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Abstract

Multi-object tracking (MOT) is the task of estimating the trajectory of sev-
eral objects as they move around a scene. MOT has gained in interest due to
its potential in many disciplines such as surveillance, sport analysis, human
computer interface, biology, etc.

This thesis considers MOT in a scene captured by one or several sensors.
It assumes that prior detections of the targets are available, and a set of fea-
tures characterizing the appearance of the detections, have been extracted.
In contrast to previous related works, we aim at formalizing the scenarios in
which the reliability or even the availability of such appearance features vary
over time. Our contributions, briefly explained below, are all related to the
exploitation of sporadic and noisy features in a graph-based framework.

Our first major contribution proposes an iterative hypothesis testing (IHT)
framework that embeds shortest-path computations into a hypothesis testing
procedure. Each hypothesis assumes that the appearance of the target is de-
fined by that of a selected node, called key-node. Given this assumption, the
cost of going through a node that is different (similar) from the key-node is
increased (decreased) to favor the selection of a path that is consistent with
the appearance of the key-node. The shortest-path is validated only when it
is sufficiently better than any alternative path. Doing so, we progressively ag-
gregate the detections into tracklets while taking advantage of their features,
even when they are sporadic and/or affected by non-stationary noise. In the
subsequent target recognition, we utilize the unreliability of the appearance
features to prioritize the message passing while assigning reliable identities to
the tracklets.

As a second contribution, we propose a discriminative label propagation
(DLP) framework to propagate labels across the detections in a way that is
consistent with a number of complementary graphs that captures the vari-
ous relationships, e.g., similarities or dissimilarities between the detections
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in terms of space, time and/or appearance between the detections. The re-
sulting cost function is a difference of convex functions, which is efficiently
solved using majorization-minimization techniques. We propose to decompose
this global objective function into node-wise sub-problems. This not only al-
lows a computationally efficient solution, but also supports an incremental
and scalable construction of the graph, thereby making the framework appli-
cable to large graphs and practical tracking scenarios. Moreover, it opens the
possibility of parallel implementation.
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Introduction and

Motivation 1
1.1 Context and Scope

Video object tracking is the task of estimating the trajectory of one or several
objects as they move around a scene, captured by one or several sensors. Typ-
ically, when the sensor is a camera, it usually relies on appearance features
(shape, color, texture, size, etc.) to follow the objects across time. Video track-
ing problem is usually categorized into single object tracking and multi-object
tracking (MOT) or multi-target tracking (MTT).

In single object tracking, a target of interest is followed in the video se-
quence, whereas in multi-object tracking, all targets of interest are followed
simultaneously. The key difference between multi-object tracking and track-
ing independently multiple targets is that the latter approach considers other
targets as ‘noises’. Consequently, it fails to exploit the (exclusivity) relation-
ship between the targets. In contrast, MOT jointly considers the relationships
between the targets and, therefore, results in more accurate tracking perfor-
mance. In this thesis, we focus on MOT only.

MOT has gained numerous attention due to its potential in many disci-
plines, ranging from surveillance to biology (see Figure 1.1). Visual surveil-
lance applications analyze people’s displacements. Tracking body parts al-
lows humans to interact with computer by gesture. Vehicle trajectories can be
used to monitor the traffic [1]. Tracking of players [2] in sport events helps to
analyze and interpret the game. In the biomedical area, the mobility of cells is
considered to assess tissue-repair, and predict diseases in early stages [3, 4]. In
material engineering, tracking the evolution of cracks is pivotal in the study
of the fracture mechanism in metals [5].

Many approaches have been proposed in the literature for object tracking.
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2 Chapter 1. Introduction and Motivation

(a) Sport analysis [6] (b) Surveillance [7]

(c) Animal behavior [8] (d) Biology [9]

Figure 1.1: Some application scenarios of MOT. Best viewed in color.

Roughly, they can be categorized into propagation-based and detection-based1 so-
lutions. Propagation-based tracking approaches propagate the state (namely,
position, size, etc.) of the objects over time using local prediction and con-
vergence mechanism [13, 14, 15, 16, 17]. Even though these approaches have
been successfully used to track single (or few) objects, these approaches are
not very well suited to multiple objects due to rapid increase in complexity.
In detection-based tracking approaches, target locations are first estimated in
each time instant. Once objects have been detected, a set of target appearance
features (e.g., color, size, shape, etc.) is extracted, and the tracking problem
reduces to the task of linking these detections into tracks of single physical
objects using these location and appearance features.

We limit our scope to the scenarios for which objects-of-interest are first
detected at each time instant. This is because detections are essential for au-
tomatic initiation (respectively, termination) of the tracking process when ob-
jects are discovered in the scene (respectively, disappear from the scene), e.g.,
birth/death of cells. More importantly, efficient and effective algorithms have

1also called association-based tracking (ABT) [10], tracking-by-detection [11], track-after-
detect [12], etc.
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been designed in many computer vision fields to detect objects-of-interest. For
example, our host laboratory has demonstrated that people can be detected
reliably based on a distributed network of cameras [18, 19]. Besides, specific
shape and size of the targets make them easy to detect with ad-hoc filters
[20, 21, 22].

1.2 Motivation and research statement

When targets are isolated, the position feature is sufficient to aggregate them
into consistent object trajectories. However, when the targets come closer to
each other, position feature alone is not sufficient to follow the targets accu-
rately. Appearance features are then crucial to disambiguate a clutter of tar-
gets.

Different features have different discriminative abilities and different lev-
els of observation frequency and reliability. For example, position feature is
quite frequent but poorly discriminant in clutters. Color features are also fre-
quently available, but have variable discriminative power depending on the
application context. In some cases, highly discriminant features are available
only sporadically. This occurs, for example, when biological cells are cap-
tured under changing illumination, where each lightning condition empha-
sizes some specific characteristics of the cell. This case also happens when a
feature is only visible in some observation configurations (e.g., a number worn
by a player is only visible when facing the camera, faces are identifiable only
when the person turns towards the camera properly). These features are un-
observed for long duration. In summary, features relevance, meaning their
availability and their ability to discriminate targets, is not uniform and varies
along time and with the scene context. Examples of such situations are de-
picted in Figure 1.2.

Most previous approaches assume that the features should only be similar
for detections that are close in time. Thus, dissimilarities between far away de-
tections are not considered. Under this assumption, the dissimilarity of a track
can be represented by the accumulation of dissimilarities between the detec-
tions that are observed in close time. This assumption allows one to simplify
the tracking problem (see Chapter 3). The validity of such assumption is jus-
tified in many conventional tracking scenarios where the appearance features
vary smoothly along time. In those cases, comparing appearances that are far
apart in time does not bring much cues about whether those two detections
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(a) Face (b) Digit (c) Color

Figure 1.2: Appearance features can be noisy and/or sporadic. Face (in (a))
and digit features (in (b)) are observed only when they face the camera. Color
feature (in (c)) is noisy and unreliable because of occlusion. Best viewed in color.

correspond to the same physical target or not.

In contrast, these methods cannot exploit the information captured by the
detections that are distant in time. This is relevant specially when (i) some
highly discriminant features (e.g., digit features, faces, etc.) are available only
sporadically and/or, (ii) some appearance features are not uniformly reliable
along the scene. In such cases, the (in)consistency of the appearances along
a path cannot be any more measured simply based on the accumulation of
the appearance (dis)similarities between consecutive detections. This is be-
cause those dissimilarity measurements might be unreliable and/or purely
unavailable. Not using those features, however, strongly penalizes tracking
performances in some scenarios. For example, using digit feature on the jer-
sey allows one to directly recognize the player and to track him reliably.

Hence, the federating objective of our work is to design a multi-object
tracker that is able to exploit appearance cues that are noisy and/or only avail-
able sporadically.

1.3 Contributions

As explained earlier, most of the detection-based tracking approaches are not
suitable to handle such noisy/sporadic appearance features. Our contribu-
tions, briefly presented below, are all related to the exploitation of those fea-
tures. Similar to many approaches, we adopt graph-based formalism2.

2The demo videos are available at http://sites.uclouvain.be/ispgroup/index.php/

Research/MultiObjectTracking.

http://sites.uclouvain.be/ispgroup/index.php/Research/MultiObjectTracking
http://sites.uclouvain.be/ispgroup/index.php/Research/MultiObjectTracking
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1.3.1 Iterative hypothesis testing framework

We formulate the problem by embedding a shortest-path computation into
a series of tests or hypotheses. Each hypothesis investigates if a detection,
so called key detection, can unambiguously be connected with other detections
based on the similarity in terms of space, time and appearance. The hypothe-
sis starts with the assumption that the key detection appearance reflects target
appearance. Given such an assumption about target appearance, it is possi-
ble to increase or decrease the cost of going through a detection irrespective
of its location in the sequence by comparing its appearance features and the
assumed target appearance features. This hypothesis is validated only when
the shortest-path connecting the key detection to the extremity of an observa-
tion window is sufficiently better than any alternative path, under the target
appearance assumption.

In practice, we iterate over the detections, which is why we refer to this
approach as to the iterative hypothesis testing (IHT) approach. It is further dis-
cussed and positioned with respect to previous arts in Chapter 3. Experimen-
tal results have shown a dramatic improvement in the tracking performance
in several datasets. Part of this chapter has been published in [23] and a jour-
nal version is in preparation.

