo methods generally define three main steps:

1. The determination of 2D regions, which can be equally detected (high
repeatability) among the reference views, despite their strong perspec-
tive changes.

2. The description of these regions based on geometric and photometric
invariant (or robust) features.

3. The method used to match these described regions.

There mainly exists two types of methods used to match these described
regions. They mostly only rely on concepts that have already been introduced
in the previous sections.

In the first type of methods, the region correspondence is defined with
respect to their center pixel, allowing to use all the geometric constraint intro-
duced in the previous sections. The disparity found for the center pixel, gen-
erally based on its region’s properties, is assigned to all the pixels included
in the region [103]. The 3D scene is thus implicitly approximated by a set of
fronto-planar 3D surfaces [126]. For example, in [144], each region receives
the maximum likelihood disparity, obtained based on [143] and [96].

The second type of methods assumes that the depth within each segment
varies linearly. The 3D of each segment is thus explicitly represented as a
(slanted) planar surface, which is estimated by robust plane fitting (e.g., by
means of RANSAC [58]). For example, in [114], a set of plausible horizon-
tal and vertical slants of each plane are proposed based on a set of reliable
pixel matches lying on the same horizontal (respectively vertical) line, and the
orientation is then locally optimized based on the sum of absolute difference
between the homography-transferred pixels.

Both of these methods thus assume that the 3D scene can be approxi-
mated by non-overlapping smooth regions, for which it is assumed that dis-
parity/depth values within each superpixel are either constant or vary lin-
eary, while depth-discontinuities occur along the segment boundaries. Since
this hypothesis is only approximative [144], the depth maps estimated based
on region-based methods are sometimes refined, by using it as a starting point
in a slower depth optimizer [211], for example based on graph-cut [24] [115],
PDE15-based matching [204], Expectation-Maximization algorithm [203], dy-
namic programming [20], belief-propagation [56] [207] or cooperative algo-
rithms [232].
In the rest of this section, we first detail how to detect the 2D regions with high
repeatability, and then explain how to describe them.

15Partial Differential Equations
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To detect corresponding regions in two wide-baseline views, the region
detector has to be robust to the change of perspective. Such detector has first
been introduced in the seminal work of Tuytelaars and Van Gool, who have
focused on affine invariant and projective-robust image patches, i.e., that au-
tomatically deform with changing viewpoint as to keep on covering identical
physical parts of a scene. Most of their preliminary works [224] rely of the
affine-invariance of an ellitical-shaped area [92], and thus aim at detecting re-
gions that are approximated by an ellipse. Since affine transformations do not
fully cover the observed changes, this model will suffice for regions that are
sufficiently small and planar [228]. For example, in [223], local intensity max-
ima are selected, and associated to a segment, defined by the closed shape
covering the maximum intensities along axis spanning the 360◦ around each
of these points. An ellipse having an area twice as big as the segment area
is fitted onto each region, in such a way to capture more diversified texture
patterns, to increase the distinctive power of the region descriptor.

Among the most famous perspective-robust region detectors, maximally
stable extremal region (MSER) [140] has shown to overpass the other affine-
robust region detectors, e.g., Gradient-based detectors [179], Hessian-based
detectors [153], edge-based detectors [222] or saliency-based region detectors
[105], in term of matching performances [155]. Instead of detecting the max-
imally stable regions based only on the image intensity values, Forssen et al.
[62] generalize the detection to the RGB color space.

However, this affine-invariant region detector, as many others, does not
ensure that all the pixels within an image will be covered by such descriptor,
or that a match will be found for each region. Two solutions to this problem
have been proposed in the literature: match propagation and pre-segmentation of
the reference images.

Among the first type of methods, Vergauwen et al. [228] have proposed
to propagate the correspondences, obtained based on the match of elliptic
approximation of a region [223], by imposing the smoothness of the corre-
spondence map (disparity map). This smoothness is imposed by a non-linear
diffusion process, which is a PDE-based solution of optical flows [205] [204] in
which the correspondences search (and the derivative computations) is done
at two different points in the two reference images.

In a recent work, the propagation proposed by Zhang et al. [248] describes
the adjacency between the regions based on a pyramidal (tree-like) represen-
tation of each region, in which the kth level of the pyramid includes the kth-
connectivity regions. If the analyzed region has not been matched, the corre-
spondence is interpolated based on a trade-off between the closest region in
the pyramid levels and the one that gives the highest pixel-based photocon-
sistency similarity.

The second kind of methods, i.e., pre-segmentation methods, ensure the
dense coverage of the entire reference views by first (over-)segmenting (based
on k-means segmentation [137], anisotropic diffusion smoothing [168], mean-
shift segmentation [37], soft-segmentation [138], etc.) the 2D images into a
set of non-overlapping regions, and then using a projective-robust region de-
scriptor and its associated similarity metric.
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For example, in [223], each region is associated to an ellipse and is de-
scribed based on an affine-invariant combinaison of elliptical shape moments
(up to the second order).

Schaffalitzky et al. [178] have proposed a normalization of both the geo-
metric and the photometric statistics (e.g., covariance matrix of the gradient)
aggregated over each region to make them affine-invariant. The dissimilarity
measure is just computed as the `2 norm of these normalized descriptors.

In Zitnick et al. [252], the reference images are independently (over-)seg-
mented and correspondences are found by minimizing the Euclidean distance
on the normalized histogram of pixels included in each region. Occluded ar-
eas are isolated by imposing the correspondence as bijective, meaning that if
a region of the first reference image has been associated to a specific region in
the second reference image, this last region has also to be associated with the
first region. This idea is an extension of the famous disparity cross-consistency
check, imposed on pixels in [67].

More recently, Zhang et al. [248] have described each region by a set of
affine-invariant features (Harris and Hessian features) [155] and matched them
based on RANSAC, by minimizing a cost derived from the epipolar constraint
(cfr. Section 2.2.3).

Among the most famous recent metrics to compare regions, AD-census
[151] effectively combines the good representation of local structures, pro-
vided by the absolute differences (AD) measure, and the good discriminative-
ness of the census transform16. While the census has been proved to show the
best overall results in small-baseline local and global stereo matching methods
[98], due to its good capacity to disambiguate regions with similar color distri-
butions, the AD-measure perfectly completes it due to its capacity to tolerate
photometric changes and image noise.

One of the major problem with pre-segmentation stereo is that the accu-
racy of the region matching highly depends on the repeatability of the initial
segmentation, i.e., how well two segmented regions representing the same 3D
region are precisely isolated.

Toshev et al. [220] have proposed to optimize simultaneously for the seg-
mentation and the segment matching, based on a ”co-saliency“ matching score
which enables to favor correspondences that are consistent with soft image
segmentation [138]. Precisely, they express the problem as the determination
of the dominant spectral component in a complete graph, called the Join-
Image Graph (JIG), in which the nodes are the pixels of the two reference
images. This spectral component is used as similarity metric in a positive
feedback for updating and establishing new pixel correspondences.

As a conclusion, while dense image representation enables precise match-
ing and thus precise 3D reconstruction, these dense descriptors are rarely dis-
criminative enough to drive their matching towards any global optimum. At
the opposite, sparse features, such as image segments, tend to be more dis-
criminative but are weakly localized, and unprecise for 3D reconstruction.
Recently, Braux-Zin et al. [25] have proposed a method that combines dense

16The census transform describes a pixel based on the superiority of its intensity compared to
the ones of its neighborhood, as done in Local Binary Pattern [5], and computes the Hamming
distance on these descriptors
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features and sparse features in a variational framework. Precisely, they gener-
alize the dense optical-flow optimization to wide-baseline views by showing
that sparse features, such as line segments [231] [230], could enable to attract
the optical-flow optimization outside local minima, generated by the (weakly
discriminative) Absolute Difference-census (AD-census) measure. However,
their method assumes an a priori known perfect match of (the borders of) the
sparse features, which is only satisfied in presence of human-interaction. In
contrast to this strong prior information, weaker priors, such as presented in
the next section, push towards a fully automatic determination of the 3D of
the scene.

2.4 Priors to disambiguate the correspondences

As explained in Section 1.3.1, data-fidelity measures are not sufficient to re-
construct the 3D of the scene without ambiguity. This is especially the case
when the scene is composed of:

• Non-lambertian surfaces: The apparent colorimetry of an infinitesimal 3D
section of such surfaces changes with regards to the observer’s view-
point.

• Uniform and/or repetitive textures: Because of the low-discriminativeness
of such textures, any spatially-constrainted (local) matching process
might swap the correspondences.

• Foreshortening effects: The foreshortening effect causes a distance or an
object to appear shorter/wider than it is because it is angled toward one
of the viewers (see Figure 2.17). Because the compaction ratio depends
on the viewpoints, a given 3D object will be represented by a totally
different number of pixels in different views.

Figure 2.17: Illustration of the foreshortening effect. The projection of
the object S is more compact in O′ than in O.

• Occlusions: An occlusion occurs when a part of the scene can be observed
in only one of the camera views, so that no correspondence can be found
with the other reference views.
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To disambiguate the ill-posedness of such scenes, multiple priors have
been proposed:

• The photometric consistency considers that the apparent colorimetry of
an infinitesimal 3D surface does not change regardless the observer’s
viewpoint. The validity of this prior depends on the Lambertian re-
flectances of the surfaces composing the 3D scenes, which could strongly
affect the colorimetry of a given pixel from one point of view to the
other. Previous works have reduced this impact by defining descrip-
tors that characterize the relative photometric information of the pixel’s
neighbors. Unfortunately, the pixel’s organization in the spatial area is
strongly affected by the change of perspective, meaning that the prob-
lem is turned into the determination of geometric invariants. While
dense affine invariants exist and have already been exploited [157], no
dense invariance to the real word geometry, i.e., the projective geometry,
is known until now17. As a quite effective alternative, fast and dense
projective-robust descriptors (i.e., descriptors that do no change a lot
when a projective deformation is applied) have been developed [218].

• The epipolar constraint [92] (described by the fundamental matrix F)
constraints each 3D point to belong to one of the 1D light ray associated
to a pixel in a reference image.

• The unicity constraint assumes that the matching function is bijective
[67] (one-to-one correspondences). This prior becomes invalid as the
foreshortening effect gets significant, as generally encountered in wide-
baseline stereo setups [178].

• The smoothness constraint models the depth values of the 3D scene as
piecewise-constant [195] [144] or planar [70] [240]. This assumption is
implicitly used in Chapter 5, in which a foreground object, that we aim
to interpolate in virtual views, is represented by a set of line segments
captured along the epipolar lines in the reference images. Once their po-
sitions in the intermediate views are determined based on a prior about
the possible silhouette of the object, its textures can be linearly interpo-
lated. This methodology is only valid when decomposing the 3D scene
(and its projection) into infinitesimal 3D (2D) surfaces [252] [239]. To
overcome this limitation, Li et al. [131] have regularized the depth based
on both second and third-order priors, thereby generalizing to curved
surfaces. However, their algorithm only approximates the solution of
this computationally infeasible triple cliques problem, by optimizing a
first-order prior on the surface’s normals. Although 1D and 2D smooth-
ness, often defined based on the TV (piecewise-constant model) or TGV
norm (piecewise-affine model) [25], are considered among the state-of-
the-art priors to alleviate the ambiguity of 3D estimation, they however
lead to the loss of high-frequency details [60]. In Chapter 4, we propose

17The well-known projective-invariants [92], such as concurrency, collinearity, cross-ratio, etc.,
are defined along the projections of visible 3D lines, and not on all pixels. They are thus not dense.
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to estimate the 3D of (man-made) scenes by a set of piecewise (projec-
tive) planar 3D model. Starting from a set of small 2D superpixels, for
which the planar assumption is considered as valid, our method simul-
taneously estimates the normal of their associated 3D planes and merges
the regions whose normals are similar. This joint optimization also en-
sures to represent the scene with a minimum set of plane models, lead-
ing to a light-weight piecewise-planar approximation of the 3D.

• The ordering constraint assumes that the left-right relation between the
projection of two 3D points (belonging to the same epipolar plane) is
preserved when changing the observer’s point of view. However, strict
ordering preservation, as implemented by earlier works [40], is violated
in wide-baseline, and previous works are missing solutions to formulate
and exploit the ordering as a weak and relaxed constraint. In Chapter 3,
we propose to disambiguate the matches based on a relaxed version of
the ordering constraint, which only favors the preservation of the order
of the elements without necessary strictly forcing it.

2.5 Virtual view interpolation when
correspondences are known

This section assumes that a dense correspondence map (expressed either as a
depth map or equivalently as a disparity map) has been obtained by matching
dense or sparse features (cfr. Sections 2.3 and 2.4). It shows how to process
a map to generate, or render, images of the observed 3D scene from different
viewpoints than the ones acquired by the reference cameras.

Precisely, the three most well-known types of methods for virtual view
synthesis are presented:

• 3D projection: the virtual view is obtained by projecting a 3D representa-
tion of the observed scene (e.g., a point-cloud or a meshed representation
derived from the correspondences) onto a virtual view defined based on
its (predefined) projection matrix Pv.

• View morphing: parts for which a correspondence exists in the reference
views are interpolated in the 2D image domain.

• Light-field cut: all the parts represented in at least one reference view is
interpolated in the 2D image domain, based on the real observation of
some other intermediate views.

Each of these methods, detailed in the following section, has its own advan-
tages and disavantages, which are presented in Table 2.2.

18In practice, to avoid the projection of non-modeled parts (seen by only one or none of the ref-
erence cameras), the virtual view’s pose is limited on the baseline between two reference cameras.
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3D projection View morphing Light-field cut

2 references +
≥ 1 intermediate(s)

Required views 2 references 2 references

Represents Real 3D Plausible 3D Plausible 3D

Virtual view’s
pose Arbitrary18 On the baseline On the baseline

Synthesized
parts

Corresponding
+ occluded

Corresponding Corresponding

Table 2.2: Comparison between the three most well-known types of methods
for virtual view synthesis.

2.5.1 3D projections

Based on a point-cloud or meshed [65] representation of the shape of the es-
timated 3D scene, 3D projection methods reconstruct a virtual view by fixing
the 12 parameters of an arbitrary virtual view Pv, and projecting the 3D model
onto this view. Due to the arbitrary selection of the projection matrix Pv, this
principle, used since decades in computer graphics, allows the user to watch
the dynamic scene from any desired viewpoint.

In case of meshed 3D model, a naive method for choosing the color of the
projected points x̃v = PvX̃ in the virtual view is to use the color of the refer-
ence camera that observes the 3D point with the smallest angle compared to
the surface’s normal. However, the lack of precision on the normal angle and
the camera’s photometric bias generally make the extracted pattern unsmooth
and thus unpleasant for a viewer [142]. A first extension has been proposed
by Seitz et al. [186], who have proposed to determine the color which is the
“most consistent” (measured by a likelihood ratio test on a Chi-squared dis-
tribution of the color standard-deviations) with all the reference views, which
often corresponds to the mean color. Instead of using the mean color as the
representative one, state-of-the-art methods simply use a weighted combina-
tion of the colors, where each (normalized) weight is inversionnally propor-
tional to the angle between a reference view and the plane normal of the 3D
surface [219].

Both the geometric and colorimetric veracity of the arbitrary view depends
on the accuracy of the 3D model. This model might not only be corrupted by
mismatches during the 3D estimation, but might also be incomplete, e.g., if
a part of the scene is observed by only one reference view. These occluded
areas appear as holes in the virtual image, and can be generally filled by in-
painting methods [17] if a pattern similar to the occluded part is visible in
the reconstructed image. However, because the amount of (dis-)occlusions
increases with the distance of the virtual view from the original views [197],
inpainting methods become inefficient when the pose (position and rotation)
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of the virtual view highly differs from the one of the reference cameras. These
drawbacks are generally solved by:

• Limiting the position of the virtual view on the baseline in-between two
reference views. A generalization to three views has been proposed in
[241]. Recently, Ballan et al. [12] have introduced additional constraints
by defining the pose of the virtual camera in such a way that the pro-
jection of a 3D object of interest, assumed to be perfectly reconstructed,
always stays at the center of the virtual image.

• Restricting 3D projection to simple 3D models only, e.g., that can be
approximated as a set of 3D planes, as applied in Chapter 4 to render
simple backgrounds of 3D scenes, such as the obtained (light-weighted)
piecewise-planar 3D approximation of man-made scenes.

The projection matrix Pv of a baseline virtual view is interpolated from the
reference views’ matrices P and P′. While the intrinsic parameters and the
position of the virtual camera can be linearly interpolated from the ones of
the reference views (their extraction has been detailed in Section 2.1.1), Eu-
ler’s angles can not be determined uniquely due to the Gimbal lock problem
[83]. In this thesis, rotation matrices are interpolated based on their quaternion
representation [90], which does not only avoid the degeneration in the rota-
tion interpolation, but also strongly accelerates the computations by replacing
computational trigonometric operations by simpler vector operations [166].

A quaternion q = (q0, q1, q2, q3)
> ∈ R4 is an algebraic structure imagined

by William Rowan Hamilton [88] [89] to encode any rotation (3 degrees of
freedom) in a 3D coordinate system as a four-components normalized vector
(q2

0 + q2
1 + q2

2 + q2
3 = 1). Roughly speaking, the three last elements (q1, q2, q3)

>

can be thought of as Cartesian unit axes, expressed by the complex elements
(i, j, k) ∈ C3, around which rotation should be performed, while the first ele-
ment q0 is the “scalar part” that specifies the amount of rotation that should
be performed around the axes.

A quaternion can be represented as a linear combination of real and imag-
inery parts, q = q0 + q1 · i + q2 · j + q3 · k, where i, j and k are called hyper-
complex numbers that satisfy i2 = j2 = k2 = i · j · k = −1 and form a non-
commutative group (ij = k while ji = −k).

The transformation from a quaternion vector q ∈ R4 into a rotation matrix
R ∈ SO(3) is given by [83]:

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33


=

 q2
0 + q2

1 − q2
2 − q2

3 2 · (q1 · q2 − q0 · q3) 2 · (q1 · q3 + q0 · q2)
2 · (q1 · q2 + q0 · q3) q2

0 − q2
1 + q2

2 − q2
3 2 · (q2 · q3 − q0 · q1)

2 · (q1 · q3 − q0 · q2) 2 · (q2 · q3 + q0 · q1) q2
0 − q2

1 − q2
2 + q2

3

 ,

(2.19)



60 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

which fulfils 
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1
1 1 1 1




q2
0

q2
1

q2
2

q2
3

 =


r11
r22
r33
1

 .

Therefore, the squared value of the elements of q can be estimated based
on a rotation matrix R as:

q2
0

q2
1

q2
2

q2
3

 =
1
4


1 1 1 1
1 −1 −1 1
−1 1 −1 1
−1 −1 1 1




r11
r22
r33
1

 . (2.20)

Because q and−q represent the same rotation matrix (cfr. Equation (2.19)),
the sign of one element is arbitrary fixed19, and the sign of the other elements
results from this choice. For example, if we fix sign(q0) = +1, Equations (2.19)
and (2.20) lead to:

sign (q1) = sign (r32 − r23)

sign (q2) = sign (r13 − r31)

sign (q3) = sign (r21 − r12) .
(2.21)

An intermediate rotation can be linearly interpolated from two reference
quaternion vectors, notated q and q′, based on Spherical linear interpolation
(SLERP). Spherical linear interpolation takes its name for the fact that the in-
terpolation follows the shortest arc on the unit sphere, which is considered as
the optimal interpolation curve between two rotations [83].

Precisely, if α ∈ [0, 1] represents the relative distance from the starting
configuration q to the target configuration q′ along this arc, the interpolated
quaternion at the relative position α is given by [189]:

qv(α) = slerp(q, q′,α) = q ·
(

q−1 · q′
)α

,

where q−1 = (q0,−q1,−q2,−q3)
>.

To avoid numerical instabilities from the power operator, qv(α) can be
equivalently estimated as [189]:

qv(α) =


q · (1− α) + q′ · α if (1−C) ≤ε
q · sin

(
(1− α) · π2

)
+ sin

(
α · π2

)
· (q3,−q2, q1,−q0)

> if (1 +C) ≤ε
q · sin ((1− α) · θ) / sin (θ) + q · sin (α · θ) / sin (θ) otherwise

(2.22)
where C=q>·q′ and θ = arccos(C) is the angle between the unit quaternions.

Once the intermediate rotation matrix interpolated based on Equations
(2.20), (2.21) and (2.22), Pv can be reconstructed, and the textures of the inter-
mediate view can either be directly projected via the 3D model, or rendered

19Fixing the sign of any other element leads to an equivalent (in term of equivalence class)
representation of the quaternion.



2.5. VIRTUAL VIEW INTERPOLATION 61

by a weighted20 average of the reference colors, transferred to the virtual view
by homography [100] (cfr. Equation (2.17)).

Instead of projecting a predefined 3D model to reconstruct the virtual im-
age, Woodford et al. [239] take the most of the knowledge of Pv by simulta-
neously optimizing the 3D model (depth information associated to the virtual
camera) and the reconstructed virtual image. This is done by favoring, in the
reconstructed image, the presence of image’s patches that are consistent with
the reference views [60]. In their paper, they show that this problem can be
reduced as a depth optimization with occlusion reasoning, in which both the
depth and an occlusion mask are retrieved by Quadratic Pseudo-Boolean Op-
timization [175].

2.5.2 View morphing

Instead of projecting a 3D representation of the scene, view morphing [185]
interpolates the virtual images directly in the 2D image space, based on a
correspondence map relating the two reference views. By focusing only on
the reconstruction of a visually plausible virtual view [251], it allows to render
more complex 3D scenes, at the price of limiting the position of the interme-
diate views to the baseline. Since their beginning [234], the methods based on
(linear, bilinear, bicubic, etc.) image interpolation have shown promising re-
sults, especially due to the fact that holes can be filled during the interpolation
phase, making them especially suited to the use of a sparse correspondence
map. For example, while the determination of the 3D model associated to
uniformly textured regions is ambiguous and often leads to ghosting artefacts
when rendered by 3D projection, image interpolation methods can interpolate
these uniform textures based only on the knowledge of edge correspon-
dences [45].

However, although being sometimes blindly applied [101], generating in-
termediate views by simple (linear, bilinear, bicubic, etc.) interpolation in-
between correspondences does not guarantee to produce physically correct
(e.g., topologically coherent) representations of a scene [184] (cfr. Figure 2.1).

In their seminal work [185], Seitz and Dyer have demonstrated that topo-
logically coherent intermediate views can be synthesized by (epipolarly) recti-
fying the reference images and applying a linear interpolation along the scan-
lines. This technique is called view morphing.

Because these methods mainly rely on the knowledge of the fundamen-
tal matrix, the quality of the rendered view is generally less impacted by the
calibration inaccuracies [101].

This supports the generation of intermediate images by view morphing,
which has been extensively used in Chapter 5.