1.3.2 Priority identity propagation for sport player recognition

This work builds on our IHT framework and addresses the problem of recog-
nizing sport players from their tracklets. Specifically, given an identity esti-
mate of a detection/tracklet, we investigate how we can propagate this iden-
tity estimate to other detections. Because of the noise and sporadicity of the
appearance features, some detections will have more reliable identity estimate
than others. This measure of reliability is exploited to prioritize the propaga-
tion or identities. We have achieved a player recognition rate around 89%.
This work has been published in [24].

1.3.3 Discriminative label propagation framework

Our goal is to assign the same label to detections that correspond to the same
physical target. For this purpose, labels are assigned consistent with con-
straints that are formulated in terms of space, time and appearance. For exam-
ple, detections that co-exist at the same time instant should be labeled differ-
ently because a target cannot occur at two locations at the same time. Detec-
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tions that have similar appearance features should be labeled similarly even
if they are far apart in time. This allows us to exploit the appearance features
even if they are sporadic.

In practice, we construct a number of graphs that reflect these constraints
and propagate labels over the graphs. We refer to this as discriminative label
propagation (DLP). This is discussed in detail in Chapter 5. This work has been
published in [25] and a journal paper is under review in IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI).

1.4 Organization of the thesis

The remainder of this thesis is structured as follows. Chapter 2 first introduces
basic elements of graph theory. Then, it presents a basic pipeline for detection-
based MOT, and defines some terminologies related to it. Eventually, it briefly
reviews previous works related to object detection and graph-based multi-
object tracking formalisms.

Chapter 3 explains in detail our iterative hypothesis testing (IHT) frame-
work. We demonstrate its advantages compared to two popular algorithms
for computing shortest paths, namely the K-shortest paths (KSP) [26] and the
global appearance constraints (GAC) [27] algorithms.

Chapter 4 explains how prioritizing the propagation of identity beliefs
helps in recognizing individual players in sports scenes.

Chapter 5 presents our discriminative label propagation (DLP) framework.
Specifically, it (i) explains the construction of a number of complementary
graphs that captures the labeling constraints associated to relationships be-
tween the detections, (ii) formulates the label propagation as a difference of
convex problem, and (iii) presents an efficient algorithm to solve the problem,
including in an on-line/incremental context.

Finally, we conclude the thesis with future perspectives in Chapter 6. A
description of datasets, used in this thesis, is provided in Appendix C.
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This chapter introduces some basic elements of graph theory, including some
algorithms on graphs that are used in multi-object tracking. It then presents
the detection based tracking paradigm, and reviews several approaches used
in the literature to address the object detection problem and the MOT question
using graph formalisms.

2.1 Elements of graph theory

This section first introduces graph terminology. Afterwards, it reviews some
algorithms on graphs which are related to multi-object tracking.

2.1.1 Terminology

A graph G = (V , E) is a mathematical representation of pairwise interac-
tion between n individual agents and is defined by a set of vertices (or nodes)
V = {1, · · · , n} and a set of edges (or links) E = {(i, j) | i, j ∈ V}. Nodes i
and j are said to be neighbors if (i, j) ∈ E . We denote the number of nodes and
edges by |V| = n and |E | = m, respectively.

A graph can be represented by its adjacency matrix A ∈ {0, 1}n×n as:

A(i, j) = aij :=

1 if (i, j) ∈ E ,

0 otherwise.

A graph is called undirected if the edges have no orientation, i.e., for all
i, j ∈ V , we have (i, j) ∈ E ⇔ (j, i) ∈ E . The adjacency matrix of an undirected
graph is symmetric, i.e., A = A>. When the orientation of the edges matters,

7
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the graph is called directed. In this case, each edge (i, j) ∈ E has a source i
and destination j. The adjacency matrix of a directed graph is not necessarily
symmetric. An edge that connects a node to itself, i.e., (i, i) ∈ E , is called a
self-loop.

One can associate a weight wij to an edge (i, j) ∈ E representing the in-
tensity of interaction between nodes i and j. The resulting graph is said to be
weighted. A weighted graph can be represented by a weighted adjacency ma-
trix W ∈ Rn×n such that W(i, j) = wij 6= 0 if aij = 1. In the remainder of the
thesis, we assume that the graphs are weighted because an unweighted graph
can be represented with wij = 1 ∀(i, j) ∈ E .

The set of in- and out-neighbors of a node i in a directed graph are respec-
tively defined as:

N (in)
i := {j ∈ V | (j, i) ∈ E},

N (out)
i := {j ∈ V | (i, j) ∈ E}.

The in- and out-degrees of a node i are defined as:

d(in)i := ∑
j∈N (in)

i

wji,

d(out)
i := ∑

j∈N (out)
i

wij.

In case of undirected graph, the set of neighbors and the degree of the i-th
node are defined respectively as:

Ni := {j ∈ V | (i, j) ∈ E},

di := ∑
j∈Ni

wij.

2.1.2 Some algorithms on graphs

In this subsection, we briefly describe some graph-based algorithms that are
commonly used for multi-object tracking.

Shortest path

Given two nodes s, t ∈ V , we define a path Pst of length k as:

Pst := {v1 = s, v2, · · · , vk−1, vk = t}
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such that (vi, vi+1) ∈ E ∀i. There can be multiple paths between s and t. We
define the set of possible paths between s and t by Pst := {Pst}. When the
weight wij at each edge (i, j) ∈ E is defined as a distance or cost function, the
shortest-path from s to t is the path that has the smallest overall distance, i.e.,:

P(min)
st := argmin

Pst∈Pst

k−1

∑
i=1

wvi ,vi+1 .

When the weights are non-negative, Dijkstra’s algorithm [28] can be used
to find the shortest-paths between any pairs of nodes. Given a single node as
‘origin’ node, it finds the shortest paths from the origin node to all other nodes.
The complexity of Dijkstra’s algorithm isO(|E |+ |V| log |V|). When the graph
is directed and acyclic (DAG), i.e., without any cycles, a topological sorting1,
which runs at O(|E |+ |V|), can be used instead of Dijkstra’s algorithm.

Laplacian and labeling energy

Given an undirected graph G = (V , E , W), the graph Laplacian L is defined as:

L := D−W

where D := diag(d1, · · · , dn) is a diagonal matrix for which the i-th diagonal
element is the degree of the i-th node. It is commonly called the degree matrix.
From the definition, it follows that the ij-th element of L is

Lij :=


di − wii if i = j,

−wij if (i, j) ∈ E , i 6= j

0 otherwise.

Let a label assignment Y = (y1, · · · , yn)
> assigns a K-dimensional vector

yi to the i-th node. Then, the inconsistency of the label assignment matrix Y
with respect to the graph G can be measured using harmonic function approach,
introduced in [29], as:

EL(Y) :=
1
2 ∑

(i,j)∈E
wij‖yi − yj‖

2
2 = Tr(Y>LY),

where Tr is the trace of a matrix. Since the graph has non-negative weights, the
graph Laplacian L is positive semi-definite and consequently, the energy EL(Y)
is convex in Y .

1Topological sort of a DAG G = (V , E) is a linear ordering of all its nodes such that if G has an
edge (u, v), then u appears before v in the ordering.
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Flow network

A flow network is a directed graph G = (V , E , C, W) in which each edge (i, j) ∈
E has a capacity cij ∈ R+ . Let us consider two vertices: a source s and a
sink/terminal t. A flow in the network is a non-negative real function f :
V × V → R+ that satisfies the following properties for all edges (i, j) ∈ E :

• Capacity constraints: The flow along an edge cannot exceed its capacity,
i.e., fij ≤ cij.

• Flow conservation: The net flow to a node is zero, except for the source
and the terminal, which ‘produces’ and ‘consumes’ flow respectively.
Hence, ∑k∈N (in)

i
fki = ∑j∈N (out)

i
fij for all i ∈ V \ {s, t}.

When it is possible to reduce multiple edges in different directions to a
single, oriented edge, i.e., the graph is ‘reduced’, it is common to introduce
the skew-symmetry property of flow. It states that the flow from i to j must be
opposite to that from j to i, i.e., fij = − f ji.

A flow f that satisfies all above constraints is said to be feasible. Since the
cost of sending fij units of flow through an edge (i, j) ∈ E is wij fij, the cost of
a feasible flow f is ∑(i,j)∈E wij fij. Then, the problem of sending d units of flow
from s to t as cheaply as possible is referred to as the min-cost flow problem.
Mathematically, it can be formalized as:

minimize ∑(i,j)∈E wij fij,
subject to 0 ≤ fij ≤ cij,

∑k∈N (in)
i

fki = ∑j∈N (out)
i

fij ∀i ∈ V \ {s, t},

fij = − f ji,

∑i∈N (out)
s

fsi = d,

∑j∈N (in)
t

f jt = d.

(2.1)

The min cost flow problem can be solved by linear programming. Besides,
there exists other graph-related algorithms like Ford-Fulkerson algorithm [30],
push-relabel algorithm [31, 32], etc. to solve this problem.

Random field

A conditional random field (CRF) [33] models dependencies between data.
Given sets of observations X and hidden (random) variables Y , a CRF models
the conditional probability distribution prob(Y |X) with an undirected graph
G = (V , E), where
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– a node v ∈ V corresponds to the v-th random variable Yv,

– an edge (u, v) ∈ E encodes the statistical dependence between u and v
such that Y obeys Markov property with respect to G. In other words, Y
satisfies prob(Yv|X, Yu, u 6= v) = prob(Yv|X, Yu, u ∈ Nv).