Mathematically, view morphing relies on epipolar rectification to synthe-
size the intermediate textures by linear interpolation of the basis textures, such
as:

Iα(uα, v) = (1− α) · I(u, v) + α · I ′(u′, v)

20The weights are generally inversionnally proportional to the angle in-between the principal
axis of the virtual view and the one of the reference camera.
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with I and I ′ the rectified reference images, Iα the reconstructed intermedi-
ate image, u the abscissa of a pixel of I , v its fixed ordinate (studied scanline),
and u′ the abscissa of the corresponding pixel in I ′. The pixel abscissa uα is
lineary interpolated as follow:

uα = (1− α) · u + α · u′

The transfer of the color from a reference image (e.g., from I or I ′), to a
target image (e.g., Iα) is known in the literature as forward warping [38].

Forward warping projects the points from a source image onto a target
image, based on the knowledge of a projective transformation (e.g., a homog-
raphy transfer x̃′ = H · x̃) relating the two views. Because this projection x′

might fail at the sub-pixel level, the coordinates of these projected points are
generally rounded to their nearest pixel coordinates. As a consequence, mul-
tiple pixel from the source image might be projected on the same pixel of the
target image and some pixels of the target image might not be filled. Due
to these drawbacks, it is preferable to determine, for all the pixels in the tar-
get image to interpolate, the corresponding pixel(s) in the source image. This
procedure, called backward warping [250], uses the inverse of the projective
mapping (e.g., H−1x̃′ = x̃) to associate a (sub-)pixel coordinate x of the source
image for each pixel x′ in the target view. The color of each of the target pixels
x′ can then be interpolated from the colour values of the neighboring pixels
around x, e.g., based on bilinear, cubic or bicubic interpolation [78] [111].

2.5.3 Light field cut

Light field rendering aims at modeling the compact set of light rays contained
in a fixed 3D space, based on a simplification of the plenoptic function, intro-
duced by Adelson and Bergen [2]. The plenoptic function defines, at a specific
time t, the intensity of a light ray (of wavelength λ) passing through the 3D po-
sition X = (X, Y, Z)> and going towards the direction specified by the spher-
ical angles φ and θ as a 7D function notated as L(t, λ, X, Y, Z,φ, θ). Levoy
and Hanrahan [127] have simplified this plenoptic function by assuming that
the intensity of the light does not change along the ray (unless “blocked” by
an occlusion [127]). In this case, they proved that, if the scene is observed
by multiple views having their optical centers lying on a common 3D plane
Ω and their image planes coplanar21 in a common image plane denoted Ω′

(as illustrated in Fig. 2.18(a)), the light field can be parametrized as 4D func-
tion. Indeed, the intensity of each light ray, projected on a pixel coordinate
(u, v) ∈ Ω′ of a camera having its optical center at (s, t) ∈ Ω , can thus be
represented as L(s, t, u, v). By fixing the two coordinates t? and y?, we restrict
ourselves to the investigation of the light rays that belong to a 2D plane, called
an epipolar plane image, whose intersection with Ω′ is illustrated by the green
line in Figure 2.18(a).

Interestingly, Bolles et al. [22] have shown that a sampled version of these
light rays can be observed based on the reference views having the same t pa-
rameter. This observation is done in two steps. First, the reference views are

21Such camera configuration can always be obtained based on epipolar rectification (cfr. Section
2.2.3).
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(a) (b)

Figure 2.18: After stacking (a) the reference views observing the scene into
(b) a 3D cube and reconstructing its set of epipolar plane image (green rect-
angle), any transverse cross-section of the reconstructed 3D cube generates an
intermediate view (images from the courtesy of S. Wanner [233]).

stacked on top of each other, in which the top image of the stack represents
the first outermost reference view I while the bottom one represents I ′, i.e.,
the other extreme one. An example of stack is illustrated in Figure 2.18(b).
Second, the sampled version of an epipolar plane image is obtained by con-
sidering a cut through this stack, such as illustrated by the green rectangle in
Figure 2.18(b).

In Figure 2.18(b), the scene is observed by a so dense collection of refer-
ence views (the authors of [127] mention hundreds to thousands) that each
light ray becomes visible in a given epipolar plane image, and that their linear
parameters can be easily estimated [41], allowing to reconstruct a continuous
version of each epipolar plane image. Any intermediate viewpoint can then
be generated by “sectioning” (horizontal cross-section in Figure 2.18(b)) the re-
constructed set of epipolar plane images at an intermediate position α ∈ [0; 1]
in-between the two reference views.

However, in practice and as explained in Chapter 5, requiring both a tre-
mendous amount of reference views and an important range of intermediate
viewpoints (i.e., the two outermost views forming a wide-baseline stereo pair)
is not possible due to acquisition and storage limitations. This chapter also
explains how these principles can be extended to wide-baseline setups, by
showing that shape priors, that can be learned in advance, can help in inter-
polating the intermediate view, allowing to use only two reference views.
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CHAPTER 3

Estimation of arbitrary 3D scenes
under relaxed ordering constraint

Determining correspondences across 1D sequences is one of the principal
challenges for highly parallelizable stereo matching/3D reconstruction. The
problem is however ill-posed, and is thus generally solved under some ad-
ditional prior constraints. One of the most popular prior enforces the strict
preservation of the left-right relationships between the elements, which is
known as the ordering constraint, and can directly be implemented based
on dynamic programming. However, the strict preservation of this relative or-
der becomes violated when the images are captured by two cameras that are
far apart from each other. In this chapter, we propose to disambiguate the
matches based on a relaxed version of the ordering constraint, which only fa-
vors the preservation of the order of the elements without necessary strictly
forcing it. This is done by proposing a new objective function, whose coor-
dinate descent maximization not only disambiguates the correspondences
based on the order information, but also detects the occluded (no corre-
spondence) elements. Simulations on synthetic data demonstrate that our
proposed approach determines correspondences (and occluded elements)
more accurately than dynamic programming. Validations on real images il-
lustrate that the relaxed ordering constraint helps in finding correspondences
(and thus 3D information) in wide-baseline stereo.

65
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3.1 Introduction

Stereo matching is one of the oldest problems in computer vision, with numer-
ous applications in 3D reconstruction, image interpolation, multi-view detec-
tion, tracking and content-based image retrieval. While multiple priors have
been proposed to disambiguate this ill-posed problem when the views are
captured by two cameras with similar poses (small-baseline configuration),
most of those priors are violated when the two views are captured from very
different viewpoints. This is the case for the ordering constraint, which forces
a strict preservation of the left-right relationships between the elements to
match. This prior is one of the most effective priors for narrow-baseline stereo
matching, but appears to be regularly violated in wide-baseline setups (see
Figures 1.6 and 2.17). Nevertheless, even if a strict constraint is too aggressive,
favoring the preservation of left-right relationships between pairs of elements
to match across images remains relevant in wide-baseline matching, since this
order reflects the underlying spatial organization of the scene. For this rea-
son, we propose a new prior, called the relaxed ordering constraint, which tends
to preserve the spatial relationships between the elements to match without
necessary strictly forcing them.

The chapter is organized as follows. In Section 3.2, we survey the main
priors used in stereo matching. Then, Section 3.3 shows that determining the
optimal correspondences under relaxed ordering constraint can be formulated
as a labelling problem, for which an objective function is introduced in Sec-
tion 3.4. The maximization of the objective function simultaneously detects
the elements that have no correspondence and matches the others according
to both their similarity and their relative order. Section 3.5 adopts a coordi-
nate descent method to solve this maximization problem. Finally, Section 3.6
demonstrates the relevance of our approach. It first relies on synthetic data to
show that the proposed objective function is well suited for stereo matching,
and that the coordinate descent optimization scheme is as accurate as a brute-
force search, while being computationally affordable. It then demonstrates,
both on synthetic and real images, that our relaxed formulation of the order-
ing constraint outperforms the strict ordering constraint, especially when the
distance between views increases. To the best of our knowledge, this work is
the first one to introduce and manipulate a relaxed ordering constraint. It also
confirms that such a weak constraint is especially suited to computer vision
problems.

3.2 Related work

While the determination of sparse (and reliable) correspondences between
two arbitrary views of a same 3D scene has been deeply investigated [223][224]
[220], we focus on the determination of dense (pixel) correspondences be-
tween only two views, and assume that the stereo pair is calibrated. In this
case, the 2D matching problem can be turned into the determination of cor-
respondences along pairs of 1D epipolar lines [92]. This 1D problem is nev-
ertheless an ill-posed problem, especially in presence of non-lambertian sur-
faces, uniform and/or repetitive textures, foreshortening effects and occlu-
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sions. Multiple priors have been proposed to disambiguate the matches, and
have been deeply detailed in Section 2.4.

In summary, the photometric consistency is the primary prior to consider
when matching elements from different views, and perspective-robust de-
scriptors (like Daisy [218]) are recommended to exploit this prior in wide-
baseline setups. We have opted for the use of the Daisy descriptor [218]
in our validation (see Section 3.6), due to its outperforming robustness/dis-
criminativeness trade-off, compared to the usual descriptors such as SIFT,
SURF, GLOH, etc (cfr. Section 2.3.2). Those descriptors are considered in
our validation (see Section 3.6). Two other priors remain relevant in wide-
baseline, namely the smoothness and the ordering. Interestingly, those two
priors provide complementary hints about the matching: while the first one
imposes a local constraint around the pixel to match (and would thus for ex-
ample not help in determining dense correspondences between two views of
a brick wall), the ordering constraint brings information about the spatial and
more global organization of the scene.

Earlier works exploit this ordering prior by forcing a strict preservation of
the order. This is typically done based on a dynamic programming framework
[40]. However, despite the fact that the ordering constraint remains roughly
valid in wide-baseline stereo, its strict preservation is violated, thereby pre-
venting the use of conventional dynamic programming solutions. Precisely,
the strict ordering is only valid when no 3D surface is included in the forbidden
zone (induced by (dis)-occlusions) of another 3D surface [246], as illustrated in
Figure 3.1.

(a) (b)

Figure 3.1: (a) The strict preservation of the order of the elements (“m is on
the left of n”) is violated because the 3D point M falls into the forbidden zone
generated by N, with respect to the cameras’ optical centers C and C′. (b) The
violation of the order implies that the “left-right” relations between (sets of)
pixels, captured along corresponding epipolar lines, are not preserved.

Hence, the contribution of this chapter is a relaxed version of the ordering
constraint, which can be used in stereo matching to only favors the preserva-
tion of the order of the elements without necessary strictly forcing it. This
means that it tolerates the inversion, as long as they are supported/promoted
by other priors, such as the photometric consistency.
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3.3 Problem definition

Turning the 2D stereo matching problem into the determination of correspon-
dences along pairs of corresponding epipolar lines [92], we focus on the deter-
mination of the correspondences between the elements of two 1D sequences
denoted S1 = {s1

1, s1
2, · · · , s1

N1
} and S2 = {s2

1, s2
2, · · · , s2

N2
}. Each entry si

j ∈
RD, with i ∈ {1, 2} and j ∈ {1, · · · , Ni}, is a D-dimensional representation of
the jth element of the ith sequence. As in [9], the correspondence problem is
expressed as the determination of a labelling function l that labels each entry
si

j ∈ Si with a label l(si
j) , li

j ∈ {L ∪ ∅} (with |L| being the total number
of labels, as described here below), such that corresponding elements are la-
belled with the same label, and unmatched elements (no correspondence) are
assigned to the empty set ∅. Let us define Li = {li

1, li
2, · · · , li

Ni
} as the set of

labels assigned to Si and ΦΦΦ ∈ [0, 1]N1×N2 the pairwise similarity between the
elements of S1 and S2 (e.g., the closeness between pixel descriptors). Because
the correspondences between the labels impose only a relative dependency
between L1 and L2, we proceed in two steps:

1. We fix L1 to the ordered sequence {l1
1 = 1, l1

2 = 2, · · · , l1
N1

= N1}, and
determine the optimal L2, with l2

k ∈ {L
1 ∪ ∅}, ∀k ∈ {1, · · · , N2}. This

step assumes that each element of S2 corresponds to at most one element
of S1 or to the empty set, i.e., L2 describes a surjective mapping to {L1 ∪
∅}, i.e., ∑k δ

(
l2
k 6= ∅

)
= N1 = ∑k ∑j δ

(
l2
k = l1

j , l2
k 6= ∅

)
.

2. Based on the optimal L2 determined in the previous step, L1 is corrected
a posteriori, such that the elements s1

k that have no correspondence (i.e.,
l1
k 6∈ L2) are assigned either to the empty set ∅, or to one of the elements

s2
k whose label is not shared with any other element of S2. Symmetrically

to step 1, this step assumes thus that each of those unmatched elements
of S1 corresponds to at most one element of S2. This is implemented
by reversing the algorithm used in step 1, keeping the elements of S1

already associated to S2 unchanged.

The asymmetry of this process and its implications are discussed in Chapter
6. Without loss of generality, we thus restrict ourselves to mapping S2 onto
S1. The problem, which corresponds to step 1 above, is thus reduced to the
determination of an optimal labelling L2 ∈ {L1 ∪ ∅}N2 , knowing L1. The
optimization is done in a probabilistic framework, in which the optimal L2

is determined as the Maximum a Posteriori (MAP) of p(L2|L1,ΦΦΦ), which is
maximized in such a way to account for the noisiness that could affect the
similarity metricΦΦΦ. According to Bayes’ theorem,

argmax
L2

p(L2|L1,ΦΦΦ) = argmax
L2

p(ΦΦΦ|L1, L2) · p(L1, L2)

p(ΦΦΦ)

= argmax
L2

p(ΦΦΦ|L1, L2) · p(L1, L2),
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because p(ΦΦΦ) is independent of L2 and thus does not influence the optimiza-
tion. While the first term represents a data-fidelity between the elements of S2

and those of S1, the second one expresses the joint probability distribution of
L2. To formulate the MAP as an energy optimization problem, we propose to
express the two terms as Gibbs distributions1:

p(ΦΦΦ|L1, L2) =
1
ZEF

e−EF

(
L1={l1

1=1,··· ,l1
N1

=N1},L2,ΦΦΦ
)

,
1
ZEF

e−
(

1−F
(

L1={l1
1=1,··· ,l1

N1
=N1},L2,ΦΦΦ

))

p(L1, L2) =
1
ZλEG

e−λ·EG(L1={l1
1=1,··· ,l1

N1
=N1},L2)

,
1
ZλEG

e−λ·
(

1−G
(

L1={l1
1=1,··· ,l1

N1
=N1},L2

))
,

where λ ∈ R+, F
(
L1, L2,ΦΦΦ

)
∈ R expresses the cost of assigning the set of

labels L2 to S2 given the fact that the labels L1 = {l1
1 = 1, · · · , l1

N1
= N1} have

been assigned to S1, G
(
L1, L2) ∈ R expresses a penalty of assigning a certain

labelling L2, given the (ordered) sequence of labels defined by L1. ZEF and
ZλEG are partition functions. The MAP is thus given by:

argmax
L2

p(ΦΦΦ|L1, L2) · p(L1, L2) = argmax
L2

F(L1, L2,ΦΦΦ) + λ · G(L1, L2). (3.1)

Both the data-fidelity F(L1, L2,ΦΦΦ) and the regularization term G(L1, L2) are
defined in the following section.

3.4 Data-fidelity and order regularizer
We propose to define F(L1, L2,ΦΦΦ) as a data-fidelity function that (i) enforces
similar elements to receive the same labels, while (ii) pushing towards the
assignment of the empty label for the elements of S2 that have a strong dis-
similarity (1 −maxj={1,··· ,N1}ΦΦΦ(s1

j , s2
k)) with all the possible corresponding

elements of S1. This is done by defining F(L1, L2,ΦΦΦ) (notated as F) based on
a weighted sum of these two criteria:

F =
N2

∑
k=1

(
δ(l2

k 6= ∅)

∑N1
j=1 δk(l1

j )
·
( N1

∑
j=1
δk(l1

j ) ·ΦΦΦ(s1
j , s2

k)

)

+ β · δk(∅) ·
(

1− max
j={1,··· ,N1}

ΦΦΦ(s1
j , s2

k)

))
,

︸ ︷︷ ︸
,Fk

1As we will see in the next section, the two processes driving the label assignment, either based
on descriptor similarity between the two images or based on local ordering within an image, can
be considered as being Markovian in the sense that the probability of assigning a label to a given
element primarily depends on a limited number of labels assigned to the other image or to the
current image, respectively. According to the Hammersley-Clifford theorem [122], any probability
measure that satisfies a Markov property is a Gibbs measure.
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where δ(.) denotes the indicator function, δk(l1
j ) , δ(l2

k = l1
j ) indicates if the

kth element of S2, i.e., s2
k , has the same label than the jth element of S1, i.e.,

s1
j , and the parameter β ∈ R increases with the willingness to tolerate empty

label assignment.
G(L1, L2) is defined as a regularizer of the order of the sequences, which

favors uncrossed associations, i.e., avoids that s1
j is associated with s2

k know-

ing that s1
j+x is associated to s2

k−y (x ∈ {0, · · · , N1− j} and y ∈ {0, · · · , k− 1}).
There exist two types of crossed associations. The first type, named weakly
crossed association, comes when two elements of a sequence correspond to the
same element in the other sequence, i.e., when x = 0. The correspondences
{s1

3 = ’b’, s2
3 = ’b’} and {s1

3 = ’b’, s2
4 = ’b’} in Figure 3.2 illustrate a weakly

crossed association. The second type of crossed association, named strongly
crossed association, occurs when x ∈ {1, N1 − j}. The set of correspondences
{{s1

4 = ’c’, s2
6 = ’c’}, {s1

5 = ’e’, s2
5 = ’e’}} in Figure 3.2 describes a strongly

crossed association.

Figure 3.2: The relaxed ordering constraint tends to minimize the weakly (e.g.,
involving ’b’ letters) and strongly crossed associations (e.g., involving ’c’ and ’e’
letters).

We propose to quantify the order of a sequence by associating, to each label
l2
k ∈ L2, a measure ωord

k (L1, L2) that counts the number of labels in L2 that do
not induce a strongly crossed association with the kth element of S2. As defined
below, ωord

k (L1, L2) measures thus how much the chosen label l2
k pushes L2

toward an ordered sequence:

ωord
k , (1− θ) ·

(
k−1

∑
n=1

ok>n(l2
k , l2

n, L1) +
N2

∑
n=k+1

ok<n(l2
k , l2

n, L1)

)
︸ ︷︷ ︸

Ordering consistency

+ θ ·
(

k−1

∑
n=1

δ(l2
k = l2

n) +
N2

∑
n=k+1

δ(l2
k = l2

n)︸ ︷︷ ︸
Ordering equality

)
. (3.2)

The parameter θ ∈ [0; 1] promotes the assignment of the same label to two
elements of S2, and ok>n(l2

k , l2
n, L1) (respectively ok<n(l2

k , l2
n, L1)), noted as ok>n

(respectively ok<n) for notation convenience, are defined only ∀k | l2
k 6= ∅, as:
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ok>n = δ(l2
k > l2

n) ·
N1

∑
i=1

N1

∑
m=1

δ(i > m & l1
i = l2

k & l1
m = l2

n)

ok<n = δ(l2
k < l2

n) ·
N1

∑
i=1

N1

∑
m=1

δ(i < m & l1
i = l2

k & l1
m = l2

n).

The function ok>n (respectively ok<n) counts how many matches of the nth el-
ement of S2 do not cross the matches of the kth element of S2, with k > n
(respectively k < n). For example, if we focus on the k = 5th element of the
S2 sequence illustrated in Figure 3.2, i.e., the element ’e’, the ordering consis-
tency of this element is decomposed into ∑5−1

n=1 o5>n = 4, because 4 of its left
elements do not cross its association with s1

5, and ∑8
n=5+1 o5<n = 1 because,

among all the matched elements at the right of s2
5, only one does not cross its

association with s1
5.

We propose to use ωord
k (L1, L2) to measure how much the chosen label l2

k
favors the ordering, compared to all the other possible labels (from L1) that
could be assigned to s2

k . This gain is expressed as
(
ωord

k (L1, L2)−
El
[
ωord

k (L1, L2 ◦k l)
])

, where the operator L ◦k l represents the assignment of
the label l to the kth component of L, and El

[
ωord

k (L1, L2 ◦k l)
]

represents the
mean (expected) cost when l is a uniform random variable. The higher this
gain, the more assigning l2

k to the kth element of S2 favors the ordering com-
pared to any other label l ∈ {1, · · · , N1}. Finally, we propose to measure the
ordering regularizer G(L1, L2) of an entire labelling L2 as the (normalized)
sum of these gains:

G =
N2

∑
k=1

δ(l2
k 6= ∅) ·

(
ωord

k (L1, L2)−El
[
ωord

k (L1, L2 ◦k l)
])

∑n 6=k δ(l2
n 6= ∅)

.

︸ ︷︷ ︸
,Gk

In summary, while maximizing the data-fidelity term F(L1, L2,ΦΦΦ) pushes to-
wards the association of each element of S1 to an element of S2 or to the empty
set ∅, the maximization of G(L1, L2), that corresponds to our relaxed ordering
constraint, tends to reject the crossed associations. The importance of the regu-
larization term over the data-fidelity term is steered by the parameter λ, such
that the objective function is defined as:

f (L1, L2,ΦΦΦ) = F(L1, L2,ΦΦΦ) + λ · G(L1, L2)

=
N2

∑
k=1

(Fk + λ · Gk)︸ ︷︷ ︸
, fk

. (3.3)

The objective function f describes thus two trade-offs, respectively con-
trolled by the factors β and λ: a first one between the assignment of an ele-
ment s2

k to the empty set or its matching with an element of S1, and a second
one to balance data-fidelity and ordering.
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3.5 Optimization

Determining the optimal L2 among the (|L|+ 1)N2 = (N1 + 1)N2 possibilities
is a combinatorial problem. Our problem can be formulated as the optimiza-
tion of a 3rd degree binary objective function, subject to equality constraints.
A possible approach to solve this problem consists in turning the discrete op-
timization problem into a continuous optimization problem (e.g., by relaxing
the discrete labels into a labelling likelihood). However, the transformed (con-
tinuous) problem usually has an astronomically large number of local min-
ima, making its global optimization challenging [159]. Because state-of-the-art
methods, such as the combination of smoothing [99] with logarithmic barrier
functions [57], do not guarantee to reach the global optimum, and because
their convergence speed might be very slow, we have tested a simple coordi-
nate descent optimization scheme, and demonstrate both its effectiveness and
its efficiency in Section 3.6. We propose, as initial labelling, the one that max-
imizes the similarity. At each iteration, our optimization method selects an
element s2

k of S2, and computes the label l2
k ∈ {L

1 ∪ ∅} that maximizes f
(cfr. Equation (3.3)), the other labels l2

i|i 6=k being fixed. Fixing these labels
makes the continuous version of each coordinate descent iteration a second
degree problem. To accelerate the coordinate descent convergence process,
we propose an adaptive scheduling strategy to avoid iterating over the ele-
ments that are less likely to improve the objective function. In practice, this is
done by selecting the elements s2

k randomly, according to a probability density
function that takes the outcome of previous iterations into account to favor the
selection of elements that most likely increase the objective function f . Those
elements are the ones (i) that only bring a small contribution to f 2, i.e., the
ones for which fk = Fk + λ · Gk, as defined in Equation (3.3), is small,
(ii) that have not been considered by a recent iteration of the coordinate de-
scent process, and (iii) whose latest label optimization has led to an improve-
ment of the objective function. As detailed in the Algorithm pseudo-code,
this is achieved by defining the probability of selecting an element k? to be in-
versely proportional to its gain fk? , and by using a factor (1− exp(−αk · (t′ −
tk)) (where t′ represents the index of the current iteration and tk the one of
the previous process of the element k) to penalize the elements that have been
recently investigated ((t′ − tk) is small), especially when it failed to increase
the objective f (αk becomes smaller). The optimization stops once the system
is in a steady state, i.e., once no single label change can improve the objective
function. The default value for the αk parameters has been set in such a way
that (1− exp(−αk · (t′ − tk)) ≈ 1 until approximatively γ% other elements of
S2 have been processed, i.e., as long as (t′ − tk) ≤ γ · N2. This is to make sure
that enough other elements of S2 have been processed before coming back to a
previously processed coordinate. Choosing γ · N2 = 4

αk
, i.e αk = 4

γ·N2
, fulfills

this criterion, because (1− exp(−αk · (t′ − tk))) = (1− exp(−4)) ≈ 0.98.

2Because our coordinate descent optimization may update l2
k at each iteration, the value of f ,

defined by Equation (3.3), changes through time.
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Algorithm Mapping under relaxed ordering constraint

Input: Matrix of similaritiesΦΦΦ ∈ [0, 1]N1×N2

β, λ, θ and γ parameters (see text for details)
The function fk(L2)← Fk + λ · Gk (cfr. Equation 3.3)

Output: A surjective mapping L2 7→ {L1 ∪∅}

Initialize: {l1
j }

N1
j=1← j; E = {1, · · · , N2}

L2←{l2
k = argmaxl∈L1 ΦΦΦ

(
s1

l , s2
k
)
}N2

k=1;
t′←0; {tk}N2

k=1← t′ ; {αk}N2
k=1←

4
γ·N2

;

while E 6= ∅ do
t′← t′ + 1;
Evaluate { fk(L2)}N2

k=1

Pk ∼ ( fk)
−1 ·

(
1− e−αk(t′−tk)

)
∀k ∈ E

k?←argmink∈E

∣∣∣r−∑k
k′=1 Pk′

∣∣∣ with r ∼ U (0, 1)

l?←argmaxl∈{L1∪∅} f (L2 ◦k? l)
if l? 6= l2

k? then
l2
k?← l?

E ←E \ k?

αk?← 4
γ·N2

tk?← t′

else
E = {1, · · · , N2}
αk?←αk?/2

end if
end while

The computational bottleneck of the algorithm is the estimation of Gk,
which requires, for each k ∈ [1, · · · , N2], (at most) N1 × N2 estimations of
ωord

k , due to the term El
[
ωord

k (L1, L2 ◦k l)
]
. We have however observed that

the normalized mean value
El [ωord

k (L1,L2◦k l)]
∑n 6=k δ(l2

n 6=∅)
is constant, and close to 0.5, what-

ever the choice of the θ parameter. This is due to the fact that, on average, low-

value (respectively high-value) labels l make
El [ωord

k (L1,L2◦k l)]
∑n 6=k δ(l2

n 6=∅)
tend to 1 when k

points to an element at the beginning (respectively at the end) of the sequence,
while it tends towards 0 when k represents an element at the end (respectively

at the beginning) of the sequence.
El [ωord

k (L1,L2◦k l)]
∑n 6=k δ(l2

n 6=∅)
is thus replaced by 0.5 in

the estimation of Gk.
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3.6 Validations

Our validation section is organized in three parts. The first two ones consider
synthetic 3D scenes. Considering synthetic data allows us to compare the
determined correspondences with the ground-truth correspondences. Using
those data, we respectively assess (i) the benefit of introducing the soft ordering
term in our objective function and (ii) the effectiveness of our proposed opti-
mization scheme, compared to a brute force exhaustive search. We also show
that our method, which uses the relaxed ordering constraint as regularizer, out-
performs the well-known dynamic programming method, which implements
the strict ordering constraint. In the third part of our validation, dense corre-
spondence maps (depth maps) are generated from well-known wide-baseline
real-life images. It demonstrates the relevance of our scheme in real life sce-
narios.

To generate the synthetic 3D scenes considered in the first and second parts
of our validation, we simulate a stereo camera setup observing a set of fronto-
planar 3D surfaces of uniform color. Multiple piecewise planar 3D scenes are
synthesized by randomly placing 3D planes (of random sizes) parallel to the
images’planes, in a cube of unit length, illustrated in Figure 3.3. Cameras are
located in X = 0.5, Y = 0.25 , Z = 1 and X = 0.5, Y = 0.75, Z = 1. Their
intrinsic parameters have been fixed in such a way that the cameras’ field of
views cover 3

4 of the 3D space. Without loss of generality, we assume that the
stereo pair is rectified.
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Figure 3.3: The objective function of Equation (3.3) is validated on synthetic
wide-baseline fronto-planar 3D scenes.

To simulate the occlusions and ordering violations that appear when observ-
ing a 3D scene with a wide-baseline setup, the depth of the closest plane is
chosen randomly but is forced to be at most twice the cameras’ baseline. The
depth of the other planes is chosen randomly, using an uniform distribution
beyond the closest plane’s depth.

To drive our matching based on colorimetric (dis)similarities, we propose
to simply describe each of the planes by its Lab color, and to define ΦΦΦ by
the (normalized) CIEDE2000 [187] color similarity. The discriminativeness
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of this metric makes it considered as the state-of-the-art perceptual color dif-
ference [167]. The similarity ΦΦΦ represents thus an “ideal” measure of corre-
spondence, which is almost maximum when two elements match and mini-
mum otherwise. In practice, only (photometric and geometric) invariant de-
scriptors can provide such an “ideal” measure. However, as explained in
Section 2.4, no dense (pixel) invariance to the real word geometry has been
established until now, meaning that the perspective-robust descriptors cur-
rently used in wide-baseline provide a “noisy” version of this “ideal” similar-
ity/dissimilarity measure. We propose to simulate this inaccuracy by adding
white gaussian noise to this “ideal” similarity measureΦΦΦ, and to measure the
noise level based on the SNR.
Given the above described synthetic dataset, as a first part of our validation,
Figure 3.4 compares four 1D matching methods based on the percentage of
elements of one image that have been correctly assigned to the second im-
age or to the empty set (i.e., detected as occluded), when the similarity met-
ric ΦΦΦ is corrupted by such additive white gaussian noise. The four methods
are the conventional dynamic programming approach, which forces strict or-
der preservation [40], and three variants of our proposed scheme, respectively
considering as an objective function only the similarity term in F, the whole
function F, and the function f defined in Equation (3.3). To fairly compare
the 4 methods, we always have selected, among a grid set of possible parame-
ters (β, λ, θ, γ and the occlusion parameter of dynamic programming [40]) the
ones that maximize the performances. This experiment has shown that the pa-
rameters β = 5, λ = 1, γ = 1 and θ = 0.49 is a good choice for wide-baseline
setups. The 0.49 value of the last parameter can be intuitively explained by the
fact that (i) there is no clue about the presence or absence of foreshortening ef-
fect on an arbitrary element (which incites to tolerate the repetition of labels
and thus θ ≈ 0.5), and (ii) it is slightly preferable to set θ below 0.5 to favor
one to one mappings when possible. For a fair validation of our algorithm,
this set of parameters is used in all our future validations, although we advice
the reader to adapt them according to the observed scene (e.g. the likelihood
of having occluded elements, of violating the ordering, etc.).

Figure 3.4: Average and standard deviation percentages (on 1200 runs) of
correct labels, i.e., correspondences or occlusions, when adding white gaus-
sian noise to the similarity measure (to model the inaccuracy of photomet-
ric/geometric robust descriptors).
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Figure 3.4 shows that, as soon as the similarity measure becomes inaccu-
rate3, i.e., when the noise increases, the relaxed ordering constraint significantly
helps to disambiguate the matching. Moreover, it does it much better than the
strict preservation of the order implemented by dynamic programming [40].

In the second part of our validation, we still rely on the synthetic dataset to
evaluate the effectiveness of the proposed optimization scheme. This is done
by comparing the accuracy of the matching resulting from our coordinate de-
scent approach to the one measured for the global optimum, obtained based
on an exhaustive search. As shown in Table 3.1, the proposed optimization
scheme reaches performances that are always close to the ones obtained by
the global optimum.

No noise SNR = 30dB SNR = 10dB
Brute-force search 100± 0% 99.9± 1.2% 90.9± 7.4%

Optimization scheme 99.7± 2.9% 99.4± 3.8% 85.9± 11.3%

Table 3.1: Our optimization scheme reaches performances that are close to the
global optimum (determined by a brute-force search), while being computa-
tionally affordable.

This gives credit to the use of our coordinate descent strategy.

In the third and last part of our validation, we determine a dense corre-
spondence between well-known pairs of wide-baseline stereo images [206],
and convert them into (epipolary rectified) depth maps, such as illustrated in
Figure 3.5. We highlight the fact that these results have been obtained based
only on the two presented wide-baseline views. The last row of this figure il-
lustrates the similarity measure between two corresponding epipolar lines of
one of these wide-baseline stereo images, and respectively, from left to right,
the ground-truth mapping, the mapping obtained by dynamic programming
[40] and the labelling found after the convergence of our optimization scheme.
As shown on this row, the strict preservation of the ordering constraint (such
as done by dynamic programming [40]), which imposes that the mapping
from L2 to L1 forms a strictly decreasing function, is not valid in wide-baseline
conditions. By relaxing this prior, our method is adapted to wide-baseline
conditions, and effectively approximates the ground-truth mapping.

3The trade-off between accuracy and robustness implies that ΦΦΦ is often chosen to be inac-
curate, in such a way to robustify the matching (e.g., by describing an element with an (scale,
rotation, etc.) invariant descriptor).
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Rectified left view Rectified right depth map Rectified right view

Order violation

Ground-truth Mapping by Mapping by
mapping dynamic programming relaxed ordering

constraint

Figure 3.5: Dense depth maps (epipolary rectified) determined by our algo-
rithm on well-known wide-baseline images provided by [206], based only on
the two presented images. The red color represents the pixels that have been
labelled as occluded. Structures can be easily observed when zooming in the
figure. The color maps on the last row represents the pairwise similarity ΦΦΦ
between the Daisy descriptors [218] captured along corresponding epipolar
lines (at the center of the green rectangles). From the left to right image on this
row, the black dots respectively present: the (manually generated) ground-
truth mapping, the mapping determined by dynamic programming (which is
incorrect since the ordering constraint is not strictly preserved in this scene
(see the pink rectangle)) and the mapping found by our method, based on the
soft ordering regularization.

3.7 Conclusion

The relative position between the elements constituting a 3D scene provides
relevant informations that can be used to disambiguate the ill-posed prob-
lem of stereo matching. The strict preservation of the left-right order, such as
imposed by dynamic programming in [40], appears to be a valid hypothesis
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when the scene is observed from two very close viewpoints (narrow-baseline
setups). However, this assumption becomes more and more violated as the
viewpoints spread apart. This is the reason why this information has been
rarely exploited until now in wide-baseline setups. To cope with this limita-
tion, while still exploiting the relative ordering of the scene’s elements, this
chapter has introduced a framework for promoting the order preservation,
without forcing it. The proposed approach computes dense correspondences
in a wide-baseline stereo setup by maximizing the similarity of the elements
captured along corresponding epipolar lines, while favoring correspondences
that preserve the order, without necessary imposing it. The occlusions and the
foreshortening effect, widely present in wide-baseline setups, are explicitly
taken into account by our method. We have shown, on synthetic images, that
the correspondences found by maximizing the proposed objective function are
up to 10% more accurate than the ones obtained by dynamic programming.
Because our formulation results in a combinatorial optimization problem, we
have proposed an iterative optimization solution that has shown to reach close
to the optimal performances, while being computationally tractable, allow-
ing us to densely reconstruct the depth of well-known wide-baseline stereo
datasets. Exhaustive validations on synthetic datasets have demonstrated
quantitatively the benefit resulting from our framework in terms of match-
ing accuracy, as well as the effectiveness of our proposed optimizer. Research
questions include the inclusion of constraints favoring matching consistency
across epipolar lines, and the combination of our relaxed ordering constraint
with methods favoring the piecewise smoothness of the depth map.
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CHAPTER 4

Automatic piecewise-planar 3D
approximation from wide-baseline

stereo

While the previous chapter has targeted the simultaneously reconstruction
of both the background and the foreground of a 3D scene, this chapter fo-
cuses on the background reconstruction, assuming that its 3D can be rea-
sonably approximated by the juxtaposition of a limited number of 3D plane
models. It proposes a novel method that requires only two wide-baseline
views to approximate the 3D model of a man-made scene1 by a minimum
number of 3D planes. Our method relies on the over-segmentation of one
of the two reference images, and adopts a hypothesis testing process to as-
sign a 3D plane to each region, when the region is not detected as occluded
in the second view. It first produces a tremendous amount of 3D plane
candidates, derived from 3D point triplets randomly picked in a dense but
noisy 3D point cloud. It then extracts, among the set of plane candidates,
a small number of plane hypotheses that correctly approximates the 2D re-
gions delimited by the projection of each 3D triplet in the two reference
views. Then, the reconstruction is formulated as an energy-driven plane-to-
region assignment problem, which simultaneously optimizes a data-fidelity
term, the labeling smoothness, and the number of assigned planar proxies.
Targeting a minimal number of 3D planes guarantees a light-weight repre-
sentation of the 3D scene. As another original contribution, we propose a
novel data-fidelity term, that weights the 3D fitting error according to the
accuracy and non-ambiguity of the reprojection of the region, via the in-
vestigated 3D plane, in the other reference view. To validate our approach,
we generate free-viewpoints around 10 well-known wide-baseline datasets
to demonstrate that our light-weight, piecewise-planar 3D reconstruction
method approximates correctly the 3D of the scene.

1A man-made scene is composed of manufactured 3D objects, which are observed by real
cameras.
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4.1 Introduction

The estimation of the 3D model of a scene is an ill-posed problem. State-of-
the-art Multi-View Stereo (MVS) methods generally disambiguate this recon-
struction by relying on many views of the scene, captured by a small-baseline
stereo network. However, due to physical constraints, it is not always possible
to set up many cameras around the scene. Reducing this number of cameras
does not only increase the number of challenging occluded areas, but also
leads to stronger (projective) geometrical changes between the views. Beside
occlusions and strong perspective changes, textureless and repetitive patterns
might also lead to holes in a dense depth map. This is due to the difficulty of
determining correspondences when there is a lack of specific/discriminative
visual cues in the region. MVS methods that can suppress these artifacts via
strong regularization generally tend to oversmooth the 3D surface [21] [25],
especially due to the propagation of regularization constraints through adja-
cent 2D regions that correspond to discontinuous 3D surfaces.

Motivated by these drawbacks, this chapter considers a dense reconstruc-
tion, but limits itself to the reconstruction of 3D scenes that exhibit a piecewise-
planar geometry. Such geometry is often encountered in man-made back-
ground scenes observed from the ground-level. Our piecewise-planar recon-
struction is formulated as a 3D plane assignment problem over 2D regions, ob-
tained based on a fast color segmentation [229] of one of the two reference im-
ages. We call this image the source image. In contrast to most previous works
dealing with wide-baseline setups [21] [4] [191], our method builds upon a
dense 3D point cloud2, instead of a sparse set of correspondences between
keypoints. Although dense point clouds are generally much more corrupted
by noise and 3D outliers than sparse ones, they provide (noisy) cues about the
3D of challenging surfaces, e.g., textureless or with repetitive patterns such as
paved floors. Because such dense 3D point clouds are strongly affected by out-
liers, our method does not directly fit planes on these data, but rather proposes
a set of planar hypotheses, and successively refines them while discarding the
less reliable ones. We name this principle plane hypothesis testing.

The main contributions of the proposed plane hypothesis testing method are
the following ones:

• An original approach to define a limited number of 3D plane hypothe-
ses. The set of proposed 3D planes appears to include most of the planar
surfaces composing the 3D scene, while being limited in size. The ap-
proach is presented in Section 4.4.

• A new plane-to-region data-fidelity term that modulates a region-based
3D point cloud fitting error based on the accuracy and non-ambiguity
of the matching underlying the point cloud construction. Our experi-
ments reveal that the proposed data-fidelity is robust to the numerous
3D outliers present in the dense point cloud. The definition of this new
data-fidelity term is detailed in Section 4.5.

• An energy-driven formulation of the plane-to-region assignment prob-
lem, which maximizes the data-fidelity and the smoothness of the plane

2We define a dense point cloud as a set of 3D points whose projection fully covers (at least one
of) the reference images.
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assignment over the regions, while minimizing the number of assigned
planes. This last term guarantees to approximate the 3D with a small set
of planes, without having to fix this parameter a priori or to merge many
similar plane models a posteriori [21]. To the best of our knowledge, this
optimization scheme, presented in Section 4.6, is the first one to densely
approximate the 3D of a scene based on the minimum set of 3D planes.

4.2 Related works

Previous works in 3D reconstruction of (man-made) scenes can mainly be cat-
egorized into four groups: (1) dense wide-baseline MVS (in the image do-
main), (2) dense small-baseline MVS (in the image domain), (3) extraction of
geometric primitives from a sparse point cloud3 and (4) extraction of geomet-
ric primitives from a dense point cloud.

Methods of the first group usually rely on multiple (� 2) wide-baseline
images to estimate a dense depth map. Depth-maps are typically obtained
from pairs of cameras, and then fused together for refinements [76] [247].
As a first drawback, these methods require tens [227] of views to obtain re-
liable correspondences, to mitigate the strong perspective and photometric
changes present in wide-baseline configurations. As a second drawback, their
strong smoothness regularization tends to oversmooth the depth [204] [203]
[8], or even to propagate it to other surfaces when the amplitude of the im-
age gradient is not sufficient at the surface’s border [25]. As an alternative to
depth maps fusion, plane-sweeping methods successively investigate multi-
ple depth hypotheses by sweeping a plane [36] through the 3D space, either
orthogonally to one of the camera’s axis [12] [81] or along a few principal di-
rections [70]. Although their GPU-based implementations demonstrate real-
time performances [242] [171] [80], plane-sweeping assumes the Manhattan
world hypothesis, i.e., that the 3D surfaces are orthogonal to the sweeping di-
rections.

The second group of methods relies on a few small-baseline images to es-
timate a dense depth/disparity map, and is often referred as dense two-frame
stereo. Those methods have been evaluated and compared through the Mid-
dlebury challenge. Several of the top-ranked algorithms [181] [180] rely on
image segmentation. Working at the region level has been proved to increase
the robustness of the matching data-fidelity [97] [151] while effectively prop-
agating depth information from textured to ambiguous regions [251].

The third group of methods produces sparse 3D point clouds [4] [199]
[200] [198] on which 3D primitives can be fitted. The fitting can either be
direct, e.g., based on robust model fitting methods [58] or by fine-tuning the
3D parametrized primitives based on detection of line segments or vanish-
ing directions [235]. Werner and Zisserman [235] proposed a fully automatic

3We define a sparse point cloud as a set of 3D points obtained based on the matching of dis-
criminative 2D keypoints. In other words, none of the reference images is fully covered by the
projection of the sparse point cloud onto this view.
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approach that fits polyhedral models based on a sparse 3D point cloud and
on a coarse prior model of the scene. However, their method requires mul-
tiple small-baseline input views. When considering views captured from a
wider range of viewpoints, these fitting methods generally require manual in-
teractions [120] to specify high-level scene information such as the relations
between the 3D primitives (e.g., adjacency and alignment) [160] or the regu-
larity [225], typically present in man-made environments.
Instead of fitting directly the geometrical primitives on the 3D data, some re-
cent works exploit the piecewise-planarity of man-made scene to choose, from
a set of 3D plane candidates, the ones that support the best the 3D point cloud
[191]. Global Markov-Random-Field (MRF) with multi-view constraints are
then used to propagate the assignment through the pixels that are not repre-
sented by a 3D point of the sparse point cloud. To robustify the assignment,
Bodis et al. [21] have recently proposed to lift-up the regularized assignment
to the region level. A set of optimal planes are found over the regions, and
the number of considered models is finally reduced, a posteriori, by merging
the most similar ones. Their remarkable method strongly accelerates the re-
construction, from many minutes to a few seconds, due to the small amount
of treated regions and their abstinence from using any expensive photocon-
sistency computation [152]. In practice, assigning planes to superpixels rather
than to pixels suffers from a main drawback: it can not model the regions
whose geometry is not described in the sparse point cloud. To adress this
problem, Bodis et al. [21] consider large 2D regions and propagate plane mod-
els across regions, using a MRF formulation. Large 2D regions might however
violate the region planarity assumption [251].
As a conclusion, methods relying on sparse 3D point clouds, such as the one
of Bodis, can not approximate the 3D of a region that has no associated 3D
point in the sparse cloud and has not a neighboring region with similar pla-
nar 3D. These two contraints are often met in challenging regions, such as in
grass-floor planes. By relying on a dense point cloud, such as presented in the
next paragraph, our method overcomes this problem.

The fourth group of methods generally relies on the piecewise-planar as-
sumption of man-made scenes and fit multiple plane models on a dense 3D
point cloud. A common problem of these methods is the trade-off between the
reliability of the dense point cloud, and the amount of captured views. On one
hand, the impressive work of [64] obtains a highly reliable dense point cloud
by dense map fusion [247] of approximatively 3 million of images. Agarwal
et al. reduced this number to a few hundred thousands images [3] [4]. On the
other hand, Gallup et al. [71] use the depths obtained on ten images to fit pla-
nar hypotheses on segmented regions, based on RANSAC [58]. As illustrated
on the Castle sequence [206] in Figure 4.1, independent robust fitting of 3D
planes over the regions is however still too sensitive to the strong presence of
noisy and/or 3D outliers (points) in a dense point cloud obtained from only
two wide-baseline cameras. In their work, Gallup et al. propose to refine this
initial set of inaccurate 3D planes, based on 10 multiview photoconsistencies
as well as by learning priors about the textures and colors of the man-made
scene. However, such priors, which are embeded in a classifier, still requires
human interaction to be trained on application-dependent images.
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(a) (b) (c) (d)

Figure 4.1: Fitting 3D planes on a dense point cloud generated from a pair of
wide-baseline images is a challenging problem due to the implicit noisiness
of the associated point cloud. (a) Segmentation of the left image; (b) Right
image; (c) Left-to-right view projection, via the piecewise-planar 3D model of
the scene obtained by using RANSAC [58] to fit a plane to the 3D points asso-
ciated to each region; (d) Left-to-right projection, when the 3D planar model
is derived from the 3D points corresponding to the most accurate and unam-
biguous4 2D matches. Even in this case, RANSAC is insufficient to approxi-
mate the 3D model of the scene.