Then, the inference problem can be written as

Y? = argmax
Y

prob(Y |X) (2.2)

Assuming that the joint probability prob(Y |X) can be written in terms of
unary φ and pairwise ψ potentials, we write Equation 2.2 as:

Y? = argmax
Y

∏
v∈V

φ(yv|X) ∏
(u,v)∈E

ψ(yu, yv|X), (2.3)

Equation 2.3 can be equivalently written as a minimization problem as

Y? ≡ argmin
Y

∑
v∈V

U(yv|X) + ∑
(u,v)∈E

B(yu, yv|X) (2.4)

where U := − log φ and B := − log ψ. Designing a good CRF for inference
requires careful construction of U (or, φ) and B (or, ψ). Alternatively, a CRF
can be learned through training. For example, Szummer et al. [34] learn a CRF
using graph-cuts [35, 36]. Inference on a CRF is usually done via graph-cuts
[36] or belief propagation (BP) [37]. Since we use it in Chapter 4, we describe
BP briefly.

Belief propagation

Belief propagation, proposed by Judea Pearl in 1982, is a message passing algo-
rithm for performing inference on graphical models. It estimates the marginal
distribution for each unobserved node, conditionally to any observed nodes.
The algorithm works by passing real valued functions called messages along
the edges between the hidden nodes. Let us denote the set of all possible
states (e.g., labels) by L. Let m(t)

u→v be the |L|-dimensional message that the
node u sends to a neighboring node v at iteration t. Intuitively, m(t)

u→v(yv) is
the belief that node u thinks about the state yv ∈ L of node v at any iteration
t. Each message is initialized uniformly. Afterwards, each node gathers mes-
sages from its neighbors and then transmits its message. The messages are
updated in sum-product form at each iteration as:

m(t)
u→v(yv) ∝ ∑

yu∈L

[
ψ(yu, yv|X) φ(yu) ∏

s∈Nu\v
m(t−1)

s→u (yu)︸ ︷︷ ︸
:=hu(yu)

]
(2.5)
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where hu(yu) is the information gathered at node u about the label yu. It is
also referred to as the pre-message for yu. Alternatively, the summation term
in Equation 2.5 is replaced by a max term and is referred as max-product form
[38].

After T iterations, a belief vector bv is computed for each node as:

b(T)
v (yv) ∝ φ(yv) ∏

s∈Nv

m(T)
s→u(yv) (2.6)

Finally, the normalized belief vector b(T)
v provides the estimate of the iden-

tity distribution of the node v. In general, the complexity of message passing
is O

(
|V||L|2T

)
. It requires O

(
|L|2

)
to compute each message, there are |V|

messages to compute at each iteration, and there are T iterations. The message
construction can be performed inO(|L|) if ψ has linear or quadratic form [39].

The belief propagation is proved to be exact when there are no cycles in
graph. In such cases, it is equivalent to dynamic programming (DP). In case of
cyclic graphs, BP provides only approximate solutions. In practice, however,
the approximate solutions are often good.

2.2 Detection-based multi-object tracking paradigm

In this section, we briefly define some terminologies that are widely used in
detection-based multi-object tracking. Figure 2.1 depicts a general detection-
based tracking pipeline. In detection-based tracking approaches, plausible
object locations are first estimated in each individual frame, based on the ex-
ploitation of discriminant appearance features like shape, size, color, gradi-
ents, etc. (see Section 2.3). Once objects have been detected, the tracking prob-
lem reduces to a data association problem, which has to link those detections
into tracks of single physical objects. Graph-based solutions are generally en-
visioned to solve this problem (see Section 2.4).

Detection-based multi-object tracking largely refers to the following termi-
nologies:

• Detections or detection responses are outputs of an object detector which
is trained for specific objects-of-interest, e.g., human, cells, face, vehicle,
etc. We review several approaches for detectors in the next section. De-
tections can be hard, meaning that the detector takes a binary decision
about the location and/or size (i.e., state) of the target, or soft, meaning
that the detector outputs a confidence value along with the state of the
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Object
Detection

Link detections
into tracksInput video Detections Tracks

Figure 2.1: Block diagram of detection-based tracking approach.

target. At each detection, a number of appearance features, e.g., color
histograms, texture, shape, etc. are extracted.

• Tracks are sequences of detections along time. They include at most one
detection at each time instant, and are supposed to aggregate detections
corresponding to the same physical target.

• Tracklets are fragments of tracks that are assumed to have originated
from the same target. In other words, a tracklet is a sequence of detec-
tions that reliably correspond to the same target.

These concepts are illustrated in Figure 2.2.

Detections Tracklets Tracks

Figure 2.2: Detections (left), tracklets (center), and tracks (right) for 6 time
instances. Different colors represent different targets.

2.3 Related works in object detection

We now briefly introduce various approaches for the detection of objects-of-
interest.

The most computationally efficient detectors generally rely on a foreground
mask. A foreground mask is obtained by thresholding the difference between
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the observed image and a background model [40, 41]. The foreground mask
is supposed to detect the moving areas in the view, and can be compared with
the model of the object silhouette in order to localize the objects in the im-
age [21, 42, 43]. These detectors usually suffer from significant false and/or
missed detections in presence of multiple moving and/or interacting objects,
or when the objects are stationary. To address these limitations, modern ap-
proaches (i) merge the information carried by the foreground masks com-
puted from multiple and complementary views of the same scene [44, 45, 18,
2, 19], or (ii) exploit visual classifiers to capture the specificities of the object
visual appearance [46, 22].

On the one hand, several strategies have been considered to fuse the masks
from multiple views [44, 45, 18, 2, 19, 43]. They generally rely on the definition
of a ground occupancy probability map, which exploits the verticality of peo-
ple’s silhouettes or 3D geometry approximation [43] to estimate the likelihood
of whether a particular ground plane position is occupied or not .

On the other hand, significant works have been done to detect people
or objects of interest based on their visual appearance. Modern approaches
make an extensive use of training samples, to learn how the object is defined
in terms of topologically organized components [22] and/or in terms of tex-
ture statistics [47]. The pioneering work of Viola and Jones [48] illustrates the
success of those approaches to detect objects in images. It relies on boosting
strategies to select and combine a large number of weak binary tests to decide
whether the content of a (sub-)image corresponds to the object-of-interest or
not. Dalal and Triggs [46] have proposed a sliding window detector that ex-
tracts a feature vector based on the local orientation gradients, referred to as
the histogram of oriented gradients (HOG). Afterwards, a support vector ma-
chine (SVM) decides whether the feature vector corresponds to a pedestrian
or not. Another popular work on object detection is by Felzenszwalb et al.
[22]. Their work, called the deformable parts model (DPM), treats an object as
a constellation of spatially consistent individual parts. Doing so, the detector
is able to represent high variation in object classes and achieves state-of-the-
art results in object detection challenges. Therefore, DPM is often used as a
preferred people detector for detection-based tracking approaches. Moreover,
DPM can be adapted to exploit various constraints. For example, Tang et al.
[49] observe that typical occlusions are due to overlaps between people and
tailor the existing DPM to detect pedestrians at various occlusion levels.

Recently, there has been a growing interest in convolutional neural net-
work (CNN) [50, 51] for object detection. Girschick et al. [52] have used CNN
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for object detection. Given an image, they first generate many (around 2000)
region proposals. Afterwards, a CNN is used to compute features. Finally, a
class-specific classifier is used to classify the regions into different classes (e.g.,
aeroplane, person, etc.). They have shown a dramatic improvement in object
detection accuracy.

2.4 Related works in graph-based multi-object track-

ing

In this section, we review various graph-based algorithms that have been
proposed in the literature to address the MOT problem. Broadly, these ap-
proaches can be classified into the following categories:

• Multiple hypothesis tracking

• Hierarchical data association

• Conditional random field

• Network model

• Message passing methods

• Other methods

2.4.1 Multiple hypothesis tracking

In 1979, Reid [53] proposed an algorithm, called multiple hypothesis tracking
(MHT) for tracking multiple targets in a cluttered environment. An efficient
solution to MHT was proposed by Cox and Hingorani [54] in which the au-
thors provide k-best hypotheses in polynomial time using Murty’s algorithm
[55].

When new detections are received, probabilities are calculated for the hy-
potheses that the detections correspond to one of the previously known tar-
gets, or to new targets or to false detections. Each hypothesis is associated
with a probability score. The hypotheses are represented by a tree where a
path from the root node to a leaf node defines a time-sequence of hypothesis.
Subsequent steps of the algorithm analyze how each of these hypotheses are
consistent with future observations, leading to an exponential growth of the
hypotheses with time. To circumvent this, unlikely hypotheses are pruned
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and hypotheses with similar states are merged. Furthermore, the entire set
of targets and measurements is divided into clusters that are solved indepen-
dently.

Our IHT is fundamentally different from the MHT. In IHT, a “hypothe-
sis” assumes that the appearance of the chosen key-node defines the target
appearance. Under this appearance hypothesis, the shortest-path from/to the
key-node is computed as a track. It either keeps or rejects the track, based on
a testing phase, checking that no ‘reasonably good’ alternative path exists.

2.4.2 Hierarchical data association

Most hierarchical data association approaches first construct reliable short
tracklets, and then progressively concatenate them into long trajectories. In
these approaches, a node corresponds to a tracklet and each edge that con-
nects two nodes gets a weight that measures the (dis)similarity between these
two nodes in terms of space, time and/or appearance. These approaches dif-
fer in the way short traklets are computed (e.g., based on shortest-paths) and
the way weights between the tracklets/detections are defined. Nevertheless,
these methods benefit from the fact that (i) the tracking problem is reduced to
a series of smaller sub-problems, and (ii) the weight (or affinity) between the
nodes is refined at each level.

Huang et al. [56] perform data association on a three-level hierarchy start-
ing from a conservative low-level linking of the detector responses to form
two-frame tracklets. In mid-level, these tracklets are further associated to
form longer ones based on a dynamic model and a refined appearance com-
putation. The association between the tracklets is formulated as a maximum
a posteriori (MAP) problem and is solved by the Hungarian algorithm [57].
Finally, high-level data association infers scene information such as scene oc-
cluders and entry/exit areas and produces final tracks.

Li et al. [58] use boosting technique to learn the similarity score between
the tracklets instead of selecting them heuristically. They formulate the track-
let association problem as a joint problem of ranking and classification, where
the ranking part aims at favoring correct tracklet associations against other
plausible associations, and the classification part rejects wrong associations.

Brendel et al. [59] formulate the multi-object tracking problem as the prob-
lem of finding the maximum weight independent set (MWIS). They provide
a polynomial-time MWIS algorithm and show that it converges to a local op-
timum. Long-term occlusions are handled by iteratively repeating MWIS to
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progressively merge smaller tracks into longer ones.

Zamir et al. [60] construct a graph by connecting all detections, except the
ones that occur at the same time instant, within a temporal window. Each
edge is weighted by the appearance and motion dissimilarities. The appear-
ance cost of any ‘feasible’ solution (which corresponds to a tracklet) is based
on comparing all pairs of detections within the tracklet, irrespective of the
temporal ordering. The solution is obtained by solving a generalized mini-
mum clique problem (GMCP), which greedily extracts tracklets that have the
most stable appearance features and the most consistent motion. The same
procedure is repeated to generate long trajectories. Short- and long- term oc-
clusions are handled by using hypothetical nodes.

All these methods depend on appearance information to be available for
each detection (or tracklet). Therefore, their applicability is limited to the sce-
narios where the appearance features can be extracted with the same relia-
bility. Our iterative hypothesis testing approach (see Chapter 3) also works
hierarchically, but supports sporadic and/or non-stationary observation pro-
cesses.

2.4.3 Conditional random fields

In case of multi-object tracking, X and Y represent the detections (or tracklets
or even pairs of tracklets) and their hidden labels respectively. The unary
function φ(yv|X) measures the likelihood that the node v ∈ V can be labeled
yv given the observation X. Similarly, ψ(yu, yv|X) stands for the compatibility
between nodes u and v having labels yu and yv respectively.

In Yang and Nevatia’s CRF model [61, 62], each node represents a pair
of tracklets. The inference problem is to find the binary label of each node
that indicates whether the two tracklets, corresponding to this node, can be
linked (label=1) or not (label=0). The unary potential is based on the similar-
ity between the two tracklets in terms of appearance and motion. Specifically,
given all tracklets, a linear motion model and an appearance model (called on-
line learned discriminative appearance model (OLDAM)) are learned to define the
similarity between the tracklet pairs. Edges are introduced to better discrimi-
nate different targets, especially difficult pairs, which are spatially near targets
with similar appearance. The pairwise potential of an edge represents the pos-
sible correlation (e.g., two targets moving closely together) between two pairs
of tracklets. These pairwise potentials are learned for each edge separately.

CRFs have also been used to identify the players in broadcast sport videos
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by Lu et al. [63, 64]. The authors first associate the detections into tracklets
and then extract a set of features like SIFT [65] interest points, MSER [65] re-
gions, color histograms, etc. from these tracklets. These feature vectors and
the corresponding labels of the players define the observed and hidden vari-
ables of the CRF, respectively. Multi-class logistic regression is chosen for the
inference, where the parameters of the model are learned during a training
phase. In [63], they use belief propagation [37] to infer the labels, whereas
linear formulation is opted in [64].

Milan et al. [66] use CRF to model the detection- and trajectory- level ex-
clusivity constraints. At the detection-level, a fixed exclusion cost is used be-
tween the detections that occur at the same time, whereas at the trajectory-
level, the exclusion cost is defined in terms of spatio-temporal overlap be-
tween the trajectories. They perform statistical analysis of the ground-truth
trajectories to derive appropriate CRF potentials.

Our work on player recognition is also built on the CRF model in which the
objective is to infer the identities on a set of player tracklets, using prioritized
belief propagation as an inference method.

2.4.4 Network models

When using flow network in multi-object tracking scenarios, nodes usually
represent the detections or the tracklets. The flow is modeled as the binary
variable indicating whether a flow is present (flow=1) or not (flow=0). This
corresponds to whether two nodes can be linked (flow=1) or not (flow=0).

Jiang et al. [67] explicitly model the spatial layout and mutual occlusion
constraints in a network structure, and use linear programming relaxation to
solve this multi-object tracking problem. Zhang et al. [68] use a min-cost net-
work with non-overlapping constraints on trajectories. The network is aug-
mented with explicit occlusion model to long-term inter-object occlusions. Af-
terwards, the global optimal trajectory association is found by solving a lin-
ear program. Another globally optimal solution is presented by Pirsiavash et
al. [69] that sequentially estimates tracks using shortest path computations
on a flow network. The authors also give a near-optimal algorithm based
on dynamic programming which is linear with the number of objects and
the sequence length. Butt and Collins [70] modify the usual min-cost net-
work to incorporate higher order motion. Doing so, they introduce exclusivity
constraints that render the problem unsolvable by min-cost network flow di-
rectly. Consequently, they propose an iterative algorithm that relaxes the extra
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constraints using Lagrangian relaxation, which produces a series of problems
solvable by min-cost flow.

Berclaz et al. [26] reformulate the network flow problem as a problem
of finding K-shortest paths. This novel formulation is much more efficient
than the general linear program (LP) formulation technique. This work is
later extended by Ben Shitrit et al. [27, 71] to incorporate long-range appear-
ance model, called global appearance constraints (GAC). Assuming that they
have prior knowledge about L target appearances, they create L-layered graph
(each corresponding to one target appearance) and compute the K-shortest
paths in the resulting network. In order to reduce the huge complexity, they
apply heuristics like pruning the graph, grouping the detections into tracklets,
etc. in [71].

2.4.5 Message passing methods

Message passing approaches have been used to label the nodes in a graph in
tracking/recognition scenario [72, 73, 64]. Each node gathers messages from
its neighbors, optimizes locally a problem, and then transmits its message.
This approach has been shown to be exact in trees but the convergence is not
guaranteed in presence of loops [37].

In [64], a subset of the nodes are initially labeled and then a CRF is used to
infer the label of the remaining nodes. For this, the authors compute various
appearance features and assume that the features are always available with
similar accuracies. Hence, their approach cannot exploit appearance features
that are sporadic or affected by non-stationary noise. In [24], we utilize such
non-stationary and sporadic features to prioritize the propagation of belief
related to the label probability distribution.

Nilius et al. [72] construct a Bayesian network, called a track graph, where
nodes represent either single target trajectories or merged tracks. Assuming
that the feature vectors of isolated tracks are reliable, they define a similar-
ity measure between them. Later, they formulate the identity linking as a
Bayesian inference problem to find the most probable set of paths. For this,
they use standard message passing technique. To keep the inference tractable
the graph complexity is reduced by removing dependencies that are distant
in time. Russell et al. [73] formulate the tracking problem as a problem of esti-
mating MAP solution over a directed acyclic hyper-graph, where they capture
both the second order motion information and mutual exclusivity constraints.
The solution is again obtained by message passing technique. Their approach
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runs linearly in the number of objects to be tracked, possible locations of an
object, and the number of frames.

2.4.6 Other methods

Song et al. [74] propose a stochastic graph evolution framework to associate
tracklets into longer tracks by analyzing the statistical properties of individ-
ual tracklets as well as each proposed long-term tracks. They assume that the
appearances of the tracklets within a window follow a Gaussian distribution
with the mean and variance computed from a chosen tracklet (similar to our
key-node). Under this assumption, they also modulate the similarity between
the chosen tracklet and other tracklets. These tracklets are associated into po-
tential tracks by using Hungarian algorithm [57]. To compute the quality of
data association, the goodness of a candidate track is estimated by comparing
the variance of appearance features at each edge along the track. Specifically,
the appearances of all tracklets within the track are clustered into two groups
with respect to an edge. Then, a tracklet association cost (TAC) is defined at the
edge as the ratio of variance of appearances between the clusters to the sum
of variance of appearances within the clusters. Given a measure of quality of
data association based on TAC, they perform Metropolis-Hasting (MH) sam-
pling method to search for an optimal association. This definition is similar
to the Fischer’s linear discriminant function. Our method differs from it in
two ways. Not only the assumption about Gaussian distribution of the ap-
pearances does not hold in case of sporadic appearances, but also TAC cannot
handle unreliable or sporadic features simply because these features might be
unreliable and/or unavailable for most of the duration of the track.