In contrast to existing solutions, our plane hypothesis testing method re-
quires only two wide-baseline views to determine an accurate piecewise- plan-
ar approximation of man-made scenes. It relies on dense point cloud estima-
tion to properly deal with the most challenging surfaces. It does not assume
dominant directions, like in a Manhattan world hypothesis and does not re-
quire user interactions. Our method assigns plane hypotheses to regions, and
minimizes the number of assigned models simultaneously to the plane as-
signment cost and the smoothness over regions, to obtain a dense piecewise-
planar approximation of the 3D scene. It results in an accurate, low complexity
3D representation of the scene, perfectly adapted for light-weight storage and
transmission.

4.3 Overview of the proposed method

To approximate the 3D of a scene captured by two wide-baseline reference
views, our plane hypothesis testing method relies on (1) the proposition of a
number of 3D plane hypotheses from the dense 3D point cloud computed
from the two reference views, (2) the segmentation of one of the reference im-
ages into a complete set of non-overlapping regions and (3) the optimization
of the plane assignment to each region. These three distinct steps are illus-
trated in Figure 4.2.

4The notions of accuracy and ambiguity of a matching are defined in Section 4.5.
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Figure 4.2: Our novel approach reconstructs a dense, piecewise-planar 3D
model of the scene from only two wide-baseline image, by optimizing the
assignment of proposed plane models over the image regions. The proposed
models are obtained based on a dense (but noisy) 3D point cloud.

To segment the image, we rely on our previous work, presented in [229], to
learn the dominant colors in the image. Given this set of C dominant colors,
the segmentation problem is defined as the assignment of each pixel to one
of the C classes. To impose the smoothness among neighboring pixels, this
assignment problem is solved by graph-cut optimization [47], in which the
data-fidelity term is defined as the `2 distance between the dominant colors
and the pixel color, and the smoothness term is proportional to the inverse of
the amplitude of the gradient of two neighboring pixels. This method results
into a set of N regions, as illustrated in the upper block of the second column
in Figure 4.2.

To propose a small set of plane candidates to describe the 3D of the scene,
our method first generates a dense, but noisy 3D point cloud on which a
tremendeous amount of M planes, each one supported by a random selection
of three 3D points, are fitted. A measure of confidence is associated to each
of these 3D planes, and exploited to reduce these M redundant (and possibly
unreliable) plane candidates into K � M reliable proposed planes. The gen-
eration of the dense 3D point cloud, as well as its associated plane proposition
phase, are detailed in Section 4.4.

To assign a plane to each region, we derive a novel data-fidelity term to
measure the cost of assigning the kth plane to the nth region. This cost mea-
sures the 3D proximity between the kth 3D (plane) model and the 3D points
that project within the nth region or within its projection (through the kth

plane) onto the other reference view. We also propose to account for the con-
sistency between the textures of those two regions by weighting the fitting
error associated to the 3D points based on the accuracy and unambiguity of
the matching underlying their definition. This is explained in detail in Section
4.5.

Finally, as detailed in Section 4.6, we simultaneously maximize the pro-
posed data-fidelity and the smoothness of the plane attribution over the re-
gions, while minimizing the amount of assigned planes based on PEARL op-
timization [102]. To the best of our knowledge, we are the first ones to densely
reconstruct the 3D of a scene by explicitly targeting a minimum set of planar
proxies.
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4.4 3D planes proposition

This section describes how planar models are proposed from a dense cloud of
3D points. This is done in three consecutive steps.

In the first step, a dense 3D point cloud is generated by determining, for
each pixel x belonging to the first view I , the corresponding pixel x′ in the sec-
ond view I ′, and triangulating [92] these correspondences. A correspondence
x′ is determined for each x ∈ ΩΩΩI (where ΩΩΩI is the spatial domain of the im-
age I) based on a simple “Winner-Takes-All” (WTA) [181] method, restricted
to the epipolar line l′ = F · x̃ associated to x:

x′ = argmin
y′∈F·x̃

∥∥d (x)− d
(
y′
)∥∥2

2 , (4.1)

where F is the fundamental matrix of the calibrated stereo pair, x̃ are the ho-
mogeneous coordinates [92] of x, d (x) is a descriptor associated to this pixel,
and ‖·‖2 is the `2 norm. It is interesting to note that the correspondence be-
tween the 2D matched points x and x′ and their associated 3D triangulated
point X can be stored, thereby avoiding the need of costly projection in the
rest of the method. In particular, note that a very fast access to the 2D to 3D
correspondences is possible by storing them in a tree data-structure, where
each node represents the label of the region containing the 2D point. In the
rest of the paper, the term “extraction of 3D points from 2D coordinates” (or
vice-versa) will refer to this type of access.

In the second step, we derive M planar models from this noisy 3D point
cloud. Therefore, we randomly (uniformly) select M triplets of (non-colinear)
3D points Xt (with t = {1, 2, 3} referring to the index of the 3D point in the
Triplet) to generate M plane candidates πππm (with 1 ≤ m ≤ M), each one
parametrized as πππm = [am bm cm dm]

> to represent the plane amx + bmy +
cmz + dm = 0, or equivalently by

πππm = [am/dm bm/dm cm/dm 1]> ,
[
ηηη>m 1

]>
.

In the last step, we derive from the M plane candidates, a small number
of K � M planes that are expected to capture most of the representative 3D
planar structures in the scene. Therefore, we first assign a quality value q (πππm)
to each of the M plane candidates. This is done by considering the triangular
patch [πππm] lying on the plane πππm and delimited by the triplet {Xt}t={1,2,3},
such as illustrated by the red points and red patch in Figure 4.3.

The 2D region representing this triangular patch [πππm] in the first (respec-
tively second) reference view is denoted ∆∆∆m (respectively ∆∆∆′m), and is defined
by:

∆∆∆m = {x ∈ ΩΩΩI | x ∈ P · [πππm]}
∆∆∆′m =

{
x′ ∈ ΩΩΩI ′

∣∣ x′ ∈ P′ · [πππm]
}

,

with P ∈ R3×4 (respectively P′ ∈ R3×4) the projection matrix of the first (re-
spectively second) reference view.
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Figure 4.3: Each of the M 3D plane candidates πππm is generated by randomly
selecting a triplet of 3D points (red points) in the dense point cloud. The qual-
ity value of a plane πππm is measured based on its proximity to the 3D points
X (points in jet color) whose projections P · X̃ and P′ · X̃ lie in the projections
(green triangles in the figure) of [πππm] (red patch in the figure) in one of the
reference views.

We then extract, from the point cloud, the set of 3D points X projecting in
∆∆∆m and/or in ∆∆∆′m. For the sake of simplicity, we slightly abuse the notation
in the rest of the paper and write X ∈ ∆∆∆m when the projection P · X̃ of the 3D
point X falls into the 2D triangle ∆∆∆m. We write analogously X ∈ ∆∆∆′m.

Given those definitions, the proposed quality value q (πππm) quantifies how
close is the plane candidate πππm from the 3D points Xj ∈

{
∆∆∆m ∪∆∆∆′m

}
, with

j ≤ J , J being the number of 3D points projecting onto ∆∆∆m and/or ∆∆∆′m. This
is done by counting the fraction of 3D points Xj ∈

{
∆∆∆m ∪∆∆∆′m

}
that are closer

from the 3D plane πππm than a predefined threshold Td ∈ R+:

q (πππm) =
1
J
J
∑
j=1

(
d(πππm, Xj) ≤ Td

)
,

in which

d
(
πππm, Xj

)
=
|πππ>m · X̃j|
‖ηηηm‖2

is the orthogonal distance between a 3D plane πππm and the 3D point Xj.

The quality value q (πππm) of a candidate plane πππm, which is the bound-
less version of the randomly selected triangular patch [πππm], is thus quantified
based on the density of 3D points Xj ∈

{
∆∆∆m ∪∆∆∆′m

}
surrounding it. Figure

4.4 confirms that the density of these 3D points is much higher in the neigh-
borhood of the ”ground-truth“ 3D planes than around other planes. Precisely,
Figure 4.4 represents the distribution of the orthogonal distance d

(
πππm, Xj

)
be-

tween the 3D points Xj ∈
{
∆∆∆m ∪∆∆∆′m

}
and the plane πππm, for two kinds of



90 CHAPTER 4. PIECEWISE-PLANAR 3D APPROXIMATION

planes πππm: the 3D planes approximating correctly the ground-truth 3D sur-
face (in green), and the ones that are far away from this ground-truth (in red).

d
(
πππm, Xj

)
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Figure 4.4: The quality q (πππm) of a plane candidate πππm, associated to a ran-
domly selected triangular patch [πππm], is quantified based on the fraction of
3D points Xj ∈

{
∆∆∆m ∪∆∆∆′m

}
that are close to this 3D plane. We validate the

relevance of this measure by showing that there are much more 3D points Xj
close to the “ground-truth” (definition detailed in the text) 3D planes (green
histogram) than around any arbitrary other one (red histogram).

In this figure, a plane candidate πππm is considered to approximate a ground-
truth plane πππ?i when its orientation is close to the one of the ground-truth
plane and its distance to an arbitrary 3D point (e.g., the optical center C of the
source camera) is similar to the one of the ground-truth plane. In practice,
πππm approximates “correctly” the ground-truth when there exists (at least) one
ground-truth plane πππ?i such that:

Θπππm ,πππ?
i
=

∣∣∣∣∣acos

(
|ηηη>m · ηηη?i |
‖ηηηm‖2

∥∥ηηη?i ∥∥2

)∣∣∣∣∣ ≤ 5◦, (4.2)

and
d (πππm,πππ?i ) = |d (πππm, C)− d (πππ?i , C) | ≤ 50 [cm]. (4.3)

The concentration of the green distribution around small distance values
in Figure 4.4, which has been generated from M = 200000 planes and with 7
ground-truth planes on the well-known Herz-Jesu-P8 dataset [206], confirms
the appropriateness of the proposed plane quality value q (πππm).

Based on this observation, we select, from the M plane candidates πππm =[
ηηη>m 1

]>
, the K � M most representative ones by applying a weighted k-

means [44] on the ηηηm ∈ R3 vectors. The weight associated to the plane candi-
date πππm in the weighted k-means is chosen to be its quality value q (πππm).

In summary, although we initially generate a tremendeous amount of M
plane candidates to guarantee that this random selection includes the 3D grou-
nd-truth, our method avoids to compute M · N plane/region association met-
rics (with N being the number of regions), by reducing this computation to
K · N, with K � M. The proposed association metric is detailed in the next
section.
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4.5 Cost of assigning a 3D plane to a 2D region

This section proposes a novel data-fidelity metric to quantify how well a given
3D plane πππ approximates the 3D point cloud associated to a 2D image region
R ⊆ ΩΩΩI . Fundamentally, our data fidelity measures the proximity between
the investigated (plane) model πππ and the 3D points that project into the 2D
regionR and/or its counterpartR′, obtained in I ′ using the homography in-
duced by the 3D plane πππ. To modulate our 3D fitting error according to the
discriminativeness of the textures observed in the 2D views, our proposed fit-
ting error accounts for the inaccuracy and the ambiguity of the 2D descriptors
associations that support the 3D points definition. Interestingly, this depen-
dency is achieved without the need for a fine and unpractical tuning of some
weighting factors associated to each one of the 3D points. Instead, it relies
on the geometric average of a set of values, each value being associated to a
subset of 3D points resulting from a sufficiently accurate and unambiguous
matching, and reflecting how close those points are to the plane model.

We now introduce the notions and notations required to support the for-
mal definition of our data-fidelity metric.

Since our fitting error considers both the 3D points associated to the 2D
region R ⊆ ΩΩΩI and to its counterpart in I ′, we first introduce Rπππ to denote
the set of pixels x′j ∈ ΩΩΩI ′ that are associated to the projection ofR onto I ′, via

a plane πππ = [a b c d]>. Note that Rπππ might not define a compact set, i.e.,
a 2D region, due to the image discretization. This set is fully determined by
the pixels x̃′j = Hπππ · x̃j with xj ∈ R, based on the homography Hπππ : R3 → R3

defined as [92]:

Hπππ = K′
(

R− t [a b c]
d

)
K−1,

for two cameras expressed as a stereo rig configuration, i.e., respectively de-
scribed by the projection matrices P = K [I | 0] and P′ = K′ [R | t], where
K ∈ R3×3 and K′ ∈ R3×3 describe the intrisic parameters of the cameras,
R ∈ SO(3) is the relative rotation between the cameras, and t ∈ R3 their rela-
tive translation.

To measure whether a plane πππ correctly approximates the 3D surface asso-
ciated to a regionR in image I , we quantify how far the 3D points that project
inR and/or inRπππ =

{
Hπππ · x̃j : xj ∈ ΩΩΩI ′

}
are from the plane πππ. As explained

above, we propose to account for the confidence that we have in the matching
that has defined each one of these 3D points.
Formally, a matching between a pair of 2D points x ∈ ΩΩΩI and x′ ∈ ΩΩΩI ′ is ex-
pected to be reliable when the 2D point descriptors d (x) and d (x′) are (1) very
similar, and (2) quite discriminant, which means they are different from most
of the alternative matches along the epipolar line, i.e., different from d (y′)
with y′ ∈ F · x (see Equation (4.1)). Let X denote the 3D point associated to
the triangulation of two matched pixels x and x′, as determined during the
matching associated to the dense matching process described in Section 4.4.
We then introduce two metrics to estimate the inaccuracy and ambiguity of
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the 3D point X . Formally,

• the matching inaccuracy, denoted by mi (X), measures how dissimilar
are the descriptors d (x) and d (x′) of the two corresponding points
x↔ x′ associated to X. The matching inaccuracy is defined by:

mi (X) =
1
D

∥∥∥d
(

P · X̃
)
− d

(
P′ · X̃

)∥∥∥
2

,

where D is the size of the descriptor used during the matching phase.

• the matching ambiguity, denoted by ma (X), measures the percentage of
pixel candidates y′ ∈ F · x̃ satisfying

1
D
∥∥d (x)− d

(
y′
)∥∥

2 ≤
m
D ·

∥∥d (x)− d
(
x′
)∥∥

2 + b,

among the pixels y′ lying on the epipolar line associated to x. In this def-
inition, m and b are respectively set to 1.5 and 0.002. Our experiments
have revealed that these parameters do not strongly affect the perfor-
mance of our method.

Figures 4.5(c) and 4.5(d) illustrate the matching inaccuracy mi (X) and match-
ing ambiguity ma (X) of the 3D points in the dense point cloud associated to
the well-known Castle sequence [206].
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(a) Left view (b) Right view

(c) Matching inaccuracy mi (X) of the 3D points X.

0.0150

0.0300

0.0001

(d) Matching ambiguity ma (X) of the 3D points X.

0.5

1.0

0.0

Figure 4.5: The uncertainty of each 3D point X is quantified based on (c) the
matching inaccuracy mi (X) and on (d) the matching ambiguity ma (X).
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To evaluate the relevance of those metrics to decide whether a 3D point is
likely to lie on the actual 3D surface of the scene (i.e., being an inlier), Figure
4.6 plots their distributions for two classes of 3D points that project in a region
for which a planar ground truth plane πππ? has been manually defined: (1) the
green plot considers the ”inliers“ to the manual ground-truth plane πππ? associ-
ated to the region (i.e., the X satisfying d (πππ?, X) ≤ 0.1 [m]), and (2) the outliers
(with distance d (πππ?, X) > 1 [m]) compared to this ground-truth plane.
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Figure 4.6: Distribution of the inaccuracy and ambiguity measures of the 3D
points associated to two ground-truth 3D planar regions. The first one (floor)
is textureless, while the second one (roof) is only composed of repetitive tex-
tures.

Figure 4.6 reveals that, whilst being different, the inliers and outliers distri-
butions largely overlap each others. This prevents the accurate classification
of the 3D points into an inlier and outlier class based on those two metrics.
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Since it is not possible to identify the inliers from the 3D points accuracy
and ambiguity, we have adopted an indirect strategy to estimate whether a
3D plane correctly fits the 3D point cloud associated to an image region. In
short, our approach consists in analyzing whether the 3D points tend to get
statistically (on average) closer to the plane model when their inaccuracy and
ambiguity decrease. If this is the case, the plane is likely to fit the actual 3D
surface. Formally, let CτττR,πππ denote the set of 3D points X satisfying the three
following criteria:


X ∈ {R ∪Rπππ}

mi (X) ≤ τi

ma (X) ≤ τa

where τττ = {τi, τa} and τi ∈ R+ and τa ∈ R+ are investigated thresholds on
the matching inaccuracy and ambiguity. As in Section 4.4, we abuse the no-
tation, and write X ∈ {R ∪Rπππ} to indicate that the 3D point X projects onto
the 2D regionR, or its counterpartRπππ in I ′.

To analyze the scattering of the 3D points in CτττR,πππ around the investigated
plane πππ, we define fCτττR,πππ

(l,πππ) as a function describing the fraction of 3D points
in CτττR,πππ whose distance to πππ is smaller than l ∈ R+, given a pair τττ = {τi, τa}.
Figures 4.7 ((a) and (b)) and 4.8 ((a) and (b)) illustrate multiple examples of
scattering functions fCτττR,πππ

(l,πππ) for different types of regions, different pro-
posed 3D planes and different pairs of inaccuracy/ambiguity thresholds. In
each of the (a) or (b) figures, the left column shows how the 2D region R (in
red) projects on the second view via a manually defined planar model (spec-
ified on the right of the arrow). The two other columns illustrate some scat-
tering functions fCτττR,πππ

(l,πππ) for four pairs of investigated thresholds, ranging
in τi = {0.003; ∞} and τa = {0.25; ∞}. For each of the scattering curves, the
upper ordinate value represents the number of 3D points in CτττR,πππ while the
abscissa represents the distance l (in meters) to the investigated plane πππ. The
analysis of the scattering function is limited to l ∈ [0; llim], where llim = 1[m]
has been empirically chosen accordingly to the scale of the Castle’s 3D scene.

Figure 4.7 (a) considers the approximation of the roof of the Castle by the
(ground-truth) 3D plane of the Castle’s left wall. It is worth noticing that there
is only a small percentage of the 3D points in CτττR,πππ that are close to this plane.
This can be observed in the top-middle curve in Figure 4.7 (a), which indicates
that more than 50% of the 3D points associated to the 2D roof region, are more
than 1 meter away from the 3D wall plane. This observation is common to
most of the cases for which the proposed plane does not correctly represent
the 3D of the investigated region. Hence, a small area under the scattering
curve appears to be a good indicator of the 3D plane incorrectness.
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Figure 4.7: Our data-fidelity term considers the scattering (blue curves) of
3D points around the investigated plane πππ. Generally, when the investigated
3D plane does not represent correctly the region (see (a)), the proportion of
3D points in CτττR,πππ near the investigated plane decreases when progressively
considering more accurate and unambigious 3D points (lower values of τi and
τa). When the investigated 3D plane represents correctly the region (see (b)),
this proportion tends to increase especially when some error is tolerated in the
distance to the plane (typically when l > 30 [cm] in the plots).
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Figure 4.7 (b) illustrates the 3D approximation of the same roof region, but
this time by the (ground-truth) 3D plane associated to the roof. The areas un-
der the scattering curves are now larger than in Figure 4.7 (a), which confirms
that this value might be a good indicator of the plane correctness. A deeper
analysis of Figure 4.7 (b) also reveals that there might be a significative amount
of 3D points that are still far away from this ground-truth plane. In particular,
the top-right extremity of the top-middle curve shows that only barely more
than 70% of the 3D points associated to this region are closer than 1 meter
from this plane. This is explained by the low precision of the 3D points repre-
senting the roof region, due to its repetitive pattern nature, which makes the
matching phase error-prone. However, when restricting ourselves to the more
accurate and less ambiguous 3D points, e.g., τi = 0.003 and τa = 0.25 (Figure
4.7 (b), curve in the bottom-right corner), we can observe that most of the 3D
points are close from the ground-truth 3D plane.

Figure 4.8 (a) investigates the modeling of a 2D region R of the ground-
plane (floor) by the planar model of the left wall of the Castle’s sequence.
Although the investigated wall plane is perpendicular to the (ground-truth)
floor plane, the region Rπππ is also located on the floor. This would make any
kind of conventional reprojection error reasonably small, since the texture is
relatively uniform on all the floor. In contrast, the (areas under the) scattering
curves depicted in Figure 4.8 (a) reveal that the plane is not a valid model.

We conclude from these observations that the reliability of a proposed 3D
plane can reasonably be inferred based on the analysis of the area under curve
(AuC) observed for multiple sets of thresholds {τi, τa}.

Since those AuC values correspond to different sets of 3D points, we pro-
pose to average them based on a geometric mean rather than the average
mean. The geometric mean5 is indeed generally better suited when deriv-
ing a single “figure of merit” for a set of items with different numerical ranges
[39]. Hence, we define our data-fidelity metric as follows.

First, we introduce A (τττ,πππ) ∈ [0; 1] to denote the area under the curve of
the scattering function fCτττR,πππ

(l,πππ):

A (τττ,πππ) =
∫ llim

0
fCτττR,πππ

(l,πππ) dl.

Roughly speaking, this area reflects the likelihood that the 3D points X ∈ CτττR,πππ

are “close” from the 3D plane πππ.

5Given that more accurate and unambiguous matches are expected to describe the surface
more reliably, one could imagine to assign a larger weight to their corresponding AuC when
computing the geometric mean, e.g., based on a weighted geometric mean. Our experiments
have however shown that using a unitary weight for all AuC provides satisfying results.
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Figure 4.8: Evolution of the scattering function when a textureless region,
e.g., a floor region, is projected via the wall plane (90◦ away from the cor-
rect plane model). Although any data-fidelity based on an usual reprojection
error would promote the plane as correct (because of the low image difference
between the projected image and the image really captured), the very small
areas under the scattering functions in (a) indicate that the 3D plane of the
wall does not approximate correctly the 3D surface of the floor region. At the
opposite, the high areas under the scattering functions in (b) indicate that the
3D plane of the floor correctly approximates the 3D surface of the floor region.
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The data-fidelity c (R,πππ) ∈ [0; 1] of assigning a plane πππ to a region R is
then defined, based on the geometric mean of a sequence of T tests τττ(t) =

{τ(t)i , τ(t)a } on the accuracy/unambiguity of the 3D points X ∈ {R,Rπππ}. For-
mally, the sequence of tests is defined as:

τττ(t) = τττ(1) − t− 1
T − 1

·
(
τττ(1) − τττ(T)

)
∀t ∈ {1, · · · , T},

with τττ(1) (respectively τττ(T)) the set of maximum (respectively minimum) in-
vestigated thresholds and the data-fidelity is measured as:

c (R,πππ) =

{
0 ifRπππ ∩ΩΩΩI ′ = ∅

exp
(

1
T ∑T

t=1 log
(

A
(
τττ(t),πππ

)))
otherwise.

Finally, it is worth noting that we do not consider, in the computation of
the data-fidelity, the area A

(
τττ(t),πππ

)
which are computed on less than a certain

number, set to 10 in practice, of 3D points X ∈ Cτττ(t)R,πππ.