2.5 Evaluation criteria

To assess the correctness of a multi-object tracker, it is necessary to quantify its
performance. We distinguish these evaluation methodologies as (i) frame-level
evaluation and (ii) trajectory-level evaluation. Frame-level evaluation methods
such as [75, 76] compute errors at each frame and then aggregate them along
time, whereas trajectory-level methods such as [77, 58] compute errors on a
track basis. In other words, frame-level evaluations indicate how well the
ground-truth targets have been tracked at each frame, whereas trajectory-level
evaluations indicate how completely the ground-truth trajectories have been
tracked.
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In any multi-object tracking evaluation protocol, one usually needs at hand
(i) tracker outputs or hypotheses, (ii) a set of ground-truth objects, and (iii) a
measure of distance between the estimated and actual state of the target. Let
Gt = {gj

t|j = 1, ..., nt} be the set of ground-truth objects at time t ∈ [1, Tobs],
where Tobs is the entire observation interval. The j-th object gj

t = (`
j
t, xj

t) has
a label `j

t and a location xj
t. Similarly, let Ht = {hi

t|i = 1, ..., mt} represent the
output of the multi-object tracker (or, hypotheses) at time t. The i-th hypoth-
esis hi

t = ( ˆ̀ i
t, zi

t) has a label estimate ˆ̀ i
t and a location zi

t. Usually, xj
t and zi

t

correspond to the points on the ground plane or bounding boxes. The label
estimate of a tracker might or might not correspond to an identity of a target.

The distance between a ground-truth object gj
t and a hypothesis hi

t, repre-
sented by distij, is typically defined as the Euclidean distance or the intersection
over union distance between the bounding boxes, i.e.,

distij :=

 ‖z
i
t − xj

t‖ for point targets,

1− |z
i
t∩xj

t |
|zi

t∪xj
t |

for region targets.
(2.7)

Now, we discuss in brief various frame- and trajectory-level evaluation
methodologies.

2.5.1 Frame-level evaluation

A widely used protocol for evaluating the performance of multi-object track-
ing is CLEAR-MOT [75]. It defines two quantities namely multiple object
tracking precision (MOTP) and multiple object tracking accuracy (MOTA).
MOTP measures the tracker’s ability to localize a target, whereas MOTA mea-
sures the number of errors committed by the tracker during tracking.

To define these two terms accurately, we need to define how a correspon-
dence (or, match) between a ground-truth and a tracker hypothesis is estab-
lished. On the one hand, when the tracker outputs an estimate of the target
identity, the matching procedure is straight-forward. Specifically, we consider
that gi

t and hi
t are matched if distij < Tdist. One the other hand, when the

label estimate of the hypothesis does not correspond to the identity of a tar-
get, a match between a ground-truth and a hypothesis is defined as follows.
If a target is already being tracked, then gj

t is said to be matched to hi
t if

distij < Tdist. Otherwise, gi
t is matched to the closest unassigned hypothe-

sis hi
t if distij < Tdist. This is formulated as an assignment problem between the

unassigned target-hypothesis pairs and is solved by using Hungarian algo-
rithm [57]. We replace j by π(i) (or, replace i by π(j)) to denote that the j-th
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target is matched to the i-th hypothesis.

• MOTP is the total error in estimated position for matched target-track
pairs over all frames, averaged by the total number of matches made. It
is defined as

MOTP :=
∑t,i disti,π(i)

∑t ct
,

where ct is the number of matches at time t. Ideally, MOTP should be 0.
We point out that MOTP is a rough estimate of the performance because
it heavily depends not only on the quality of ground-truth annotations
but also on the object detector’s performance.

• MOTA measures the discrete number of errors made by the tracker.
Mathematically, it is defined as

MOTA = 1− ∑t (mst + f pt + mmt)

∑t |Gt|
,

≡ 1− MS + FP + MM
GT

,

where |Gt| is the number of ground-truth objects present at time t, GT =

∑t |Gt|, and mst, f pt and mmt are misses, false positives and mismatches
at time t respectively. We write MS = ∑t mst, FP = ∑t f pt and MM =

∑t mmt to denote the time-accumulated errors. These error terms are
illustrated in Figure 2.3 and are defined below:

– Missed detection (mst) is a gj
t for which no matching hypothesis hi

t

is detected.

– False positive ( f pt) is a hi
t for which there is no matching ground-

truth gj
t.

– Mismatch (mmt)2 corresponds to hi
t for which there exists a match-

ing ground-truth gj
t such that `j

t 6= ˆ̀ i
t. The mismatch error can be

further differentiated into a switching error (swt) and a reinitializa-
tion error (ret). We write RE = ∑t ret and SW = ∑t swt. A switching
error occurs when the tracker starts following another object. A
reinitialization error occurs when the tracker fails to track the ob-
ject at some time and a new track is assigned for the same object
later on. The error due to switching is more problematic as it might
lead to significant errors in higher level interpretation of the scene.

2In [24], we call this error as wrong identification in the context of sport player recognition.



2.5 Evaluation criteria 23

f p ms re

Ground-truths Tracks

sw sw

Figure 2.3: Components of MOTA metric. f p: false positive, ms: missed
detection, re: reinitialization, sw: identity switch. For simplicity, we drop the
time subscript t. Best viewed in color.

Kasturi et al. [78] have defined MOTA slightly differently as

MOTA := 1−
∑t cms(mst) + c f p( f pt) + cmm(1 + mmt)

∑t |Gt|
, (2.8)

where they define the weighting functions as cms = c f p = Id (identity
function) and cmm = log10. The introduction of 1 in Equation 2.8 is be-
cause of the log function.

Ben Shitrit et al. [27] observe that the mismatch error is not appropriate
to evaluate applications for which preserving identities of the targets is cru-
cial. This is because the mmt term penalizes only the instantaneous identity
switches. To address this, they introduce global MOTA (GMOTA) in which
the mismatch error is computed along the duration of the track rather than
between consecutive time instances. An example is shown in Figure 2.4.

Another popular measure for performance evaluation of multi-target track-
ing is optimal sub-pattern assignment (OSPA). This OSPA metric3, proposed
by Ristic et al. [76], defines the tracking error as

Dp,c(Ht, Gt) :=

[
1
qt

(
min

π∈Πmt

nt

∑
j=1

(
dc(gj

t, hπ(j)
t )

)p
+ |nt −mt| · cp

)]1/p

, (2.9)

where

– qt := max(nt, mt).

– dc(gj
t, hi

t) := min(c, distij) is the cut-off distance with c > 0 being the user-
defined cut-off parameter;

3It is a true metric.
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Figure 2.4: Mismatch errors in MOTA and GMOTA. Unlike MOTA, in which
identity discrepancies are counted between consecutive time instances only,
GMOTA counts the identity discrepancies over the duration of the track.
Dashed vertical lines represent the counting of these errors.

– distij :=
[
‖xj

t − zi
t‖p + αδ[`

j
t 6= ˆ̀ i

t]
]1/p

is the base distance in which δ is
the Kronecker delta, and the first and second terms correspond to the
localization and labeling errors respectively with a balancing term α ∈
[0, c].

– Πmt represents the set of all permutations of {1, 2, · · · , mt};

– 1 ≤ p < ∞ is the OSPA metric order parameter.

The minimization step in Equation 2.9 is performed by using Hungarian algo-
rithm.

Nawaz et al. [79] observe that the MOTA is not numerically lower bounded,
while the OSPA does not handle change in target sizes. Furthermore, these
measures are parameter dependent. To address these limitations, they have
proposed multiple extended-target tracking error (METE). Specifically, they
define the accuracy error, At, and cardinality error, Ct, as

At := min
π∈Πpt

qt

∑
j=1

distπ(j),j, (2.10)

Ct := |mt − nt|, (2.11)

where pt := max(nt, mt), qt := min(nt, mt), and combine them into a param-
eterless METE as

METEt :=
At + Ct

pt
. (2.12)
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METEt ∈ [0, 1]: the lower METEt, the better the tracking result. The com-
putation of accuracy error in Equation 2.10 involves solving an assignment
problem and is done by using Hungarian algorithm.

2.5.2 Trajectory-level evaluation

Wu and Nevatia [77] assess the performance on entire trajectories rather than
on frame-by-frame assignment. Their definition has been refined by Li et al.
[58].

• Mostly Tracked (MT) means that more than 80% of the ground truth
trajectory is tracked.

• Mostly Lost (ML) means that more than 80% of the trajectory is lost.

• Partially Tracked (PT) means that the trajectory is tracked more than
20% but less than 80%.

• Fragmentation (Frag) is the total number of times a ground-truth trajec-
tory is interrupted in tracking. In other words, it is the total number of
times a ground-truth trajectory changes its status from ‘tracked’ to ‘not
tracked’ or vice versa.

• ID switches (IDS) is the total number of times a tracked track changes
its matched ground truth trajectory.4

An illustration of these measures is shown in Figure 2.5.
Additionally, Song et al. [74] have proposed two more measures to evaulate

the ability of the trackers to recover from the occlusions5. They are:

• RS is the ratio of tracks which are correctly recovered from short occlu-
sion.

• RL is the ratio of tracks which are correctly recovered from long occlu-
sion.

2.6 Conclusion

In this chapter, we introduced some basic elements of graph theory and some
algorithms on graph that are used to address multi-object tracking problem.

4In [77], IDS is defined as “the number of times two tracks switch their identities”.
5However, they do not specify how they distinguish short- and long-term occlusions.
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MT, ML and Frag

MT ML Frag

IDS=1
Frag=2

t1

IDS=2
Frag=4

t2

IDS and Frag

Figure 2.5: Measures in trajectory-level evaluation. MT: mostly tracked, ML:
mostly lost, Frag: fragmentations and IDS: ID switches. Solid and dashed
curves represent the ground-truths and the tracks respectively. Left: MT=1,
ML=1, Frag=2. Right: We can see that each ground-truth trajectory is inter-
rupted twice. Also, the identity of the track is switched twice. Therefore,
Frag=4, IDS=2. Viewed best in color.