4.6 Joint optimization of data-fidelity, smoothness
and amount of models

The assignment of a planar model to each of the N regions is formulated as a
(model) label inference problem in a multi-label Markov Random Field (MRF).
We propose to adapt the state-of-the-art Propose, Expand and Re-Learn (PEARL)
algorithm [102], which iteratively infers the labels and refines the parameters
of the proposed models, to our problem’s specificity. As its name indicates,
the PEARL inference optimization is composed of three steps: the proposition
of a set of models (“propose stage”), the label inference (“expand stage”) and
the models reestimation (“re-learn stage”).

In the “propose” stage, many hypothetical models are generated. While
the original paper requires to generate several thousands of models candi-
dates, we rely on Section 4.4 to limit ourselves to a few hundreds. This enables
us to strongly accelerate the optimization, while keeping the same accuracy
(as shown in Section 4.7).

In the “expand” stage, one planar model is assigned to each image region.
A strong advantage of PEARL is that it allows us to explicitly consider the fact
that a region can be occluded, by defining an extra label L∅ and its associated
data-cost, in addition to the proposed model labels. The inference problem is
expressed as an energy-driven minimization [102], which minimizes:

E(L) =
N

∑
n=1

(1− c(Rn,πππ (Ln))) + λ · ∑
(p,q)∈N

ωpq · δ
(

Lp 6= Lq
)
+β · |LL|, (4.4)
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where L = [L1 L2 · · · LN ]
> are the labels assigned to the N regions (each

label Ln refers either to one of the K models, or to the occlusion label L∅),
c(Rn,πππ (Ln)) ∈ [0; 1] is the cost of assigning the πππ(Ln) model to the nth re-
gion, ωpq is a weight associated to a pair of neighboring regions that encour-
ages spatial coherence, δ (.) is the indicator function and the last term |LL| is
the number of assigned models. This last term encourages parsimony, to de-
scribe the scene with as few plane models as possible. The data-fidelity cost
c(Rn,πππ (Ln)) is defined in Section 4.5 and we define the weights wpq as:

ωpq =

{
1−E [|∇I (x) |]x∈B ifRp andRq have a common border B
0 otherwise

where the gradient amplitude |∇I (x) | is rescaled to [0; 1], by applying con-
trast stretching over the entire image, and E [.] represents the mean opera-
tor. Given those definitions, the labels are inferred by minimizing the energy
(Equation (4.4)) based α-expansion optimization [24].

Eventually, in the “re-learn” stage, PEARL extracts, for each assigned la-
bel Ln 6= L∅, the set PLn of region assigned to this label, and reestimates the
associated model. This reestimation is done by selecting the set of 3D points
that project into one of the regions of PLn and applying RANSAC [58] (with
inlier threshold τ) to robustly fit a new plane model to these 3D points. In
their original paper, Fischler et al. have proposed to select the model hav-
ing the maximum number of inliers. To discriminate between the RANSAC
planes having the same number of inliers, we adopt the relaxed and more ro-
bust score proposed in [21] (Equation (1) in their paper).

In practice, the PEARL algorithm iterates sequentially between the three
stages, until E(L) reaches a minimum. It is worth noting that, in their original
paper, Isack and Boykov have proposed not to consider anymore the data as-
sociated to the empty label in the next iterations. At the opposite, we compute
their data-fidelity with respect to the updated models, so as to give the oppor-
tunity to assign a potentially more accurate updated model to those regions
that have received an empty label in the initial stages of the algorithm.

4.7 Experiments

Our validations are divided into three parts.
First, we demonstrate the efficiency of our plane proposition phase by show-
ing that it generates a small set of 3D plane hypotheses that includes the 3D
ground-truth of the scene. Second, we show, on 10 well-known sequences
representing diverse (man-made) building scenes, that our method is able to
locate their principal 3D planes, as well as to detect their occluded regions. Fi-
nally, we generate free-viewpoints around the piecewise-planar reconstructed
scenes.
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Efficiency of the plane proposition phase

To assess the relevance of our plane proposition method, Figure 4.9(a) first de-
picts, as a function of M, how well a set of M plane candidates approximates a
ground-truth 3D surface described by I? ground-truth planes. Precisely, from
each tested set of M plane candidates, we have selected the I? planes candi-
dates approximating the best the ground-truth planes

{
πππ?i
}

i={1,··· ,I?}, i.e., the
ones minimizing

∥∥ηηηi − ηηη?i
∥∥

2.

M

d
(ππ π

,ππ π
?
)

Θ
ππ π

,ππ π
?

20[m]

0
0 150000

5◦

0◦

M ≈ 125000 planes

(a)

K/M

d
(ππ π

,ππ π
?
)

Θ
ππ π

,ππ π
?

5[m]

0
0 0.0016

5◦

0◦

K ≈ 200 planes

(b)

Figure 4.9: (a) Average of the maximum remoteness, with respect to a set of
ground-truth planes

{
πππ?i
}

i={1,··· ,I?}, of the best plane candidates πππm among
the M plane candidates. (b) Average of the maximum remoteness of the
best proposed plane πππk among the proposed K planes with respect to a set
of ground-truth planes

{
πππ?i
}

i={1,··· ,I?}.

The blue and red curves in Figure 4.9(a) respectively plot the worst relative
angular and distance errors (cfr. Equations (4.2) and (4.3)), as measured with
respect to I? = 7 ground-truth planes of the well-known Herz-Jesu-P8 dataset
[206]. The performances have been averaged on P = 1000 iterations of the
random triplets-based selection of the M planes. The blue and red shaded
areas in this figure illustrate respectively the standard deviations of these two
metrics. From Figure 4.9(a), we observe that multiple plane candidates (M ≥
125000) are required to ensure that the set of M candidate planes represent
“correctly”6 the ground-truth 3D surface.
Figure 4.9(b) depicts the same angular and distance errors as a function of K,
when M = 125000. From this figure, we observe that our plane proposition
phase effectively proposes a highly limited set of 3D plane (K is set to 200
in all our experiments), which greatly reduces the number of hypotheses (in
practice, M had to be chosen 2 to 3 orders of magnitude higher than K to make
sure to include all the ground-truth plane models of the scene) by eliminating
redundant ones. This allows the PEARL optimization to work efficiently on a
reduced set of proposed planes.

6Even if the plane candidates do not perfectly correspond to the ground planes, their parame-
ters are later optimized in the “re-learn” phase of PEARL (see Section 4.6).
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Piecewise-planar 3D reconstruction

We validate our method on 10 well-known and calibrated sequences repre-
senting street-level captures of (man-made) building scenes (indoor and out-
door). While these datasets provide multiple different views of each scene,
we have arbitrarily selected two distant views among the available ones to
define a set of wide-baseline stereo pairs. The segmentation of the left view
has been obtained based on [229], and the required color dissimilarity thresh-
old for learning the dominant colors consituting the image has been set to
20 in all the experiments. This parameter influences the number of obtained
regions. Our experiments have revealed that it does not strongly affect the
performance of our piecewise-planar 3D approximation.

The 3D point cloud estimated from Equation (4.1) is based on Daisy de-
scriptors [218], which have been chosen for their robustness against wide-
baseline geometric distortions, and their appropriateness for dense estimation
[217] (cfr. Section 2.3.2).

Our method relies only on two types of parameters. First, the RANSAC
inliers/outliers parameter τ and the parameter llim (representing the investi-
gated orthogonal distance around the proposed 3D plane) are fixed, based on
rough prior human knowledge about the depth variability in the scene. In all
our experiments, llim has been chosen between 30cm and 1.5m, while τ has
been fixed to τ = llim/5. Second, for the parameters of the PEARL optimiza-
tion, we have set the pairwise term to λ = 0.1 and the occlusion data-fidelity
to c(Rn,πππ (L∅)) = 0.5 in all our experiments. This last parameter is a good
trade-off between accepting plane assumptions on regions associated to noisy
3D points and discarding bad planes. The only highly varying parameter of
the PEARL optimization is the labeling weightβ. It is chosen between [0.1; 0.5]
according to the amount of expected 3D planes. In practice, multiple values
have been tested within this range, and the one leading to a visual reasonable
trade-off between number of planes and accuracy of representation has been
kept for each dataset7.

Figures 4.10 and 4.11 illustrate the results of the different steps of our al-
gorithm, namely (a) the segmentation of one of the reference image of the
wide-baseline stereo pair (images (a) and (b)), (c) the dense point cloud and
(d) the regions assigned to the same 3D plane model. We also provide the
projection of the first view (a) onto the second one (b) via the piecewise-
planar approximated model. Occlusions are highlighted in black. From top to
down, the used dataset are: CastleP19/FountainP11/HerzJesuP25 [206], Ox-
ford Corridor/Model-house (in Figure 4.10), Oxford Library/Wadham/
MertonI/MertonII/MertonIII [235] (in Figure 4.11).

As a first observation, we note that most of the 3D planes are correctly
estimated (columns (d) and (e) in Figures 4.10 and 4.11), despite the pres-
ence of noise in the dense 3D point cloud. This performance is due to the

7One might also fix a priori the number of 3D planes representing the scene, and scan the
specified range until this number of planes is reached.
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high robustness of the proposed data-fidelity metric c (R,πππ), which simul-
taneously considers the 3D points of R and Rπππ. On the one hand, because
the 3D points have been determined based photometric/projective robust de-
scriptors, they are less impacted by wide-baseline discrepancies than usual 2D
color differences, such as done in [80]. On the other hand, even when consid-
ering photometric/projective robust descriptors instead of color in the pixel
discrepancy, an irrelevant 3D plane candidate might lead to a very low dis-
crepancy, as illustrated in the left column of Figure 4.8(a). In contrast, because
our 3D points-based data-fidelity embeds additional information, typically re-
lated to the photometric rarety/ambiguity along the epipolar line (cfr. Section
4.5), it appears to be more discriminative than a simple 2D reprojection error.
Also, the complementary information of the 3D points of R and Rπππ enables
to handle the cases where the distribution of the 3D points associated to a re-
gion R are strongly contamined with outliers (e.g., R is textureless). In this
case, if Rπππ is discriminative (e.g., highly textured), its accurate 3D points will
push towards the rejection of the proposed plane (which project a textureless
region onto a discriminative one). If both R and Rπππ are challenging (e.g.,
textureless), considering the union of both X ∈ R and X ∈ Rπππ might reveal
the correct plane. This is particularly true in wide-baseline stereo setups, in
which the inliers spread closer around the ground-truth model than the inliers
obtained based on small-baseline stereo setups. This is due to the more accu-
rate 3D estimations provided by wide-baseline stereo setups, compared to the
small-baseline ones [92] (cfr. Section 1.2.3).

As a second interesting observation, which can be observed at the level of
the D symbol on the Oxford Corridor dataset (Figure 4.10, fourth row, column
(d) and (e)), we note that our method might assign a 3D plane on partially oc-
cluded regions, based on the 3D points associated to the non-occluded part of
this region. Under-segmentation might thus permit to model occluded parts,
but also increases the risk of violating the planar assumption.

The failure cases of our approach are not frequent, and can be divided into
four classes: wrong propagation of 3D plane model to other regions, assigne-
ment of visible regions to the occlusion label, and wrong 3D plane estimation.

The first class of errors appears either when all the 3D points of a regionR
(and/orRπππ) are too strongly contaminated by 3D outliers, and the high value
of β pushes towards a wrong propagation of the model (e.g., in the sky regions
in the first and second row of Figure 4.11), or when the initial segmentation
assigns the same label to pixels that do not belong to the same plane (e.g., on
the gutter at the middle of the left wall of Merton II, fourth row, column (a) in
Figure 4.11).

The second class of errors appears in the absence of 3D points in the inter-
val [0; llim] (considered interval around the plane model hypothesis), while the
investigated plane correctly approximates the 3D ground-truth. This behavior
can be observed on the tower of the Library dataset (Figure 4.11, second row,
column (d)).
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The third class of errors can affect either the large and challenging 2D re-
gions, or the smallest ones. In the first case, the inaccuracy of the plane estima-
tion originates from the planar re-estimation of PEARL, using RANSAC on a
region that is contaminated by more than 50% of 3D “outliers“. This behavior
can be observed on the Oxford corridor image (Figure 4.10, fourth row, third
column), or on the terrace of the Model-house sequence (Figure 4.10, fifth row,
third column). The second case appears in very small regions with 3D surfaces
that can not be correctly described based on the other optimized models. In
this case, the spatial concentration of their associated 3D points makes the
(RANSAC-based) fitted plane more error-prone to noise than if the 3D points
were spatially spread (large region). The inaccuracy of the re-estimated 3D
plane associated to these small parts can be detected by observing their pro-
jections from the reference image to another view, via their associated inaccu-
rate 3D models, which project these small regions far away from their original
location. This problem affects the roof of the windows of the Merton I dataset,
which are projected on the grass, as illustrated in the third row of Figure 4.11,
column (e).

The fourth limitation of our method concerns the reconstruction of arbi-
trary 3D shapes. As most of the state-of-the-art methods [160], our method
either approximates the curved surfaces by planar patches, or considers their
associated 3D points as outliers to a plane model. In our algorithm, this trade-
off is controlled by the weight factor β, multiplying the number of labels in
Equation 4.4. This behavior is similar to the one obtained recently by Oesau,
Larfarge and Alliez [164], which relies on a local Manhattan world assump-
tion in each cell of a 3D grid. As a perspective, other 3D primitives such as
cylinders, spheres, ellipsoids and cones, could be considered to model more
complex 3D structures. This idea has been explored in the recent work of [121],
in which each tree is first detected and after modeled based on a 3D cylinder
(for the trunk) and a 3D ellipsoid (for the upper part of the tree).

Regarding complexity, our method reconstructs each 3D scenes in a few
minutes (from 4 to approximatively 20 minutes, according to the resolution of
the reference images, Matlab implementation on a 2.4GHz Intel I5 CPU, 8Gb
RAM machine), which are divided into three parts: approximatively 60% of
the running time is dedicated to the dense point cloud generation (using cur-
rently a non-parallel implementation of the WTA method), 25% on the plane
proposition phase (in which the location of the pixels in ∆∆∆ and ∆∆∆′ takes the
most of the running time), and 15% for the rest.

View interpolation around the 3D reconstructed model

To complete our visual experimental results, Figures 4.12 and 4.13 demon-
strates the effectiveness of our dense, piecewise-planar 3D approximation
method, by projecting the textured 3D piecewise-planar models on virtual in-
termediate views.
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4.8 Conclusion

State-of-the-art man-made scenes 3D reconstruction methods either approxi-
mate a sparse point cloud by a set of simple 3D proxies, or deliver complex
meshes fitted on a dense point cloud. On the one hand, because sparse point
clouds only represent 3D points associated to the more discriminative pixels,
they do not allow to reconstruct regions with very few textures and/or com-
posed of repetitive patterns. On the other hand, detailed meshes provides
redundant informations on regular surfaces, are very computational and are
vulnerable to noisy 3D points. To ensure a very low level of noise in the es-
timation of 3D points, these methods require to capture the 3D scene with a
high number of (small-baseline) camera views. Our approach requires only
two wide-baseline views and provides a dense, piecewise-planar approxima-
tion of the 3D scene. We express the 3D reconstruction as a generalized plane
assignment problem over 2D image regions, in which the occluded regions are
explicitly modeled. As opposed to [21], we rely on a dense, and thus implicitly
highly corrupted, 3D point cloud to allow the approximation of challenging
(e.g., textureless or repetitively patterned) 2D regions, e.g., grass floors. There-
fore, we adopt a plane hypothesis testing framework. It relies on a limited
number (e.g., ≈ 200) of plane models to approximate the scene’s 3D. It then
formulates the plane assignment problem as an energy-driven formulation,
which simultaneously optimizes a data-fidelity term, the smoothness of the
plane assignment over the regions and the number of used models. Our main
contributions have to do with (i) the computation of a small set of planar mod-
els that includes most of the models that are relevant to model the 3D scene,
and (ii) the derivation of a data-fidelity metric that measures the fitting error
while considering the errors associated to the 3D points resulting from an ac-
curate and unambiguous matching. Also, to the best of our knowledge, by
simultaneously optimizing the data-fidelity, the smoothness and the number
of assigned models, our light-weight method is the first one to densely ap-
proximate a 3D scene while simultaneously targeting a minimal number of
models. We have demonstrated the accuracy of the approximated 3D mod-
els by interpolating virtual views around a variety of man-made scene, on
which traditional MVS methods fail [21]. We attribute the high performances
of our algorithm to the robustness of the newly proposed data-fidelity term,
which incorporates matching accuracy and matching ambiguity into a new
3D fitting error, instead of simply combining a conventional fitting error with
a region-based projection error (e.g., based on a weighted average whose ad-
hoc weights are application dependent).

Future work will investigate the symmetrization of our method with re-
spect to the two views, the propagation of the plane models to occluded re-
gions, and their generalization to non-planar models.
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CHAPTER 5

Object interpolation using shape
prior regularization of epipolar

plane images

While the previous chapter has targeted the 3D reconstruction of the (man-
made) background of a scene, this chapter considers the synthesis of in-
termediate views of a foreground object captured by two calibrated and
widely spaced cameras. Based only on those two very different views, this
chapter proposes to reconstruct the object Epipolar Plane Image Volume
(EPIV) [127], which describes the object transformation when continuously
moving the viewpoint of the synthetic view in-between the two reference
cameras. This problem is clearly ill-posed since the occlusions and the fore-
shortening effect make the reference views significantly different when the
cameras are far apart. Our main contribution consists in disambiguating
this ill-posed problem by constraining the interpolated views to be consis-
tent with an object shape prior. This prior is learnt based on images cap-
tured by the two reference views, and consists in a nonlinear shape mani-
fold representing the plausible silhouettes of the object described by Ellip-
tic Fourier Descriptors. Experiments on both synthetic and natural images
show that the proposed method preserves the topological structure of ob-
jects during the intermediate view synthesis, while dealing effectively with
the self-occluded regions and with the severe foreshortening effect associ-
ated to wide-baseline camera configurations.
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5.1 Introduction
Virtual view synthesis aims at rendering images of a real scene from differ-
ent viewpoints than the ones acquired by the cameras. This chapter restricts
the general arbitrary view synthesis problem to the interpolation of images
observed by a virtual camera located in an arbitrary position along the base-
line connecting two reference cameras. The graceful transition between two
reference viewpoints is a demanded feature, especially in the field of video
production [165]. For example, in the rendering of cultural or sport events,
conventional acquisition systems switch abruptly between the cameras, mak-
ing the viewer uncomfortable. By generating a graceful transition between the
reference viewpoints, view interpolation gives the ability to understand how
the rendered viewpoint changes, i.e., the feeling of being “inside the scene”.

To synthesize intermediate views in-between reference cameras, state-of-
the-art methods generally decompose the scene into its background and its
dynamic foreground objects, and reconstruct them independently [196]. The
interpolation of dynamic foreground object, situated relatively close to the
pair of cameras, is the most complex question among both [109] [32], be-
cause the background can be reconstructed through projection of its 3D ge-
ometry [12]. Typically, the background 3D geometry can reasonably be ac-
quired, based on state-of-the-art active 3D acquisition systems [174] [104] if
it is still, or based on piecewise-planar 3D geometry approximations [21] [12]
[113] when it is far from the cameras. The fundamental issues encountered to
reconstruct a foreground object lie in (1) the availability of only two reference
views, and (2) the object proximity to the cameras, compared to the distance
between those cameras. The first factor prevents dense 3D estimation for the
dynamic object, while the second causes many projective discrepancies be-
tween the two views (occlusions, foreshortening effects, etc.), which hamper
the computation of dense correspondences and lead to holes in the interpo-
lated views [32].

This chapter focuses on the reconstruction of foreground objects and as-
sumes that the object silhouette can be extracted from the reference views1,
as generally assumed by state-of-the-art foreground synthesis methods [73]
[80] [12]. Based only on two very different views captured by a pair of wide-
baseline cameras, such as the ones shown in Figure 5.1(a), our scheme re-
constructs intermediate views (see Figure 5.1(b)) along the baseline by recon-
structing the object’s Epipolar Plane Image Volume [127] (see Figure 5.1(c)),
composed by the set of Epipolar Plane Images (see Figure 5.1(d)).

The specificities of the proposed method lie in the regularization of the
ill-posed reconstruction of the Epipolar Plane Images (EPIs) based on a se-
quence of plausible intermediate object silhouettes. As illustrated in Figure
5.3, this sequence is derived from a low-dimensional manifold, learnt from
the previous observations of the dynamic object by the wide-baseline stereo
pair. Interestingly, the priors are used not only to disambiguate the matching,
but also to determine how occluded parts vanish/appear while moving from
one reference view to the other.

1In this chapter, the foreground is generally extracted based on a simple thresholding of the `2
color distance with a gaussian mixture model of the background [208].
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Figure 5.1: Two (epipolary rectified) reference views (a) are available to gener-
ate intermediate views (b). For that purpose, our method estimates the Epipo-
lar Plane Image Volume (c) made of the set of Epipolar Plane Images (d).

To the best of our knowledge, our work is the first one to reconstruct topo-
logically consistent images from only two widely separated cameras, even for
their occluded parts, while dealing effectively with the self-occluded regions
and with the severe foreshortening effect associated to wide-baseline camera
configurations.

The rest of this chapter is organized as follows. Section 5.2 surveys the
recent advances in virtual view reconstruction, and identifies the limitations
of earlier methods in our envisioned wide-baseline stereo acquisition setup.
Section 5.3 introduces our proposed Epipolar Plane Images interpolation for-
malism. Section 5.4 explains how to capture and embed a prior about the
plausible silhouettes of the object in a low-dimensional silhouette manifold,
which can be exploited to constraint the reconstruction of the EPIs between
two reference images, as detailed in Section 5.5. The view synthesis process is
described in Section 5.6. Section 5.7 then validates our framework by generat-
ing topologically valid intermediate views on both real and synthetic images,
captured by two cameras with very different viewpoints. The advantages in-
duced by shape priors are further demonstrated by comparing our method
with a set of conventional and state-of-the-art approaches.

5.2 Related work and challenges

The view synthesis techniques are generally categorized into two groups in
the literature, namely model-based rendering and image-based rendering.

In model-based rendering, a 3D shape model of the observed scene is
explicitly reconstructed from multi-view images. Adequate texture is then
mapped on the model, and projected onto any arbitrary viewpoint. Methods
such as projective grid space [177] [241], visual-hull [123] [146] [142] [194],
3D model adjustment [31], and shape from video [73] belong to this category.
Those methods have the advantage to synthesize intermediate views repre-
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senting the actual 3D scene. However, the quality of the virtual view is highly
dependent on the accuracy of the estimated 3D model [182]. To obtain an accu-
rate 3D model, the model-based rendering methods therefore rely on a dense
coverage of the scene, which requires a large number of precisely calibrated
video cameras [197]. The trade-off between the accuracy of the reconstruction
and the amount of cameras is often relaxed when the distance between the
object and the reference cameras is important compared to the baseline dis-
tance separating these cameras [77]. In this particular case, a simple (set of)
planar model(s) (called billboards) permits to generate realistic intermediate
views of the object. However, when the distance to the scene decreases, pla-
nar proxies become insufficient to approximate the 3D of the object [12]. This
makes model-based rendering inappropriate to render close (dynamic) scenes
between wide-baseline cameras.

In contrast, image-based rendering (IBR) methods [190] create the virtual
view directly in the image color space without explicit reconstruction of a 3D
piecewise smooth surface. Such methods are further classified into arbitrary-
view and baseline interpolation approaches. On the one hand, arbitrary-view
IBR approaches determine the pixel color values of each virtual view in a way
that is geometrically and/or photometrically consistent with N ≥ 2 reference
views. These methods focus on optimizing multiple depth maps (either the
ones of the virtual views [80], or the ones of the reference views [12]) and/or
the virtual image’s color [60]. However, the dense estimation of a depth map
is only possible when all the 3D points corresponding to a pixel in the recon-
structed view are observed with at least two reference views. This requires a
sufficiently dense coverage of the scene with many cameras. On the other
hand, baseline interpolation approaches determine region correspondences
or pixel correspondences (disparity) between only two reference views and
generate the intermediate views by interpolation [101] or morphing [185].
They are restricted to the reconstruction of images on the baseline between
a pair of reference cameras, generally for small-baseline configurations, and
rely on dense correspondence between the views. This trend culminates with
light-field reconstruction approaches [127], which require tens or hundreds of
narrow-baseline2 cameras/lenses [163] to determine a continuous (sub-pixel)
correspondence between the reference views. So far, image-based rendering
techniques have thus been restricted to dense acquisition setups, where many
images of the same 3D scene are captured by cameras that are close to each
other, compared to their distance to the 3D scene. To the best of our knowl-
edge, no image-based rendering method has been able to provide effective
synthesis with a wide-baseline setup composed of only two reference cameras.

The main reason for the failure of rendering methods in wide-baseline
stereo setups is that the more different the viewpoints, the more important the
geometrical deformations (including projective distortions and occlusions),
and the more difficult it is to find correspondences between images from dif-
ferent cameras. More precisely, the three following issues are specific to wide-
baseline configurations:

• The foreshortening effect causes a distance or an object to appear shor-

2The reference views are separated from a few microns (microlens arrays) to a few centimeters
in narrow-baseline setups.
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ter/wider than it is because it is angled toward the viewer (see Figure
2.17). Because the compaction ratio depends on the viewpoints, a given
3D object will be represented by a totally different number of pixels in
different views. This implies that finding correspondences with fixed-
template matching methods fails [226]. The same holds when a pixel
correspondence is optimized by graph-cut [24], belief propagation [56],
or dynamic programming [40] approaches, which generally enforce the
pixel uniqueness constraint, i.e., a pixel in an image corresponds to at
most one pixel in another image.

• The self-occlusion effect occurs when a part of an object hides another re-
gion of the same object. Parts of the object can thus be observed in only
one of the camera views, so that no correspondence can be found with
the other reference views. This problem drastically limits the correspon-
dence-based interpolation methods [185] in a wide-baseline configura-
tion.

• The lack of sparse correspondences and non-ambiguous correspondences
induced by the large difference in viewpoints results in sparse dispar-
ity/depth maps, leading to large holes in the reconstructed intermedi-
ate view. Multiple methods exist to fill in these holes [144] [114] [252],
but they are either based on globally non-valid hypothesis (e.g., holes
should contain patterns that are visible in the non-occluded parts), or on
computationally expensive (post-)processings [18].

Our proposed method explicitly addresses those issues by computing cor-
respondences between a continuous set of image segments (from which dense
correspondences can be inferred, e.g., through linear interpolation), and by
constraining those correspondences to be consistent with a plausible defor-
mation of the projected object silhouette between the reference views (guides
the occlusion of segments, or their shrinkage/elongation due to the foreshort-
ening effect).

5.3 Wide-baseline interpolation algorithm

This chapter adopts an EPI interpolation formalism to reconstruct the image
of a foreground object between two widely spaced cameras. As depicted in
Figure 5.1, the transformations of images between different viewpoints can be
described by the object Epipolar Plane Image Volume [22] [41] (EPIV) (see Fig-
ure 5.1(c)). By definition, an EPIV is obtained by arranging in a 3D stack the
images captured by a dense array of cameras that are uniformly distributed
along a line with their image plane coplanar and vertically aligned. This is
performed through epipolar rectification [92] of the reference images, which
associates each horizontal line in one image to a row with the same ordinate
in the other image, as illustrated in Figure 5.2.
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Figure 5.2: Our view interpolation method overview: foreground object sil-
houette segments are matched between the epipolar lines of two reference
views, based on the prior about plausible silhouettes in intermediate views.

Roughly speaking, it implies that two corresponding pixels must belong to
the same horizontal plane in the EPIV, and that any transverse cross-section of
this 3D cube, i.e., an Epipolar Plane Image (EPI) (see Figure 5.1(d)), describes
how the pixels of one epipolar line in a view move to the other view. The
light field theory [127] states that these transitions are always linear and that
their slopes are inversionally proportional to the scene’s depth. The EPIV is
much richer than the depth information generally estimated by state-of-the-
art wide-baseline stereo methods. Indeed, the EPIV additionally englobes the
appearing/vanishment of occluded parts. However, its estimation has been
limited so far to very narrow-baseline setups, which only permits to generate
intermediate views in a very narrow range.

We adopt a new object-based approach to reconstruct the EPIV. After epipo-
lar rectification of the reference views, we:

1. Learn a low-dimensional silhouette manifold. It describes prior plau-
sible transformations of the object silhouette when changing the view-
point along the baseline (see Figure 5.3, left side).

2. Use a sequence of plausible silhouettes to define how the object silhou-
ette epipolar line segments are transformed (i.e., through scaling/trans-
lation/vanishing) between the two reference views (Figure 5.3, right
side).

3. Interpolate object textures based on the transformations, vanishments or
appearance of the silhouette epipolar line segments.

The different blocks of our novel view interpolation algorithm are depicted in
Figure 5.2 and described in detail in the next sections.
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Figure 5.3: We propose to regularize the ill-posed problem of reconstructing
the set of EPIs by incorporating prior knowledge about the plausible deforma-
tions of the object silhouette. This prior knowledge is learnt beforehand and
is described by a low-dimensional space, from which intermediate 2D prior
silhouettes can be extracted in-between the projected reference ones (left part
on the figure, each point of this manifold represents a silhouette, while the
color scale refers to the confidence about its plausibility). These intermediate
2D priors are then adequately placed in the EPIV (middle part of the figure)
and are converted into a set of 1D priors to disambiguate the reconstruction
of the set of EPIs (right part).

5.4 Object silhouette priors

This section describes the construction of priors on the plausible deformations
undergone by an object silhouette during a viewpoint change. It aims at pro-
viding a sequence of approximated object silhouettes that defines a priori a
plausible transition from the left reference silhouette to the right one. This se-
quence is then used to regularize the reconstruction of the set of EPIs.
We propose to generate these silhouette priors in four steps:

1. Learning a low-dimensional space representing the plausible silhouettes
of the object.

2. Locating, in this low-dimensional space, the silhouettes observed in the
reference views.

3. Interpolating, in this low-dimensional space, a sequence of low-dimen-
sional silhouettes that likely represent the deformation of the object sil-
houette in-between the reference views.

4. Converting these low-dimensional intermediate silhouette representa-
tions into high-dimensional prior images for view synthesis.

The main challenge of our approach lies in the definition of a low-dimen-
sional space that ensures that the interpolation step results in a smooth and
topologically coherent sequence of silhouette priors. We propose to follow the
pioneer approach of Prisacariu and Reid [172], who avoid the curse of dimen-
sionality problem [15] by splitting the low-dimensional manifold construction
into two parts: the first part describes the shape of a silhouette as a set of
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high-dimensional features, and the second part maps those high-dimensional
descriptors to a lower dimensional latent space. The different steps of the
construction of the prior silhouettes are described in detail in the rest of this
section.

5.4.1 High-dimensional silhouette description

We first propose to use Elliptic Fourier Descriptors (EFD) [116] as high-dimen-
sional features for object silhouettes. Elliptic Fourier Descriptors represent the
shape of a silhouette, given as a set of 2D coordinates (u(t), v(t)), as a sum of
N elliptic harmonics, based on:

u(t) = a0 +
N

∑
n=1

(
an cos

2πnt
T

+ bn sin
2πnt

T

)
,

where T is the perimeter of the contour and:

a0 =
1
T

K

∑
p=1

( ∆up

2∆tp
(t2

p − t2
p−1) + ξp (tp − tp−1)

)
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T
2n2π2

K

∑
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(∆up
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(
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2πntp

T
− cos

2πntp−1

T
))
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T

2n2π2

K

∑
p=1

(∆up
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(
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T
− sin

2πntp−1

T
))

,

where

ξp =
p−1

∑
j=1
∆uj −

∆up

∆tp

p−1

∑
j=1
∆tj,

with K being the number of sampling points in the contour, tp the curvilinear
coordinates on the shape, up the abscissa projection of tp, ∆up = up − up−1

and ∆tp =
√
(∆up)2 + (∆vp)2. The second coordinate of the shape contour,

v(t), is defined completely analogously in terms of coefficients c0, cn and dn,
by exchanging ∆up by ∆vp. Each harmonic is thus described by four coeffi-
cients, which have an intuitive geometrical interpretation: an (bn) corresponds
to the projection on the u-axis of the semi-major (minor) axis of the nth elliptic
harmonic and cn (dn) to their projections on the v-axis. We thus propose to
describe the shape of an object silhouette as a high dimensional feature vector,
composed of N sets of harmonic coefficients (an, bn, cn, dn). In our validations,
the parameter N is simply chosen based on a visual inspection of the discrep-
ancy between the original shape (plain blue shape in Figure 5.4) and the one
obtained by backward transformation (dashed red shape in Figure 5.4) of the
Elliptic Fourier Descriptors of the original shape. It is worth noticing that the
number of harmonics can also be fixed based on the wished maximum `1 er-
ror (in the u or v image dimensions) [116], based on the error bound provided
by Giardina et al. [75]. In our validations, we have observed than the results
do not change much when N ≥ 50, and values of N = 50 and 70 have been
empirically chosen.
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N = 1 N = 5 N = 10 N = 50 N = 75

Figure 5.4: Elliptic Fourier Descriptors (EFD) are used to describe the fore-
ground silhouettes based on a restricted number of coefficients/harmonics.
The number of used harmonic N is set to N ≥ 50 in such a way to have a
low discrepancy between the original shape (plain blue shape) and the one
obtained by backward transformation of the EFD (dashed red shape).
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The description of a 2D shape into a restricted set of coefficients might
have been done based on other descriptors than Elliptic Fourier descriptors
[116]. It is worth noting that the description of a 2D shape based on Elliptic
Fourier Descriptors is not considered as a contribution of this thesis, and EFD
could be replaced by any other shape descriptor, as long as this descriptor is
reversible (with or without losses). However, as shown in the qualitative and
quantitative comparison provided in Appendix A, Elliptic Fourier Descriptors
have been chosen for their good trade-off between accuracy and computation
time.

5.4.2 Learning a silhouette manifold using GPLVM

We then map M instances of high-dimensional EFD feature vectors to a low-
dimensional latent space that represents the different plausible silhouettes.
We use a nonlinear dimensionality reduction technique called Gaussian Pro-
cess Latent Variable model (GPLVM) [124]. This technique is used because the
shape spaces are often nonlinear. Moreover, since GPVLM makes no assump-
tion about the distribution of the latent space, it permits to work with a low
dimension, while still capturing most of the shape variance.

In more details, GPLVM represents a data set Y = [y1, · · · , yM]T , com-
posed of M original data points (e.g., M reference silhouettes represented with
EFD) collected in a D dimensional space (D = 4 · N here), with a lower di-
mensional set of latent variables X = [x1, · · · , xM]T , where each variable is
a latent point of dimensionality d, with d � D. GPLVM can be considered
as a generalization of the probabilistic PCA [216] to less restrictive covariance
functions, by replacing the inner product kernel, denoted K, with nonlinear
functions. Generally, the popular radial basis function kernel is used for the
nonlinear mapping. GPLVM represents this mapping as a Gaussian process
and determines the parameters of the mapping function in such a way that the
distribution of the corresponding target data can be optimally approximated
as a normal distribution. The hyperparameters θθθ? of this Gaussian mapping
are obtained based on the following optimization:

{X?, θθθ?} = argmin
X,θθθ

(
P(Y|X, θθθ)−

M

∏
i=1
N (yi|0,K(θθθ))

)

= argmax
X,θθθ

(
1−

(
P(Y|X, θθθ)−

M

∏
i=1
N (yi|0,K(θθθ))

))
︸ ︷︷ ︸

Approximation precision

, (5.1)

which maximizes the approximation precision of the reprojected low-dimen-
sional points X with respect to the high-dimensional data Y [124]. As a result
of this optimization from the latent space to the original data space, GPLVM
keeps apart in the latent space the points that are far apart in the data space,
but nothing guarantees that points that are close in the data space will also be
close in the latent space. Hence, to push GPLVM to also preserve local dis-
tances, we impose back-constraints [125] in the computation of the latent vari-
ables. In particular, we constrain each latent variable to be a smooth mapping
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from its high-dimensional counterpart. As a result, the learnt latent space be-
comes more adapted to our interpolation purpose, since it guarantees that the
transition between two close points in the latent space maps to a smooth and
topologically coherent silhouettes transition in the high-dimensional space.

As an example, on the left part of Figure 5.3, the GPLVM optimization has
learnt a 2-dimensional latent space from a set of M = 150 shapes of silhouettes
captured on video sequence representing hands’ gestures and described by
35 elliptic harmonics. The colormap of Figure 5.3 represents the optimum
approximation precision (cfr. Equation 5.1) of this learned latent space, where
the regions with the warmest colors are more likely to represent the shape of
a hand.

The set of silhouettes used for training are captured by one of the reference
cameras before3 the time at which the intermediate view synthesis is gener-
ated. In practice, the approach only requires a small amount of training sam-
ples; around 100 samples are used on average in our validation.

5.4.3 Interpolating intermediate silhouettes on the manifold

To obtain a sequence of plausible 2D silhouettes between the reference views,
we first project the left and right reference silhouettes on the latent space
(points 1 and 6 on the left part of Figure 5.3), based on the mapping func-
tion learnt by GPLVM [124]. Then, we use a shortest path algorithm to in-
terpolate a plausible transition between these low-dimensional reference sil-
houettes, and obtain the corresponding high-dimensional silhouette prior by
back-projection of this path, from the latent space to the image space. The
black silhouettes on the left of Figure 5.3 illustrates the silhouettes obtained by
back-projection (from the latent space to the shape space) of the latent points
represented in white, on the left part of the figure. More precisely, because
the transition in the intermediate views must represent the 2D appearance of
a 3D object, we constrain it to the latent points for which the approximation
precision is the highest. Practically, the shortest geodesic path (white path
in Figure 5.3) is computed using Dijkstra’s algorithm [48] with a transition
cost cij from node i to j that is inversely proportional to the precision of j
(cij = − log(precisionj + ε), where ε avoids numerical instabilities).

5.4.4 Registering the silhouette priors with the reference ones

The set of prior foreground silhouettes obtained in the previous section rep-
resent a smooth and topologically consistent interpolation between the pro-
jections of the two reference silhouettes on the latent space. However, these
priors describe the 2D shapes of the silhouettes, but not their position, scale
and rotation. To exploit them during the EPIV reconstruction, we have thus
to approximatively register them in the EPIV. This alignment is performed in
three consecutive steps by:

1. Orientating the prior shapes with respect to the silhouettes observed in
the reference views. The orientation of each silhouette is approximated

3The actual time-windows used in our validation are specified in Section 5.7.
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by the angle of the first principal component of its PCA decomposition.
Each shape is then rotated in such a way that its relative angle coincides
with the linear interpolation of the angles of the two reference silhou-
ettes.

2. Translating the oriented prior shapes, in such a way that their centers of
mass coincide with the linear interpolation of the centers of mass of the
two reference silhouettes.

3. Scaling the translated and orientated prior shapes, based on the linear
interpolation of the height of the object between the two reference sil-
houettes.

Figure 5.5(a) shows some aligned versions of the prior shapes (in white)
extracted from a linear sampling along the shortest path in a latent space rep-
resenting a dinosaur. As illustrated by the red segments on this figure, the
resulting silhouette priors provide, for a given epipolar line, a set of silhou-
ette borders. Hence, they describe a priori a smooth transition of the reference
epipolar line segments, up to the alignment inaccuracies between the blue
and red segments. In the following sections, those alignment inaccuracies are
considered explicitly by using translation-robust metrics when comparing the
reference epipolar line segments with the prior ones.
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Figure 5.5: (a) Prior information about the plausible deformations of the object
silhouette is used to determine the cost of matching the left epipolar border b0

1
to the right epipolar border b1

1 (b). This cost is defined by minimizing the sum
of (c) the cost f of moving from a reference border to a prior one and (d) the
discrepancy g with the prior (see the text for details).
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5.5 Transformations of epipolar line segments

This section explains how to disambiguate the ill-posed reconstruction of the
object EPIs based on a sequence of 2D silhouette priors, as obtained in the pre-
vious section. As illustrated on the right side of Figure 5.3, our approach es-
timates how the object epipolar line segments evolve when moving the view-
point from one reference view to the other. Due to the epipolar rectification of
the reference images, the set of possible geometric transformations of a fore-
ground (background) epipolar line segment is restricted to the combination
of an horizontal translation, a 1D scaling and a potential split-up or merge
with other foreground (background) epipolar line segments. In the follow-
ing, without loss of generality, we represent those combined transformations
based on the displacement and potential fusion of the segments’ borders. We
first introduce some notations.

Let S = [s1, s2, · · · , sS ] denote a sequence of consecutive foreground and
background epipolar line segments, defined along a rectified epipolar line as
illustrated on one of the blue or red lines of Figure 5.5(a). For more clarity,
in the following, these reference (blue) and prior (respectively red) epipolar
line segments will be represented as a front view, as shown in Figure 5.5(b).
The number of segments constituting the rectified epipolar line is denoted by
S = |S|. Each segment sk ∈ S (with k ∈ {1, 2, · · · ,S}) is characterized by a
binary value, denoted v(sk), depending if it corresponds to foreground (1) or
background (0) information, and by its normalized length l(sk), relative to the
length of the entire sequence S.

We associate a sequence of epipolar borders B = [b0, b1, · · · , bS ] to each
epipolar sequence S, where bk−1 and bk respectively represent the begin-
ning and the end of the epipolar segment sk (∀k ∈ {1, · · · ,S}). The po-
sition of a border is then defined as p(bk) = ∑k

x=0 δ(x > 0) · l(sx), with
k ∈ {0, 1, · · · ,S} and δ(.) being the unit function. The modality m(bk) of the
border bk defines the kind of transition (foreground to background or back-
ground to foreground) that it supports, i.e., m(bk) = v(sk) if k ∈ {1, 2, · · · ,S},
and m(bk) = 0 otherwise.

To determine how the 2D object silhouette, represented in each EPI by a
set of epipolar borders, evolves when changing the viewpoint, we proceed in
two steps:

1. We identify and match the reference epipolar borders (blue borders in
Figure 5.5(a)) that have a corresponding border in the other reference
view. This is done by introducing an original cost-function to drive the
matching process in a way that is consistent with the available silhouette
priors (see Section 5.5.1).

2. We approximate the vanishing trajectories of all the unmatched borders
in a way that is consistent with the prior information (see Section 5.5.2).

These two steps are described in detail in the next sections.
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5.5.1 Matching epipolar borders

For a given EPI, let B0 and B1 denote the two sequences of reference epipo-
lar borders that delimit the epipolar segments of the left and right reference
silhouettes, respectively. Thus, as illustrated on Figure 5.5(b), b0

i refers to the
ith epipolar border in the first reference view (starting at index 0). Similarly,
b1

j is the jth epipolar border in the second reference view. We match pairs of
borders with the algorithm of Needleman and Wunsch [162] and adapt its un-
derlying cost functions to account for our problem specificities.

The Needleman and Wunsch (NW) algorithm has been extensively used
to compare sequences of characters [162]. Given an alphabet of characters
C, and a measure of dissimilarity d(., .) between any pair of characters in C,
the NW algorithm aligns two sequences of characters in a way that (1) pre-
serves the order of the characters within each sequence [181], (2) matches the
most similar characters together by minimizing the sum of dissimilarities be-
tween matched characters and (3) tolerates unmatched characters at the cost
of some skipping penalty w(.). Its optimization scheme, which determines the
associations and unmatched characters based on the matching cost d(., .) and
skipping cost w(.), is described in the Appendix B of this thesis.
We now define the borders matching and skipping costs (d(., .) and w(.) re-
spectively), so as to capture the specificities of our problem, as well as to take
advantage of the available intermediate prior silhouettes. In particular, we
want to ensure that:

• long segments are less likely to vanish than shorter ones. In other words,
borders that delimit long reference epipolar segments have less chance
to be unmatched. Therefore, the skipping cost w(bk) of the reference
border bk is defined to be equal to max (l(sk), l(sk+1));

• reference borders are unmatched by pairs of consecutive borders, so that
their skipping can be interpreted as a vanishing/appearing segment.
Since, by definition, a border separates two segments having a different
foreground/background value, the modes of consecutive borders are
different. Skipping borders by pairs is thus equivalent to constraining
each border to only match borders having the same modality. Hence,
the distance between two borders with different modalities in the two
camera views should be set to ∞.

• the matching of reference borders between the two reference views shall
be consistent with the prior that is available about the plausible defor-
mation of the silhouette between the two views. The rest of this section
explains how this is achieved through proper definition of the distance
metric d(., .) between borders of the same modality.

Recall that the silhouette priors are represented by a sequence of P + 1
foreground images, in which the pth image, with p ∈ [0; P], describes a pri-
ori the silhouette of the object as observed at a relative intermediate position
αp = p

P between the left and the right reference views. Those P + 1 silhou-
ette priors represent thus a priori a linear sampling of the continuous smooth
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transformation of the silhouette from the left to the right reference views. As
illustrated in Figure 5.5(a) and (b), they provide, for a given epipolar line, a
set of intermediate sequences of segments {Sα0 , · · · , Sαp , · · · , SαP} and their
associated sequences of borders {Bα0 , · · · , Bαp , · · · , BαP}. We define the cost
of matching a border in B0 with a border in B1 by measuring how it is in-line
with the prior sequences Bαp (with p ∈ [0; P]).

To account for the fact that the alignment of the prior silhouettes in the
EPIV is prone to a translation error (as discussed in Section 5.4.4), we decom-
pose the cost of matching the ith border of B0 with the jth border of B1, i.e.,
d(b0

i , b1
j ), into two metrics. The first metric measures the quality of the align-

ment, in each reference view, between the prior and the reference borders. It
is defined to be independent of a global and rigid translation of the prior. The
second metric estimates how well the association of two prior borders that
are extracted from the left and right viewpoints (corresponding to α0 and αP
respectively), is supported by the intermediate prior borders (0 < αp < 1).