Afterwards, we presented a pipeline underlying detection-based tracking. We
provided a brief review of related works for object detection and graph-based
MOT. Finally, we described the evaluation methodologies for MOT.
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In this chapter, we discuss in detail our first contribution, called iterative hy-
pothesis testing strategy. We first discuss why many conventional graph-based
multi-object trackers cannot handle unreliable and/or sporadic appearance
features. Afterwards, we propose our novel iterative hypothesis testing strat-
egy and demonstrate its efficiency and effectiveness on both toy and real-life
data.

3.1 Problem statement

In this section, we introduce a generic formulation of multi-object tracking
problem, and explain the simplification by previous arts. Afterwards, we
point the major shortcoming of these methods in presence of noisy and/or
sporadic appearance features. Finally, we propose our novel iterative hypoth-
esis testing strategy.

3.1.1 Multi-object tracking problem formulation

Multi-object tracking (MOT) is a fundamental issue in computer vision. It
supports high-level semantic scene analysis in numerous and various appli-
cations. Vehicle trajectories are, for example, collected to control traffic moni-
toring solutions [1]. People displacement analysis is important to improve the
security of public spaces [80], or to understand sport actions [2], for example.

27
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Due to recent improvements in object detection, many detection-based
approaches have been proposed to handle the MOT problem. In such ap-
proaches, plausible object locations are first estimated in each individual frame
and some features, characterizing the appearances of the detected objects,
are extracted. Afterwards, the MOT problem is formulated as the problem
of grouping these detections into a minimum number of disjoint trajectories,
each trajectory corresponding to a single physical entity. This data association
problem is usually handled by graph-based solutions. First, a graph is defined
to connect a set of nodes that correspond to the detections (or unambiguous
association of detections, named tracklets). Each edge gets a weight that re-
flects either distance (or dissimilarity) or similarity in terms of spatio-temporal
displacement and/or appearance between the two nodes it connects. After-
wards, multi-object tracking can be naturally formulated its general form as
the problem of finding K disjoint sets (or cliques) of nodes such that

• each set contains at most one detection at each time instant,

• the elements of a set are consistent in terms of appearance and spatio-
temporal features, and

• the number of sets is limited, based on prior knowledge about the num-
ber of targets, or simply by penalizing the increase of K.

Formally, this can be written as

minimize ∑K
i=1 C(Ti) + λg(K),

subject to Ti ∩ Tj = ∅, ∀i 6= j,
∪K

i=1Ti = V ,
tu 6= tv∀u, v ∈ Ti ∀i = 1, · · · , K; u 6= v,

(3.1)

where V represents the set of all nodes, g(K) represents the regularization
term such that it increases with K, C(Ti) represents the dissimilarity cost within
the i-th set Ti, and tu represents the associated time tag of node u. In Equa-
tion (3.1), the first two constraints require that the sets {Ti}K

i=1 define a valid
partition, whereas the last constraint requires that Ti cannot have multiple de-
tections from the same time instant. The cost C(Ti) should be defined such that
it decreases (increases) when the detections in Ti have a small (large) dissim-
ilarity between them, reflecting (in)consistent associations. The quality of the
solution relies on the definition of C(Ti). Ideally, if there are n nodes within Ti,
the dissimilarity function should consider all n(n− 1)/2 1 of pairs of nodes,

1a symmetric (or time-causal) pairwise cost
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and associate to each of them a cost that increases with the likelihood that the
nodes in a pair correspond to two distinct targets. That is,

C(Ti) := ∑
u,v∈Ti
u 6=v

wuv, (3.2)

where wuv is defined to decrease with the likelihood that the nodes u and v
correspond to the same physical object in terms of space, time and/or appear-
ance. Obviously, wuv should increase with the appearance dissimilarity and
the spatial distance between nodes u and v. More importantly, its definition
should also account

1. for the time elapsed between u and v (because a larger time interval
makes it more likely that a target has moved or changed in appearance,
hence reducing wuv for a given observed dissimilarity), and

2. for the confidence we have in the observations (an unreliable feature
should not lead to definitive conclusion about whether the nodes corre-
spond to the same target or not).

In the following, we refer to these two observations as Observation 1 and
Observation 2 respectively.

3.1.2 Previous art simplification and related issues

Given the definition of C(Ti), provided in Equation (3.2), solving Equation
(3.1) however rapidly becomes computationally intractable. As investigated
by Zamir et al. [60], the problem becomes equivalent to the travelling salesman
problem (TSP), which is known to be NP-complete. Therefore, most previous
works build on the Observation 1 above, namely wuv should only be large for
nodes that are close in time, to simplify the problem. Specifically, they ignore
dissimilarities between far away nodes and only consider for each node u the
cost wuv? induced by its immediately subsequent node v? in Ti. Formally,

C(Ti) := ∑
u,v?∈Ti

wuv? , (3.3)

where v? := argminv∈Ti ,tv>tu
(tv − tu) is the node in Ti that is temporally clos-

est to u.
Doing so, Equation (3.1) becomes easy to solve, since it basically reduces to

finding a set of paths with a minimal cumulative cost. This can be solved by
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using a greedy shortest-paths computation [28], or by running the K-shortest
paths (KSP) algorithm [26]. Apart from the KSP, several other algorithms such
as network flow algorithm [68], robust hierarchical association [56], etc. can
be envisioned to estimate the K tracks under this simplification assumption.
These approaches have been proven to be effective in a variety of scenarios
since the assumption about the prominence of the links connecting close ob-
servations is valid in many practical association problems.

This simplification, however, fails to correctly model the tracking prob-
lem when the cost wuv of the links that connect nodes that are distant in time
becomes important compared to links between subsequent observations. This
typically happens when discriminant features are observed with variable level
of reliability along the time. In this case, due to the Observation 2 (avoid mak-
ing a decision based on unreliable features), the weight wuv becomes larger
between far away, but reliably observed, nodes than between close nodes with
noisy features. Such cases are prevalent in numerous practical scenarios. For
example, color histograms appear to be quite noisy in presence of occlusions,
and object positions do not help to disambiguate a clutter of detections. In
some other cases, highly discriminant appearance features are only available
sporadically (and under certain configurations only). For example, in sports,
a number on a jersey is visible only when facing the camera. Face identity is
available only when a person is turning towards the camera properly.

In such time-varying observation process, the task of tracking multiple ob-
jects, while taking into account the position and all the available appearance
features, cannot be addressed properly with the formulation in Equation (3.3).
This is due to the fact that the consistency of a track cannot be measured by
the mere accumulation of (dis)similarities between the consecutive nodes in
the track, simply because the appearance features might be unreliable or even
purely unavailable in some nodes. This major shortcoming of conventional
graph-based tracking is illustrated in Figure 3.1.

Figure 3.1(a) depicts the ground-truth trajectories of a red and a green tar-
get, as well as the appearance observed in each time frame for each of the
target. The color of the node indicates whether the color of the target is avail-
able (red or green) or unavailable/unreliable (gray). The problem, defined
by Equations (3.1) and (3.2), is depicted in Figure 3.1(b). Edge cost is zero
when connecting two nodes with the same color, intermediate (and function
of spatio-temporal measurements ) when the color information is lacking for
one of the nodes, and infinite when the connected nodes have distinct colors.
For readability, only the edges connecting the detections that are observed at
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Figure 3.1: Problem of conventional tracking method in presence of spo-
radic appearance features. (a) Detections and trajectories corresponding to
two targets (red and green) for 5 consecutive frames are shown. Gray nodes
do not have appearance features. For readability, (b) only depicts a subset of
edges of the fully connected graph: only edges between the nodes in consec-
utive time instances (in black) and edges with infinite cost (in red). Note that
red edges connect nodes even if they are distant in time. (c) Results of con-
ventional tracking algorithm with the ‘simplification’ assumption (see text for
explanation). (d) Given the appearance of the key-node a, it is possible to sim-
ply increase (respectively, decrease) the cost of going through the nodes that
are dissimilar (respectively, similar) in the graph irrespective of whether the
nodes are temporally close or far. The resulting shortest-path, shown by thick
blue arrow, from a is consistent with the appearances. Best viewed in color.

consecutive times are depicted (in black), plus the edges with infinite weight
(in red). Other wuv are negligible due to the fact that wuv has to decrease as
time elapses between u and v (first observation discussed above). The so-
lution to problem (3.1), computed from this graph, using exhaustive search
approach, corresponds to the desired tracks and is depicted in Figure 3.1(a).
In contrast, making the simplification assumption presented in (3.3) and thus
omitting all links between non-consecutive nodes, fails to track the target cor-
rectly. This is depicted in Figure 3.1(c), where we observe that a conventional
(K-)shortest approach ends up in associating red and green nodes.

In this toy-example, if we are specifically interested in tracking the green
target observed in the node a depicted on the top left of Figure 3.1(d), a trivial
solution to solve the problem based on a shortest-path computation will con-
sist in increasing/decreasing the cost of an edge when it enters a red/green
node, wherever they occur along the track. In that way, the shortest-path is
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consistent with the color observations. In this chapter, we propose to extend
this trivial single-target tracking solution to a multi-object tracking context,
in which no prior knowledge is available about the actual appearance of the
targets, and in which the appearance measurements are subject to noise (no
guarantee that the measurement in a node defines the actual appearance of
the corresponding target).