Precisely, the first metric, illustrated in Figure 5.5(c), quantifies the likeli-
hood of matching each reference epipolar border of B0 (respectively B1) with
each of the prior borders of Bα0 (respectively BαP ) observed from a reference
viewpoint. To define the associativeness f (b0

i , bα0
k ) between the ith reference

border of B0, i.e., b0
i , and the kth border of Bα0 , i.e., bα0

k , we rely on the fact that
two borders are likely to be in correspondence when they share similar neigh-
borhood. Because Sα0 and S0 are seen from the same camera viewpoint, the
foreshortening effect does not influence the length of their epipolar segments.
This cost can be measured by the complementary of the normalized Hamming
correlation (detailed in the Appendix C of this thesis), i.e., the number of po-
sitions in which the reference and prior sequences have identical values when
they are aligned on the borders of interest. We highlight the fact that this
metric is invariant to a rigid translation and is thus adapted to consider the
translation error-prone prior. The metric f (bαP

l , b1
j ) to match the lth prior bor-

der in BαP with the jth reference border in B1, observed in the other reference
view, is defined similarly.

The second metric evaluates the cost of associating a border of the first
prior Bα0 with a border of the last prior BαP , as illustrated on Figure 5.5(d).
We assume a linear displacement between two corresponding borders. With
rectified images, the linearity is strictly verified when the silhouette borders
correspond to the same physical 3D point [41], independently of the view-
point. In other cases, since the actual 3D point supporting the silhouette bor-
der generally does not move a lot when changing the viewpoint, the linearity
assumption is also reasonably valid. Hence, we evaluate the discrepancy be-
tween a linear displacement and the actual transformations given by the pri-
ors Bαp (with p ∈ {1, · · · , P− 1}). Formally, we define the prior deformation
cost g(bα0

k , bαP
l ) of matching the kth border of Bα0 with the lth border of BαP ,

to be the sum of the `1 interpolation residues, i.e., the distance between the lin-
ear interpolation of bα0

k and bαP
l in the intermediate views αp, and the closest

prior borders having the same modality in Bαp (with p ∈ {1, · · · , P− 1}). This
is illustrated with green color codes in Figure 5.5(d). The formal derivation of
the prior deformation cost g(bα0

k , bαP
l ) is given in Appendix D.
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Finally, the cost d(b0
i , b1

j ) to match the ith border of B0 with the jth border

of B1 is defined as:

d(b0
i , b1

j ) = min
k,l

(
f (b0

i , bα0
k ) + g(bα0

k , bαP
l ) + f (bαP

l , b1
j )
)

, (5.2)

where the minimum is determined by the Dijkstra’s algorithm [48]. By con-
struction, a small d(b0

i , b1
j ) reflects the existence of a prior border that moves

smoothly while going from one extreme prior view to the other (i.e., small
g(bα0

k , bαP
l )), and a good coherence between the prior and the actual reference

borders in each reference view (i.e., small f (b0
i , bα0

k ) and f (bαP
l , b1

j ) values).

Thereby, a small d(b0
i , b1

j ) promotes the matching of the borders b0
i and b1

j .

Using d(b0
i , b1

j ) and w(b0
i ), the NW algorithm determines the optimal bor-

ders associations, and identifies (pairs of) unmatched borders.

5.5.2 Appearing/vanishing trajectories

We now present an original method to handle vanishing trajectories of un-
matched borders. This is equivalent to analyzing how occluded parts vanish
or appear when changing the viewpoint. As one of the most original con-
tribution of this research, we now show that it is possible to estimate how
occluded parts vanish/appear when changing the viewpoint in-between the
reference views. Since we know in which reference view the occluded epipo-
lar segment4 is visible, we consider the vanishing when moving from this
view to the other, and assume that the learnt latent space embeds an instance
of vanishment of this occluded part. As illustrated in Figure 5.6, our method
estimates, from the prior, the speed at which each occluded segment shrinks
(vanishes) when changing the viewpoint.
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Figure 5.6: The vanishing trajectories are estimated by (a) identifying the oc-
cluded prior borders (in dark red), (b) fitting linear trajectories to these prior
borders and (c) associating the slope of these trajectories (dotted lines) to the
occluded reference borders (plain lines). Finally, by (d) adding the vanish-
ing trajectories to the set of trajectories describing the transitions between the
associated reference borders, the EPI of the object silhouette is reconstructed.

Since the borders displacements along the EPI are linearly proportional to
α [41], we only have to evaluate the two constant border displacement speeds

4An occluded epipolar segment is defined by two consecutive occluded epipolar borders.
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and propagate this prior information to the occluded reference segments. This
is done as follows:

1. Identifying the prior borders that correspond to a segment that is subject
to occlusion. We name them occluded prior borders (dark red borders
in Figure 5.6(a)).

2. Fitting linear trajectories to these prior borders (Figure 5.6(b)).

3. Associating the slope (vanishing speed) of each of these linear trajectory
to one of the occluded reference border (Figure 5.6(c)).

We present each of these steps in detail in the following.

Identification of prior borders defining the occluded prior segments

Obviously, only the prior borders that do not support one of the associa-
tion/matching of reference borders computed by the algorithm presented in
Section 5.5.1 should be considered to explain the vanishing of occluded seg-
ments. Hence, we first select as occluded prior borders the prior borders that
are sufficiently far from the linear trajectories followed between the pairs of
associated reference borders, or more specifically between their correspond-
ing priors Bα0 and BαP at the reference viewpoints. In our experiments, we
have used a simple heuristic threshold, set to 5% of the image width, to de-
cide whether a prior border is sufficiently far from the linearly interpolated
trajectories. This may however lead to many false positive. Hence, the follow-
ing section proposes a robust way to estimate the vanishing/appearing paths
from this initial set of occluded prior borders.

Robust fitting of linear trajectories

This section shows how to determine the linear trajectories of the l occluded
reference borders from an imperfect set of prior occluded borders. Precisely,
the set of l occluded reference borders can be divided into l0 occluded ref-
erence borders representing a transition from foreground to background (i.e.,
having a mode value of 0) and l1 borders representing a transition from back-
ground to foreground, such that l0 + l1 = l. Hence, we propose to divide
the set of prior occluded borders into two sets, based on their modes. Then,
l0 linear trajectories (respectively l1 linear trajectories) are estimated on the
subset of occluded prior borders having a mode of 0 (respectively 1). This is
done by sequentially applying l0 times (respectively l1 times) the RANSAC
algorithm [58], i.e., by estimating a linear trajectory on the subset of occluded
prior borders of mode 0 (respectively 1), removing the prior borders that are
inlier to this estimated model, estimating a new linear trajectory on this new
subset, and so on. At each RANSAC iteration, two borders are randomly se-
lected from the set of occluded prior borders, and the linear trajectory passing
through these borders is estimated. All the prior borders located in a small
and conservative `1 distance (e.g., 5% of the width of the image) are consid-
ered as inliers to the trajectory model. This simple greedy algorithm appears
to work well in practice, due to the relatively small amount of outliers in the
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set of occluded prior borders. The linear model that maximizes the amount of
inliers is considered as the optimal model of the lth

i sequential application of
RANSAC.

Assignment of linear trajectories to the reference occluded borders

We want to assign the trajectories computed from the prior occluded borders
to the unmatched borders in the reference views, so as to transfer their slope,
i.e., the constant speed at which the borders move along the EPI when the
viewpoint index α changes. The process is illustrated in Figure 5.6(c). The
cost of assigning a prior trajectory to a reference border is simply defined to
be the `1 distance between the border and the position defined by the trajec-
tory prior in the reference view (compensated with a linear interpolation of
the translation error indicated by the matches of the NW algorithm). The as-
signment problem is then solved using the Hungarian algorithm [117], so as to
assign one and only one trajectory to each unmatched border while minimiz-
ing the sum of assignment costs. Finally, as illustrated on Figure 5.6(d), these
vanishing trajectories are added to the set of trajectories describing the tran-
sitions between the associated reference borders to form the EPI of the object
silhouette.

5.6 View synthesis

This section describes how a view is synthesized based on the estimation of
the trajectories followed by the reference epipolar borders. We propose to syn-
thesize the intermediate views by combining the textures of matched epipolar
line segments and by propagating the texture of occluded line segments from
the reference view in which those segments are visible.

Texturing an intermediate view by combining the textures of its corre-
sponding elements in the both views has been deeply investigated in the past
[185] [51]. By favoring the piecewise smoothness of the intermediate texture,
most of these state-of-the-art methods permit to generate pleasant intermedi-
ate views despite corrupted matches. In contrast, in order to fairly validate
our contribution, i.e., the estimation of the geometric transformations of the
epipolar line segments, we propose to simply rely on view morphing [185],
which is not robust to corrupted matches. Indeed, it does not impose piece-
wise smoothness of the texture, so that any wrong border match results in
highly noticeable discontinuities in textures.

More precisely, view morphing relies on epipolar rectification to synthe-
size the intermediate textures by linear interpolation of the reference textures,
such as:

Iα(uα, v) = (1− α) · I0(u0, v) + α · I1(u1, v),

with I0 and I1 the rectified reference images, Iα the reconstructed interme-
diate image, u0 the u coordinate of a pixel of I0, v its fixed ordinate (studied
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scanline). The pixel abscissa uα and u1 are computed as follow:

uα = (1− α) · u0 + α · u1

u1 =
l(s1

j )

l(s0
i )
·
(

u0 − p(b0
i )
)
+ p(b1

j ),

with s0
i denoting the epipolar line segment including u0, s1

j denoting the epipo-

lar line segment matched to s0
i . Then p(b0

i ) is the position of the left border of
the epipolar line segment including u0, and p(b1

j ) defines the position of the
corresponding matched border.

The proposed method propagates the texture for occluded segments with
a similar principle, although the interpolation is done between a pixel in a ref-
erence view and the segment’s vanishing point determined by the intersection
(uv,αv) of the vanishing trajectories surrounding this occluded segment. This
synthesis is defined as follows:

Iα(
α

αv
· (uv − u1) + u0, v) = I0(u0, v),

if the vanishing epipolar line segment belongs to the left reference image (oc-
clusion), or

Iα(
(α− 1) · (uv − u1)

αv − 1
+ u1, v) = I1(u1, v)

if the vanishing segment belongs to the right reference image (disocclusion).
In contrast to conventional morphing strategies, the synthesized images rep-
resent both the parts that are visible in the two reference views, and the parts
that are visible in a single reference view.

5.7 Results

In this section, we demonstrate the performance of our approach on well-
known datasets, namely the synthetic Kung-Fu Girl sequence [149], the real
Dino [183] and Ballet sequences [252]. Although these multi-view datasets con-
tain numerous images acquired by multiple (small-baseline) cameras, we only
consider a pair of widely separated cameras from these sets to learn our shape
priors model, and to reconstruct the intermediate views.

For each dataset, we interpolate five intermediate views uniformly sam-
pled in-between the left and right reference views5. To show the advantage
of using epipolar line segments as basis matching element, we provide re-
constructed views when pixels are chosen as basis matching elements. To
demonstrate the benefit of the silhouette priors, we also provide the views
that have been reconstructed without silhouette priors to disambiguate the
epipolar segments matching. We also compare the reconstructed intermedi-
ate views resulting from our method with the ones obtained by three other
conventional and state-of-the-art methods.

5We encourage the reader to refer to videos provided at http://infoscience.epfl.ch/
record/200492 to observe the continuous transition from the left to the right cameras.

http://infoscience.epfl.ch/record/200492
http://infoscience.epfl.ch/record/200492
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5.7.1 The Kung-Fu Girl dataset

For the Kung-Fu Girl dataset, we have selected two wide-baseline cameras sep-
arated by an angular difference of 45◦. The view captured by the left camera
(or right camera) is shown on the left (respectively right) of the first row in
Figure 5.7. The image shown in-between corresponds to the ones captured by
a camera situated approximatively at the middle (α ' 0.5) in-between these
two reference views and represents thus the ground-truth.
The second row in Figure 5.7 represents the intermediate views generated by
a conventional visual-hull reconstruction [146], in which the two foreground
silhouettes are projected back in the 3D world, forming two cones whose inter-
section defines the 3D boundary of the object. The intermediate views are ob-
tained by projecting and texturing this 3D model onto an arbitrary viewpoint
[101]. The reconstructed intermediate views perfectly show the limitations of
model-based approaches in our wide-baseline stereo, namely the requirement
of observing the object with a large amount of reference cameras to avoid an
imprecise 3D model, leading to corrupted intermediate views.
The third row in Figure 5.7 represents the intermediate views generated when
morphing [185] a dense (pixel) correspondence obtained by dynamic pro-
gramming [40] [181] on corresponding epipolar lines. The matching cost is
simply defined as the `2 norm of the pixels’ colors and the skipping penalty
w(.) is arbitrary set to 0.5. Two kinds of artefacts can be observed on these
reconstructed views. First, they are topologically incoherent. This can be
observed in-between the legs of the Kung Fu girl, near her neck and on her
left hand, where some members get apart from her body. This is due to
the ill-posedness of the wide-baseline matching problem, leading to wrong
pixel correspondences. Second, because the resulting matching is not smooth,
holes appear in the reconstructed intermediate views. This artefact, caused by
the foreshortening effect, is generally avoided by imposing a smooth dispar-
ity/depth map [190], at the price of a slow matching process.
To explicitly impose the smoothness along the epipolar lines, in the 4th row of
Figure 5.7, we use epipolar line segments as matching elements. The method
extends the one of [40] by considering epipolar line segments (and not pixels)
as basic image elements. It corresponds to the approach we have introduced
in Section 5.5.1, but without prior silhouettes knowledge. Hence, each epipo-
lar border is matched, by NW [181], only considering the f (., .) terms in the
definition of d(b0

i , b1
j ) (see Equation (5.2)). We observe in Figure 5.7 that the

reconstructed intermediate views are smoother, but still exhibiting some topo-
logically incoherent transitions, such as shown at the level of her head.
To regularize the reconstruction of the EPIs in such a way that they provide
topologically coherent intermediate views, a latent space representing plau-
sible silhouettes of the Kung-Fu girl has been learnt on a total of 60 silhou-
ettes captured by the two wide-baseline cameras, and observed uniformly in a
time-window starting from the first frame of the sequence to 20 frames before
the required transition. We thus highlight the fact that the training silhouettes
do not include the silhouettes to be reconstructed. These training silhouettes
have been described using 70 elliptic harmonics, and the fifth row in Figure
5.7 illustrates this latent space.
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Figure 5.7: Instead of projecting an estimated 3D model [146] (second row)
or determining a dense (pixel) match (third row), epipolar line segments are
used as basic matching elements (fourth row). In the last row, our method reg-
ularizes the epipolar segments matching so that the shapes of the intermediate
silhouettes are topologically consistent with the plausible deformations of the
object silhouette, learnt and described by a low-dimensional latent space (fifth
row).
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The advantage of considering these priors is illustrated on the last row
in Figure 5.7, where intermediate views have been generated by the method
proposed in this chapter. Only 5 intermediate priors have been used to recon-
struct the EPIs. We observe that the intermediate views reconstructed by our
method shows a topogically coherent transition of the Kung-Fu girl from the
left to the right reference view.

5.7.2 The Ballet sequence

The second sequence, called Ballet [252], has been captured using eight cam-
eras placed along a 1D arc spanning about 30◦ end-to-end. While two neigh-
bor cameras of this array constitute a small-baseline stereo pair, the outer cam-
eras represent a wide-baseline configuration. Indeed, because of the small
depth of the foreground dancer, strong self-occlusions and foreshortening ef-
fects can be observed between these two external viewpoints (especially on
the dancer’s arms). In Figure 5.8, we compare the reconstructed images at in-
termediate viewpoints with five methods, using only the two wide-baseline
reference views (in contrast to the use of the small-baseline multi-views pairs,
as done in [252]). On the first row, the intermediate views are generated by
view morphing, based on multiple depth maps as proposed in [252]6. Since
the depth map estimated from the extreme wide-baseline views is very poor,
we provide the images reconstructed from the textures in the two extreme
views, based on the depth maps computed with neighbor cameras (small-
baseline configuration). Even with this additional information, the small depth
inaccuracies (equivalently weak pixel correspondences) lead to merging of
non-corresponding textures, i.e., ghosting artefacts. The second row of Fig-
ure 5.8 illustrates the intermediate views obtained by a state-of-the-art stereo
method [158], top-ranked in February 2015 in the well-known Middlebury
Stereo Evaluation [180] [97] [181]. By combining a cost-filtering approach,
especially adapted to manage the occlusions, with a global (fully connected
Markov Random Field) optimization, which imposes the smoothness of the
disparity map, their method achieves impressive results on small-baseline
stereo setups. However, as expected, the strong geometrical and photomet-
ric changes, as well as the foreshortening effects affecting our wide-baseline
stereo setup make this algorithm pretty vulnerable, especially due to the over-
smoothing of the disparity map. In the third row, we use only the external
views and test wide-baseline stereo matching by applying the Needleman-
Wunsch algorithm (dynamic programming [181]) on pixels, as done in [40].
We observe that the strong foreshortening effect produces holes in the recon-
structed intermediate views. By applying dynamic programming on the seg-
ment representation, dense correspondences have been found, but topological
inconsistencies subsist (see fourth row on Figure 5.8). Because of the ill-posed
nature of the problem, the lowest cost match does not necessarily give the
optimal match in terms of topological consistency of the silhouette.

The last row in Figure 5.8 illustrates the result obtained by our complete
method using silhouette priors. The latent space has been learnt on 40 sil-

6The pixel correspondences are obtained by projection of the pixels of one reference view at the
depth indicated by the depth map, and back-projection of these 3D points in the other reference
view.
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Figure 5.8: Comparison between the interpolated intermediate views gener-
ated based on matching of layered representation [252] (first row), which ex-
ploits intermediate depth maps in addition to external views, a state-of-the-art
method [158] which is top-ranked in the Middlebury Stereo Evaluation [180]
(second row), dynamic programming on pixels [40] (3rd row), dynamic pro-
gramming on our proposed epipolar line segment representation (4th row)
and our method (5th row).
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houettes observed by the two outermost cameras in a time-window 20 frames
away from the transition time. These silhouettes have been described with 50
harmonics of Elliptic Fourier Descriptors, and 6 intermediate priors are used
to regularize the determination of the segments’ transformations.

5.7.3 The Dino sequence
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Figure 5.9: The intermediate views have been reconstructed based on only
two wide-baseline cameras (relative angle of 31◦).

For the Dino dataset, we have selected a stereo pair having a relative angle
of 31◦. The first row of Figure 5.9 illustrates the reconstructed views obtained
by matching the color pixels by dynamic programming, as done in [40]. As
observed on the other datasets, these intermediate views are affected by holes
and form a topologically incoherent transition from the left to the right refer-
ence view. The second row in Figure 5.9 illustrates three intermediate views
obtained by the proposed reconstruction of the EPIs. Because only one image
is captured per camera in this dataset, a set of plausible Dinosaur’s silhouettes
can not be observed from images captured by extreme cameras at previous
timestamps. We thus learn the latent space based on 160 Dinosaur’s silhou-
ettes observed by cameras situated at least 15◦ away from the baseline of the
stereo pair. We highlight the fact that we don’t use, for the training, cameras
that could lie on the interpolated path. Each of these silhouettes have been
described based on 70 elliptic harmonics, and 5 prior intermediate silhouettes
have been extracted by linearly sampling the optimal transition on the object
manifold, as explained in Section 5.4.4.

As observed on the other datasets, the intermediate views obtained by reg-
ularizing the matching of epipolar line segments (illustrated on the second
row in Figure 5.9) provide a topologically coherent transition from the left to
the right reference view, as opposed to the ones obtained by simply matching
the color pixels with the NW algorithm [40] (first row in Figure 5.9).
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5.7.4 Discussion

In contrast to the previous methods, we obtain topologically coherent inter-
mediate views, thanks to the additional silhouette prior obtained from the
latent space. Our method also efficiently deals with the foreshortening ef-
fect that is typical in wide-baseline configurations, as it can be seen on the
front part of the chest of the dancer, which is severly slanted in the left ref-
erence view, while almost fronto-planar in the right one. Finally, to the best
author’s knowledge, the work presented in this chapter is the first one to infer
the trajectories of occluded parts, allowing to interpolate their content in inter-
mediate views, as shown by the left shoulder of the Kung-Fu girl or the space
in-between the legs of the dancer. Next to those very encouraging results, four
limitations of our approach however deserve to be pointed. The first one can
be observed on the reconstructed fingers of the dancer’s right hand in Figure
5.8. Indeed, when changing the viewpoint from the left to the right reference
view, her fingers detach from her hand, showing a topologically incoherent
transition of her right hand. This is due to the limited accuracy of the priors,
determined from a low-dimensional space representing the approximations
of training shapes as a set of N smooth harmonics (ellipses). When the high
frequencies details, such as the dancer’s fingers, are not represented by the
priors, their matching can not be regularized, and their transition might be-
come topologically incoherent.

As a second limitation, it is worth noting that the extraction of a sequence
of intermediate silhouettes from the latent space rely on the assumption that
most pairs of object silhouettes observed at the same time from the reference
viewpoints are different (and project in distinct points on the manifold). En-
riching the silhouettes descriptors so as to account for its local temporal evolu-
tion could be a way to reduce the risk to observe very similar (spatio-temporal)
silhouettes from the two reference viewpoints. In other words, introducing
some temporal consistency in the learning and interpolation procedure could
be a path to mitigate this requirement, and would be an interesting topic for
future research.

The third weakness of our method comes from the choice of using epipo-
lar line segments as matching units. Indeed, while it permits to explicitly take
into account the foreshortening effect and the sparse correspondence problem,
the precise correspondence of their inner pixels is not known, and can only be
inferred from the knowledge of the matches of their borders. The simple lin-
ear interpolation of inner textures, as detailed in Section 5.6, may result in
wrong matches of the inner pixels if the surface described by this epipolar line
segment is not planar. This limit can be observed on the pixels representing
the straps on the chest of the dancer, which are not correctly matched by lin-
early interpolating inside the (correctly matched) borders of the curved chest
or on her face, and results in the ghosting artefact. This artefact could be re-
duced by generalizing the texture interpolation to convex surfaces, e.g., based
on floating textures [51].

The last weakness of our method is that it associates the borders of the (sil-
houette) epipolar segments, even when they actually do not correspond to the
same 3D point. When combined with linear texture interpolation, such erro-
neous associations of border segments generally lead to a stretching/shrinking
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of the inner textures, which leads to a (slight) horizontal magnification (shrink-
age) of the object. However, because these magnifications (shrinkages) affect
smoothly the object along its height, they are unnoticeable when the inner
textures are uniform. For non-uniform inner textures, we propose to circum-
vent this problem by decoupling the matching (and interpolation) of pixels
between the views from the matching of silhouette segments. Specifically,
we propose to drive the interpolation of the intermediate views based on a
(dense) pixels association inside the matched epipolar segments, e.g., based
on the strict preservation of the pixels’ order. Such approach to interpolate the
texture between matched segments supports the occlusion of pixels between
the two views when relevant, and consequently does not force the association
of pixels located on corresponding silhouette borders. This follows the princi-
ple exploited in the floating textures [51], in which an optical-flow strategy is
used to refine the pixel matching after the coarse texture association.

Finally, we note that the processing time of our algorithm (Matlab imple-
mentation, Intel I5 CPU 2.4GHz and 8Gb of RAM) shows encouraging per-
formances (on average 4.2s to describe a 768× 1024 image into epipolar line
segments, 0.06s to match all the epipolar lines independently and 0.16s to ren-
der an intermediate view). Moreover, because the epipolar lines are processed
independently, real-time implementation is within reach, e.g., based on GPU
parallelization.

5.8 Conclusion

In this chapter, we have proposed a new and original interpolation technique
for intermediate view synthesis between cameras in wide-baseline configura-
tions. We also notice that although this coherence is imposed independently
on each epipolar line, the fact that these constraints are derived from 2D priors
favors consistency along the epipolar lines. Our method relies on prior infor-
mation about the silhouettes of objects in the intermediate views to guarantee
consistency between the synthesized silhouettes and the ones present in the
two reference viewpoints. As a first contribution, these silhouette priors are
learnt by reducing the dimensionality of Elliptic Fourier shape Descriptors,
accumulated over a training set of representations of the objects under con-
sideration, typically from earlier observations of the object moving in front of
the wide-baseline camera pair. This additional information is then exploited
to determine the 1D transformation of epipolar line segments when moving
from one view to the other. As a second contribution, this new framework has
not only the advantage of generating consistent and smooth virtual transitions
between the viewpoints where correspondences can be found in the two basis
images, but it can also handle the vanishing of occluded informations. Finally,
we have demonstrated that our method outperforms state-of-the-art view in-
terpolation methods by generating topologically coherent intermediate views
of an object, despite the multiple occlusions and severe foreshortening effect
that are typical in wide-baseline configurations.
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CHAPTER 6

Overall conclusion of this thesis

Nowadays, video viewers are restricted to observe a filmed scene from the
point of view of one of the cameras recording it. This thesis proposes solu-
tions to extend the range of possible viewpoints to the baseline separating
two calibrated cameras observing the scene, including when they are widely
separated. This wide-baseline stereo setup offers the viewer a wider range of
viewpoints than its small-baseline counterpart, which have been studied for
more than 30 years. However, the price to pay for this increased flexibility is
an increased ambiguity in the view interpolation process.

This thesis investigates the three main groups of view interpolation approa-
ches, detailed in Chapter 2, namely image-based rendering, model-based rendering
and light-field methods. Although these three types of reconstructions, respec-
tively exploited in Chapter 3, Chapter 4 and Chapter 5, are based on differ-
ent concepts, they all share the same difficulty: they require to determine a
tremedeous amount of 2D (pixel) correspondences in-between the two refer-
ence views. Indeed, the determination of 2D correspondences (or equivalently
the determination of the scene’s 3D) is an ill-posed problem due to the pho-
tometric changes as well as the projective geometric transformations affecting
the 2D views of a single 3D region. This thesis proposes three different meth-
ods to alleviate this ambiguity.

Chapter 3 has revisited one of the most popular prior used in small-baseline
configurations: the preservation of the left-right relations between the image’s
elements. This strict prior, which is known as the ordering constraint, is often
violated in wide-baseline stereo setups, due to their multiple inherent occlu-
sions. In this chapter, we have proposed a framework that only favors the
preservation of the order of the image elements without necessary strictly forc-
ing it. Our method does not only disambiguate the correspondences based on
the order information, but also detects the occluded (no correspondence) ele-
ments. The main benefit of this prior is its wide applicability, which is paid at
the price of inaccuracies in the depth estimation.

For improved accuracy, Chapters 4 and 5 have proposed to reconstruct
the background and the foreground of the scene separately. This decompo-
sition relies on the fact that the 3D geometry of the background can gener-
ally be approximated by simple piecewise-planar proxies, especially in case
of a man-made scene, or when this background is far away from the cam-
eras. Moreover, in still background cases, this geometry can be estimated only
once, while the moving foreground requires to estimate an accurate and time-
varying 3D model.
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In Chapter 4, we have formulated the piecewise-planar approximation of
the background’s 3D as a plane assignment problem over image’s regions,
whose boundaries define the planes’ borders. We relied on our own fast-color
segmentation algorithm to extract these regions, and proposed an approxi-
mated dense 3D point cloud to determine the parameters of the 3D planes. We
showed that the inaccuracy of these 3D data, inherent to wide-baseline stereo
setups, makes any straightforward plane fitting method inappropriated, even
when considering only the most reliable 3D points and random consensus-
based approaches. In contrast, our method builds on a set of candidate plane
models and either associates one of them to each region, or detect the region
as occluded. We have proposed an effective method to define a set of pla-
nar models that includes most planar surfaces appearing in the scene, while
being reasonably small in size. We also have introduced a new data-fidelity
that measures how well a plane hypothesis fits a dense point cloud. Our met-
ric is shown to be robust to noisy 3D points. The plane assignment problem
is then solved jointly over the regions, while simultaneously maximizing the
proposed data-fidelity and minimizing the number of planar proxies. This dis-
crete optimization process is inspired from the state-of-the-art PEARL method
[102]. Such a light-weighted, minimalist piecewise-planar representation of
the background is then rendered on a virtual view by simple and fast homog-
raphy projections.

Chapter 5 tackles the interpolation of the foreground using a light-field for-
malism. We have proposed to disambiguate the ill-posed reconstruction of a
sparse light-field by constraining the interpolated views to be consistent with
an object shape prior. This prior is learnt based on a small number of frames
captured by the two reference views, and consists in a nonlinear shape mani-
fold representing the plausible silhouettes of the object. We showed that such
an object-specific prior can disambiguate the 2D correspondence problem and
also allows to determine how the numerous occluded parts vanish/appear
when changing the viewpoint. Finally, we showed that the proposed frame-
work generates topologically consistent and smooth virtual transitions of the
froeground when changing the viewpoint in-between the two reference views.

Altogether, while Chapter 3 enables the reconstruction of an arbitrary scene
for which the background/foreground separation is not obvious, Chapter 4
and Chapter 5 support a more precise reconstruction based on more specific
priors.

Future works

In this last section, we first suggest possible paths to improve each contri-
bution of this thesis. After, we build upon our experience to propose novel
directions of research.

Let us start with the relaxed ordering constraint, presented in Chapter 3.
Just like its well-known strict version, it regularizes the matching indepen-
dently on each pair of corresponding epipolar lines. This independent pro-
cess along one dimension of the image guarantees the high degree of paral-
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lelization of our algorithm. However, it neglects a possible continuity of the
matching along the second image dimension. By neglecting this prior infor-
mation, we have formulated the determination of correspondences as the re-
search, in the similarity matrix associated to corresponding epipolar lines, of
a piecewise-smooth 2D path that optimizes a cost function reflecting the qual-
ity of matching and the preservation of the relative order between the image
components. To include a possible continuity of the correspondences along
the second dimension of the image, we could envision to analyze the problem
in the 3D cube formed by the stack of 2D similarity matrices related to the dif-
ferent pairs of associated epipolar lines. Instead of determining a piecewise-
smooth 2D path maximizing a measure of the order, the problem is then gen-
eralized to the search of a piecewise-smooth surface in this stack. In this case,
maximizing the global order of the reconstruction might be formulated as the
maximization of the sum of the 2D order measures defined in Chapter 3, each
one captured along a slice of this stack. The coherence along successive pairs
of epipolar lines could be favored by maximizing the piecewise-smoothness,
e.g., the TV [33] or the Total-Generalized-Variation norm [26], along the depth
of the stack. Analogously, our method could also be generalized to more than
2 views by imposing smoothness along the stack composed of the set of epipo-
lary rectified reference views.

Another drawback of the proposed method is its asymmetry: the corre-
spondences are determined for all the elements of one of the two views, know-
ing the labels assigned to the elements of the other view. To mitigate the im-
pact of assigning a distinct label to each element of the first view before op-
timizing the labels of the second view, Section 3.3 has proposed to run the
label assignement algorithm a second time, in the other direction (i.e., from
the second to the first view). However, a more elegant solution to this issue
would consist in formulating the association problem in a symmetric manner.
This could be done by formulating the problem directly in terms of associa-
tions between the elements of each sequence. Hence, instead of defining the
label of a sequence element in terms of the labels assigned to the elements
of the other sequence, one element would be associated to an element of the
other sequence through the definition of a so-called match between them. The
energy to minimize would then be defined directly in terms of (a sum over
the) matches, rather than in terms of (a sum over the) labels. This work is in
progress and should hopefully be published in the coming months.

Our piecewise-planar approximation of the 3D of the background, pre-
sented in Chapter 4, relies on a 3D point cloud. This point cloud can be consid-
ered as a sparse and noisy sampling of the real dense 3D of the background.
Sparsity and accuracy form unfortunately a trade-off. Whatever the choice,
this sparse 3D information is not sufficient to disambiguate the dense 3D, es-
pecially in the regions with uniform textures. We have chosen to add two very
strong priors, namely the smoothness and a minimum number of planar prox-
ies, to help the proposed data-fidelity to disambiguate the reconstruction. On
one hand, our smoothness prior is defined based on the (normalized) gradient
of the 2D image. When working on real images, this gradient is not always
sufficiently outlined at the pixel’s locations of the border of a surface, leading
to a propagation of a 3D model through regions that do not share the same
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3D model. We mitigate this drawback by assigning a very small weight to the
smoothness prior, with respect to the data-fidelity term. On the other hand,
the optimal planes fitted on textureless (or repetitively patterned) regions are
highly depending on the weight associated to the number of assigned models.
This sensitivity originates from the fact that the 3D points associated to these
regions are sometimes so noisy that other planar structures support their dis-
tributions. One way to address the problem could be to not only consider the
inner part of a region, but also its surrounding content. Precisely, we are in-
vestigating the incorporation of a region description, that describes robustly
the spatial and colorimetric organization of its surrounding regions, in the
data-fidelity term. As a last remark about Chapter 4, the proposed framework
could be straightforwardly extended to more than two references views. On
the one hand, using more camera views could enable to increase both the ro-
bustness of the generated 3D point cloud (e.g., based on imposing the epipo-
lar constraint by pairs, cfr. “Projective grid space” in Section 2.2.3), and the
reliability of the matching inaccuracy and matching ambiguity measures (cfr.
Section 4.5). On the other hand, only minor changes will be required: the data-
fidelity should be computed on each segmented region in each view, and the
inter-view smoothness could be applied as done in [21].

The shape prior presented in Chapter 5 allows to disambiguate only the
shape of the foreground object. We simply interpolate linearly the inner tex-
tures along the epipolar lines. Such a simple linear interpolation might pro-
duce the ghosting artefact if the inner parts are not planars. Such artefact can
straightforwardly be avoided by interpolating the textures based on projec-
tive texturing algorithms, such as the floating textures [51]. A second solution
could rely on sparse but accurate correspondences found in the inner parts, to
formulate the problem as the estimation of the deformation of a non-rigid sur-
face given fixed boundaries. Another, more challenging, way to circumvent
the problem is by learning shape priors about the inner parts of the object.
This requires to (i) temporally track the inner regions and (ii) assume that two
observations of the same 3D region are segmented similarly. However, these
two constraints are still active and challenging areas of research (called re-
spectively part-based tracking and 3D segmentation). As a last remark about
Chapter 5, the proposed framework could be straightforwardly extended to
more than two reference views, by considering the really observed epipolary
rectified intermediate views as given (instead of estimated) priors in the EPIV,
forcing the shape borders to pass through it.

Finally, the rest of this thesis presents more general directions of research
that are worth investigating in the domain of view interpolation from wide-
baseline stereo setups. We propose to classify them into three groups, namely:

1. The definition of metrics to quantify the level of ill-posedness in view
interpolation.

2. The improvement of the invariance/discriminance trade-off in image
descriptors.

3. The exploitation of scene-specific priors.
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First, as explained in the beginning of this thesis, the notion of wide-base-
line itself is not well defined, and is often linearly related to the notion of
"difficulty of reconstruction". Indeed, while some experts consider only the
distance separating the reference cameras as an appropriate measure of the
"difficulty", some others only consider the relative angle between the refer-
ence cameras. We sincerely believe that these two criteria should be complete
with 3D informations, such as the minimum depth of the scene to reconstruct,
as deeply explained in Chapter 1.

Second, the main challenges of 3D reconstruction in wide-baseline stereo
setups are (i) the colorimetric changes, (ii) the geometric (projective) trans-
formations, (iii) the presence of occlusions and (iv) the ill-posedness of the
reconstruction. State-of-the-art methods counter (i), (ii) and (iii) by introduc-
ing robust (pixel or region) descriptors, at the price of a decreased discrimi-
nativeness in the matching process. About the colorimetry, most of the most
well-known descriptors (SIFT [134] [135], SURF [14], BRIEF [30], ORB [176],
GLOH [154], etc.) focus on the image’s texture, and thus systematically con-
sider the intensity images instead of the full colorimetry. This full colorimetry
is nevertheless a discriminative information, as proved by the performances
of GIST [49] and CSIFT [1]. Occlusions also strongly affect the image’s de-
scription. Engin Tola [218] has proposed a time-consuming solution, which
replicates N times the descriptor and masks each of them differently. How-
ever, it mutliplies the matching complexity by N2, which is often untractable.
We believe that exploiting segmentation to construct appearance descriptors
that are robust to occlusions, as proposed recently in [221], is an appropriate
solution for the future.

Finally, this thesis pushes towards the learning and the use of object-specific
priors to regularize the ill-posed 3D reconstruction. We believe that such kinds
of approaches might have an impact in the future, in particular due to the
recent increase of performance in object recognition. More generally, these
two different tasks can be merged by autonomous (deep-)learning the fea-
tures/priors, that are discriminative to (implicitly or explicitly) reconstruct
the 3D of a specific type of region/object, as suggested, very recently, in [61].
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APPENDIX A

Exhaustive comparison of 2D shape
descriptors (in Section 5.4.1)

The description of a 2D shape into a restricted set of coefficients might have
been done based on other descriptors than Elliptic Fourier descriptors [116].
It is worth noting that the description of a 2D shape based on Elliptic Fourier
Descriptors is not considered as a contribution of this thesis, and EFD could be
replaced by any other shape descriptor, as long as this descriptor is reversible
(with or without losses). Here below, we propose to compare both qualita-
tively and quantitatively (in term of SNR) the ability of EFD to represent a
2D shape based on D coefficients with three other well-known Fourier-based
methods:

• The low-pass filtering of the Fourier Transform (denoted LP-FT) [7]: the
2D (closed, and thus periodic) shape is first represented in the com-
plex domain based on its M pixel coordinates (um, vm) ∈ C (with m ∈
{1, · · · , M}). Then, only the Fourier (complex) coefficients associated to
the D/2 lowest frequencies of the shape are considered, forming a de-
scription vector of D elements. Finally, the 2D shape is reconstructed by
inverse Fourier transformation of these selected coefficients.

• The best D-sparse approximation of the Fourier Transform (denoted
BdSA-FT): the 2D (closed, and thus periodic) shape is first represented in
the complex domain based on its M pixel coordinates (um, vm) ∈ C (with
m ∈ {1, · · · , M}). Then, only the D/2 Fourier (complex) coefficients
having the highest amplitudes are not truncated to 0, leading to a D-
sparse vector. Finally, the 2D shape is reconstructed by inverse Fourier
transformation of this truncated vector.

• The spread spectrum signature with POCS1 reconstruction (denoted SS-
POCS): the 2D (closed, and thus periodic) shape is first represented in
the complex domain based on its M pixel coordinates (um, vm) ∈ C

(with m ∈ {1, · · · , M}). The spectrum of the Fourier transform of the
shape is spread in the frequency domain (by applying random shifts),
and D/2 frequencies are randomly selected to describe the 2D shape as
a description vector of D real coefficients. This shape is then non-linearly
reconstructed, based on a variant of the POCS method proposed in [173]
(with 1000 iterations), in which the soft-thresholding is replaced by a
simpler selection of the D/4 lowest frequencies.

Figure A.1 provides both a visual and quantitative comparison (in term of
SNR and computation time) of a D-dimensional description of a shape be-
tween EFD (last row, where D = 4 · N, N being the number of harmonics, cfr.
Section 5.4.1) and the three other methods.

1Projections on Convex Sets
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Method SNR [dB] Time [s]
D=4 D=20 D=40 D=100 D=300

LP-FT 11.76 28.55 37.3 54.61 57.62 0.0004
BdSA-FT 16.84 29.89 38.37 55.95 59.17 0.0006
SS-POCS 6.01 19.96 30.89 55.31 57.97 3.65
EFD [116] 21.77 30.89 39.52 56.78 59.83 0.0009

Figure A.1: Elliptic Fourier Descriptors (EFD, last row) offer a good trade-off
between accuracy of the reconstructed shape and computation time.

The fact that BdSA-FT outperforms LP-FT in term of SNR indicates that
high frequencies must also be considered in the description of arbitrary 2D
shapes. By randomly selecting frequencies in the spread-spectrum, the shape
description of SS-POCS also considers these high frequencies, but its low per-
formances seem to point the inaccuracy of its associated non-linear reconstruc-
tion. Although Fourier descriptors based on spread spectrum might contain
richer informations about a 2D shape than others2, their slow and inaccurate
reconstructions make them inappropriate candidates in our application. Ellip-
tic Fourier Descriptors have then been chosen for their good trade-off between
accuracy and computation time.

2This verification is out-of-the-scope of this thesis.



APPENDIX B

The Needleman-Wunsch algorithm
(in Section 5.5.1)

The Needleman-Wunsch algorithm [162] builds a two-dimensional matrix M,
whose element M(i, j) measures the smallest cost to align the first i characters
of the first sequence with the first j characters of the second sequence.
Let us consider two sequences of characters C1 = {c1(1), ..., c1(L1)} and C2 =
{c2(1), ..., c2(L2)}, with ck(l) ∈ C (with C a predefined alphabet of characters).
Let also d(c1(m), c2(n)), with m ∈ {1, · · · , L1} and n ∈ {1, · · · , L2}, denote the
distance between two characters c1(m) and c2(n) in C. Let further w(c) be the
penalty induced by leaving the character c ∈ C unmatched during sequence
alignment. This penalty is often called the skipping cost, and its definition
is problem specific. The initialization and the recursive step of the dynamic
programming algorithm that computes the (L1 + 1) × (L2 + 1) elements of
matrix M are then defined as follows :

M(0, j) = ∑
j
k=1 w(c2(k))

M(i, 0) = ∑i
k=1 w(c1(k))

M(i, j) = min
(

M(i− 1, j− 1) + d(c1(i), c2(j)),
M(i− 1, j) + w(c1(i)),
M(i, j− 1) + w(c2(j))

)
.

The three options in the recursive computation of M(i, j) respectively corre-
spond to matching c1(i) and c2(j), skipping c1(i), or skipping c2(j). Once
M has been computed, M(L1, L2) gives the minimal score among all possible
alignments. The alignment that gives this score can be retrieved by starting
from position (L1, L2) and observing recursively backwards which of the three
decisions has been taken (c1(i) matches c2(j), c1(i) is unmatched or if c2(j) is
unmatched).
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Derivation of f (b0
i , bα0

k ) (in Section
5.5.1)

To define the associativeness f (b0
i , bα0

k ) between the ith reference border of B0,
i.e., b0

i , and the kth border of Bα0 , i.e., bα0
k , we rely on the complementary of the

normalized Hamming correlation, which is a translation-invariant metric. It
measures the number of positions in which the reference and prior sequences
have identical values when they are aligned on the borders of interest, and is
expressed as:

f (b0
i , bα0

k ) = 1− ∑
u∈E

I0
(
u− p(b0

i ), v
)
⊕ Iα0

(
u− p(bα0

k ), v
)

|E | ,

with

E=
{

min
(

p(b0
i ), p(bα0

k )
)

,· · ·, min
(

w0 ·
(

1− p
(

b0
i

))
, wα0 ·

(
1− p

(
bα0

k
)))}

where w0 and wα0 represent the width of the reference image I0 and prior
image Iα0 respectively, ⊕ is the binary XOR operator, u refers to an image’s
abscissa coordinate and v to an ordinate.
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Derivation of g(bα0
k , bαP

l ) (in Section
5.5.1)

We derive the prior deformation cost, i.e., the cost of associating a border of
the first prior Bα0 with a border of the last prior BαP . To determine the prior
deformation cost g(bα0

k , bαP
l ) of matching the kth border of Bα0 with the lth

border of BαP , we first define r(bα0
k , bαP

l , b
αp
q ) as the discrepancy between the

qth border of the pth prior and the linear transition from bα0
k to bαP

l :

r(bα0
k , bαP

l , b
αp
q ) =



∞ if m(bα0
k ) 6= m(bαP

l )

or m(bα0
k ) 6= m(b

αp
q )

or m(bαP
l ) 6= m(b

αp
q )

(
(1− αp) · p(bα0

k ) + αp · p(bαP
l )
)
− p(b

αp
q ) otherwise

and q∗(bα0
k , bαP

l , Bαp) as the index of the border of Bαp with the smallest dis-
crepancy:

q∗(bα0
k , bαP

l , Bαp) = argmin
q

∣∣∣r(bα0
k , bαP

l , b
αp
q )
∣∣∣ ,

and g(bα0
k , bαP

l ) as the weighted sum of these discrepancies in the intermedi-
ate views:

g(bα0
k , bαP

l ) =

∞ if m(bα0
k ) 6= m(bαP

l )

∑P−1
p=1

(
1− wp

∑P
n=1 wn

) ∣∣∣r(bα0
k , bαP

l , b
αp
q∗ )
∣∣∣ otherwise,

with

wp = min(|
p

∑
x=1

∆r(bα0
k , bαP

l , bαx
q∗ )

∆x
|,

|
p

∑
x=1

∆r(bα0
k , bαP

l , bαP−1−x
q∗ )

∆x
|).

The cost g(bα0
k , bαP

l ) is small when the prior validates a smooth (linear)
displacement from bα0

k to bαP
l , and thereby supports their matching. The

weight wp enables to relax the constraint on the smoothness of the transition
of epipolar borders, and thus of the prior shapes.
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K , BαP

L )

Indeed, as described in Section 5.4, the prior shapes are extracted from a
smooth transition in a space of lower dimension, i.e., on a silhouette mani-
fold. However, due to the impossibility to perfectly preserve local distances
while switching back to the high-dimensional image space, part of the smooth
transition on the manifold might be corrupted with topologically different sil-
houettes. This might result in a sharp increase of the distance to the prior
r(bα0

k , bαP
l , b

αp
q ) in a few intermediate prior views. In order to mitigate the

impact of those rare (but possible) sharp discontinuities in the sequence of
prior silhouettes, we propose to weight the distance r(bα0

k , bαP
l , b

αp
q ) by a fac-

tor
(

1− wp

∑P
n=1 wn

)
that becomes small in case of a sharp increase (high gradi-

ent) of r(bα0
k , bαP

l , b
αp
q ), so as to favor the priors that reflect smooth transitions

in the image space.
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