3.1.3 Contribution

We therefore propose a new paradigm to aggregate detections into objects tra-
jectories. It extends the trivial solution depicted in Figure 3.1(d) by promoting
the implementation of an iterative hypothesis testing (IHT) strategy to aggregate
the detections into short trajectories.

Each iteration of the algorithm works as follows. A node, named key-node
(node a in Figure 3.1(d)), is selected to define a target appearance hypothe-
sis. Given this hypothesis, a shortest-path algorithm is considered to investi-
gate how to aggregate the key-node with its temporal neighbors in the graph,
while promoting the nodes that share its appearance, just as for node a in Fig-
ure 3.1(d). The process is repeated iteratively, each node possibly becoming a
key-node at some step of the algorithm. To avoid misleading the overall multi-
object tracking process due to a wrong aggregation decision, e.g., caused by
some inappropriate appearance hypothesis, the shortest-path connecting the
key-node to its neighborhood is only validated when it is ‘sufficiently shorter’
than alternative paths. In particular, the second shortest-path is also consid-
ered within the same observation window. Then, the path reliability is esti-
mated based on the comparison of the costs of the shortest- and the second
shortest-paths. The criteria to validate the shortest-path are very strict in the
beginning of the iterative process but are then progressively relaxed as the it-
erations proceed. This progressive relaxation makes the process greedy in the
sense that most reliable tracklets will be extracted first, independently of the
order in which nodes are scheduled as key-nodes.

Furthermore, we adapt the observation window to the size of the key-node
(i.e., number of detections already aggregated into the key-node) making the
process multi-scale. The advantages are two-fold. First, it reduces complexity
by aggregating the nodes locally before considering larger observation win-
dows. Second, it gives the opportunity to investigate long time horizons based
on more reliable appearance information (since appearance has been accumu-
lated on many frames for large key-nodes), which benefits the tracking accu-
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racy.

The proposed approach naturally accounts for different levels of reliability
in the observation process, typically by giving more credit to the reliable ap-
pearance measurements when defining the cost associated to the discrepancy
between the target appearance hypothesis and a node appearance estimate.
Hence, the algorithm becomes able to effectively exploit sporadic or noisy fea-
tures, which is a significant step forward compared to the state-of-the-art.

The rest of the chapter is organized as follows. Section 3.3 defines the
graph terminology. Our iterative hypothesis testing algorithm is described
and discussed in Section 3.4. Section 3.6 presents the experimental results
and demonstrates the efficiency and effectiveness of our approach both on a
synthetic and a real-life basketball dataset.

3.2 Related works

In this section, we review the few works that have been proposed to address
the multi-object tracking in presence of noisy and/or sporadic features.

To the best of our knowledge, the only graph-based previous work exploit-
ing sporadically available appearance cues is global appearance constraint
(GAC) by Ben Shitrit et al. [27]. In this work, the authors assume prior knowl-
edge of a discrete set of N possible appearances, and end up in a K-shortest
paths computation on a N-layered graph, K being the number of targets, and
N corresponding to the number of possible target appearances. In contrast,
to avoid the computational burden associated to the construction of a N-layer
graph, and to handle cases for which the possible set of appearances is not a
known and finite discrete set, we embed the hypothesis testing within an iter-
ative local aggregation framework. We show in our validation that this results
in significant accuracy improvements.

In addition, there is another work that can probably handle the variable
confidence in feature measurements even though they do not address it ex-
plicitly.

Zamir et al. [60] first divide the whole video in fixed sized segments (typ-
ically 50 frames long). Afterwards, they adopt similar formalism as in Equa-
tion 3.2 on the segments. The solution is obtained by solving a generalized
minimum clique problem (GMCP), which greedily extracts tracklets that have
the most stable appearance features and the most consistent motion. The same
procedure is repeated in a hierarchical manner to generate long trajectories.
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Since they work on fixed temporal segments, an error in estimating a track-
let gets propagated in subsequent hierarchies. This is problematic specially
because the tracklet extraction step is not ‘conservative’. In contrast, our ap-
proach works conservatively on longer and longer time windows (see Sec-
tion 3.4.2). Moreover, they do not handle unreliable appearance features.

3.3 Graph formalism and notations

As an input, the algorithm receives the set of candidate targets detected inde-
pendently at each time instant, as described in [18]. Apart from the detection
time t and the location x, the detector computes N appearance features f i

(1 ≤ i ≤ N) for a target. Since a feature might be noisy or even missing, the
detector outputs a confidence value ci ∈ [0, 1] for each feature (ci = 0 standing
for a missing feature). A detection d is therefore characterized by the vector

d = (t, y,F , c),

where F = { f 1, · · · , f N} and c = (c1, · · · , cN). The set of detections at a
given time t is denoted as Dt. As introduced earlier, the proposed algorithm
adopts a graph-based formalism. We define a graph G = (V , E , W) by:

• a set of nodes, with each node corresponding to a tracklet, i.e.,
V = {vk|1 ≤ k ≤ |V|},

• a set of edges, E ⊂ V × V , defining the connectivity between the nodes
in V ,

• and a set of weights, W : E → R++, weighting these nodes and edges.

Initially, individual detections define the nodes of the graph. Detections are
then aggregated into tracklets, which define the nodes of the updated graph.
The proposed iterative aggregation process is presented in details in Section
3.4.2, including the definition of cost and edges between nodes. Here, we
only introduce the associated terminology. Formally, a tracklet v is defined
to be collection of chained detections, i.e., v =

(
d1, d2, · · · , d|v|

)
, |v| being

the length of the tracklet. Notice that the chain is ordered in the sense that the
detection times td(i) , i ∈ [1, |v|] are such that t(s)v = td1 < td2 < · · · < td|v| = t(e)v ,

with t(s)v and t(e)v respectively denoting the starting and ending time of the
tracklet.

Notice that pairs of tracklets are connected only between their extremities,
in such a way that each connection maintains the increasing ordering of the
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detection times composing the two tracklets. The weight wuv is introduced to
denote the linking cost between two nodes u, v ∈ V . It is formally defined in
Section 3.4.1. In short, it typically decreases with the likelihood that the nodes
u and v correspond to the same physical target. In addition, we introduce
the inner cost wv

2 of a node v to denote the cost of traversing tracklet v from its
starting time to its ending time. It is introduced to avoid that long nodes create
short-cuts in the graph. Since the edges are directed and “time-forwarded” (see
Section 3.4.1), the graph G is directed and acyclic (DAG)3, and permits only
causal traversals. Nevertheless, the graph can be globally reversed in order
to allow anti-causal paths for processing purposes. We denote such reversed
graph as G−.

In the sequel, we use two more graph notations. First, Gδ represents a
windowed-graph formed by selecting in G = (V , E , W) the tracklets v ∈ V
having at least one extreme time component inside the temporal window δ.
The connectivity E and the weight W are restricted accordingly from these
selected tracklets in order to form Eδ and W δ respectively. Second, in case of
incremental tracking, the algorithm incorporates new detections at each time
instant t and the graph is continuously incremented with time. We denote the
graph at time t by G t. The corresponding vertices and edges are denoted by
V t and E t respectively.

Figure 3.2 depicts how the tracklets are gathered into a graph in the pro-
posed framework.

3.4 Iterative hypothesis testing algorithm

This section first explains the construction of graph. Afterwards, it presents
our proposed algorithm, and outlines its characteristics.

3.4.1 Graph construction

As introduced earlier, our nodes correspond to tracklets. We create a directed
edge from u to v only if 0 < t(s)v − t(e)u ≤ τmax, i.e., node v occurs after u and
the time interval is smaller than τmax. The weight of the edge wuv is defined

2Note that wv is not the self-loop of v.
3We prefer DAG because the shortest-path can be computed by topological ordering (e.g.,

depth-first search) which is more efficient than Dijkstra’s algorithm. We incorporate the inner
cost of a node on-the-fly when it is ‘being discovered’ during the topological ordering. It is made
possible by visitors in the Boost Graph Library.
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Figure 3.2: Graph formalism for iterative hypothesis testing. The k-th detec-
tion at time t is denoted by dt

k. Some of them are aggregated into tracklets.
Each node corresponds to a tracklet. An edge that connects two nodes u and v
has a cost wuv. The windowed-graph Gδ is comprised of the nodes and edges
(which are drawn in blue) within the observation window δ. Best viewed in
color.

solely by the spatio-temporal displacement between u and v, i.e.,

wuv := [1 + γ · (t(s)v − t(e)u − 1)]gsp(u, v), (3.4)

where the factor γ > 0 introduces penalty for missed detections, and gsp(u, v)
measures the distance between v and the predicted position of the object cor-
responding to node u. It is defined as

gsp(u, v) :=
∥∥y(s)

v − y(e)
u − ẏ(e)

u
(
t(s)v − t(e)u

)∥∥
2, (3.5)

where the term ẏ(e)
u is the velocity, at the end of tracklet u. It is zero for unit

length tracklets, and is computed from the last 2 detections of the tracklet
otherwise. Since the edges are directed and “time-forwarded”, the graph G is
directed and acyclic (DAG).

3.4.2 Iterative hypothesis testing

Our major objective is to design a detections aggregation method that is able to
exploit appearance cues that are noisy, or only available sporadically. There-
fore, as explained above, we cannot rely on conventional propagation of ap-
pearance similarity measures between consecutive nodes. Instead, we pro-
mote a novel aggregation paradigm, founded on iterative hypothesis testing pro-
cess.



3.4 Iterative hypothesis testing algorithm 37

Overview of the contribution

In this approach, each iteration selects a node, named key-node, and stud-
ies how to aggregate this key-node with its forward or backward neighbor-
hood, under the assumption that the observed key-node appearance defines
the reference appearance of the tracked object. Given this hypothesis, paths
that go through nodes that do (not) share the key-node appearance are pro-
moted (penalized). This is done simply by decreasing (increasing) the cost
to go through a node of the graph when the appearance of that node is sim-
ilar (different) to that of the key-node. Hence, all appearance cues, even the
sparse or inaccurate one, can be exploited to drive the selection of aggregated
paths within the graph. Since the process is repeated with each node being
the key-node, all observed appearance hypotheses are examined.

Two subtle mechanisms largely contribute to the success of our approach:

• The first and primary one lies in the conservativeness adopted to turn
the path aggregating the key-node with its neighborhood into a single
tracklet node for subsequent iterations. Actually, this path is only vali-
dated if it is sufficiently better than alternative paths. Importantly, the
notion of ‘sufficiently good’, which is formally defined below, is progres-
sively relaxed along the iterative process. This makes the overall algo-
rithm greedy, in the sense that the less ambiguous paths are validated
first, thereby making the solution reasonably independent of the order
in which nodes are scheduled as key-node and appearance hypothesis
are tested;

• The second one consists in defining the size of the key-node neighbor-
hood proportionally to the length of the key-node. This makes the ag-
gregation multi-scale, which benefits both the accuracy and the compu-
tational efficiency, since the individual detections get the opportunity
to be aggregated into tracklets before investigating large time horizons,
leading to less nodes and more accurate appearance estimation on large
time frames.

The global flow of our proposed iterative aggregation algorithm is pre-
sented in Algorithm 1.

Given a graph, the algorithm iteratively investigates how a key-node can
be aggregated with its neighbours. As controlled by the dir flag in Algo-
rithm 1, the direction of investigation changes at each iteration to propagate
the appearance hypothesis associated to the key-node both towards the future
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Algorithm 1 Iterative Hypothesis Testing

Require: Graph G = (V , E , W), number of iterations MAX ITER

Ensure: Updated graph after MAX ITER iterations

Procedure:

dir ← +1
for l = 1, · · · , MAX ITER do

Initialize: R ← V
whileR 6= ∅ do

vkey ← Schedule(R)

vagg ← HypothesisTesting(G, vkey, dir, K(l)
1 , K(l)

2 )
if vagg 6= vkey then
G ← Simplify

(
G, vagg

)
end if
R ← R \ vagg

end while
(K(l)

1 , K(l)
2 )← Relax(K(l−1)

1 , K(l−1)
2 )

dir ← −dir
end for

and the past of this key-node, thereby making the global process symmetric
with respect to time.

In Algorithm 1, the function Schedule selects a node for hypothesis test-
ing that has not yet been scheduled. In this chapter, we select the nodes
on decreasing order of their lengths because long nodes are more likely to
have accumulated reliable appearance information. Our experimental results
have shown that the node scheduling strategy does not affect the performance
much.

The remainder of this section details the practical implementation of the
core of our proposed multi-scale and iterative aggregation strategy, namely
HypothesisTesting. It is detailed in Algorithm 2 and involves both (i) the
computation of the shortest-path connecting the key-node to its neighbor-
hood, under target appearance hypothesis, and (ii) the validation or rejection
of this path as a tracklet for subsequent iterations of Algorithm 1.

Multi-scale tracklet aggregation

Formally, the key-node is denoted vkey. It is selected at each iteration among
the set of nodes, R, that have not yet been investigated. The aggregation of
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the key-node with its neighbors is then investigated in an observation window
that precedes or follows the key-node, depending on the sign of the dir flag.
The size of the observation window is proportional to the length of the key-
node. We use δ to denote the observation window interval and |δ| to denote
its size. Hence, δ = [t(e)vkey , t(e)vkey + κ · |vkey|] in the forward mode (dir = 1), or

δ = [t(s)vkey − κ · |vkey|, t(s)vkey ] in the backward mode (dir = −1), where κ ∈ R+ is
the window proportionality constant.

Algorithm 2 HypothesisTesting

Require: Graph G, key-node vkey, direction flag dir, validation parameters
K1, K2

Ensure: Nodes that can be aggregated vagg

Procedure:

δ← Limits of observation window (see text)
Gδ ← GraphHypothesis(G, δ, vkey)

(Sb, Ssb)← Shortest- and second shortest-paths from vkey

if isUnambiguous(Sb, Ssb) then # Refer to Figure 3.3 for illustration
G−δ ← ReverseDirection(Gδ)
(Sb′ , Ssb′)← Shortest- and second shortest-paths from vb

if isUnambiguous(Sb′ , Ssb′ ) then
vagg ← Sb

end if
else

vagg ← vkey

end if
return vagg

isUnambiguous(Sb, Ssb)

return cost(Sb) < K1 · |δ| and cost(Sb)/cost(Ssb) < K2

Given the key-node vkey and the observation window δ, we define a graph
Gδ to investigate how the key-node can be aggregated with its neighbors to
define an appearance-consistent path under the assumption that the target
appearance is defined by the key-node appearance. In Algorithm 2, the func-
tion returning Gδ is named GraphHypothesis because it returns the graph that
is used to test the key-node appearance hypothesis. The graph Gδ is directly
derived from the graph G, by cutting G according the limits of the observa-
tion window, and updating the inner costs of the nodes within the window to
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reflect the hypothesis made about the target appearance. In short, the inner
cost wv of a node v ∈ Vδ is increased (decreased) if it has a different (similar)
appearance than the one of the key-node.

Given the appearance features of individual detections, the inference of the
tracklet appearance features directly depends on the characteristics of the fea-
tures observation process. If, for example, the observation process is affected
by outliers, a RANSAC [81] approach could help in capturing the right ap-
pearance model. On the other hand, if the observations are independent and
affected by Gaussian noise, then a weighted average provides an appropriate
inference. Here, we use a weighted average for the tracklet appearance as an
example of possible practical implementation. Then, the average ith feature of
a node v is computed as

f
(v)
i =

1
Ci

|v|

∑
t=1

c(v)i,t f (v)i,t , (3.6)

where Ci = ∑
|v|
t=1 c(v)i,t . In particular, f

(key)
i denotes the average i-th feature of

the key-node, used as an hypothesis reference.

Let D(v) denote the value by which the inner cost of node v is incremented
due to its dissimilarity with respect to the key-node appearance. We define

D(v) =
N

∑
i=1

[
αkeyαiλi

∥∥ f
(key)
i − f

(v)
i
∥∥

1 + (1− αkeyαi)w
(fix)
i
]︸ ︷︷ ︸

w(v)
i

, (3.7)

where λi weights the contribution of the i-th feature. The parameter αi is in-
troduced to give less weight to unreliable appearance features. The definition
of αi depends on confidence values c(v)i,t of individual detection. However, the
precise definition depends on the application at hand. We show in validation
section a possible definition of αi.

From Equation 3.7, when αkeyαi → 1, w(v)
i → λi

∥∥ f
(key)
i − f

(v)
i
∥∥

1 and when

αkeyαi → 0, w(v)
i → w(fix)

i . The term w(fix)
i is introduced so that a node that

definitely looks similar to the key-node (D(v) ≈ 0) is favored compared to a
node for which no appearance features is available

(
D(v) ≈ ∑i w(fix)

i
)
. It cor-

responds to the noise level, affecting the feature. Empirically, we set w(fix)
i = 5

for all 1 ≤ i ≤ N.

After the inner costs of the nodes have been incremented by D(v), a short-
est path algorithm is applied. For this, the DAG shortest-path algorithm is
preferred because of the inherent directed and acyclic nature of the graph.
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The cost of a path is defined to be the sum of costs of the edges and the inner
costs of the nodes along it, and is given by the function cost in the algorithm.

Even though it seems that updating the costs requires additional scanning
of the graph, it is mitigated by the concept of visitors in the shortest-path algo-
rithm. The visitors allow to update the costs of the nodes or edges “in place”
by invoking various events.

Path ambiguity estimation and tracklet validation

Having the cost of edges defined to take the displacement as well as the ap-
pearance into consideration, the shortest-path Sb, which connects the key-
node to the extremity of the observation window, reasonably corresponds to a
single physical object (same appearance, and coherent motion) and could thus
be aggregated into a single node.

However, to limit the risk of connecting nodes that correspond to two dis-
tinct objects, we check the level of ambiguity of the shortest-path by compar-
ing its cost to the costs of alternative paths. Figure 3.3 illustrates this process.

δ

vsb ′

vkey =
vb′

vb

vsb

Sb Ssb Sb′ Ssb′

Figure 3.3: Illustration of the validation of the hypothesis. Within the win-
dow, the best (thick arrow) and the second best (thin arrow) paths (denoted by
Sb and Ssb respectively) are searched. Blue and red arrows represent forward
and backward directions respectively. Best viewed in color.

It runs in two steps. In the first step, the shortest Sb and the second short-
est Ssb paths are considered. The ends of the best and second-best paths are
denoted as vb and vsb respectively. The shortest-path Sb is considered being
unambiguous only if two conditions are met: (i) cost

(
Sb
)
< K1 · |δ|, and (ii)

cost
(
Sb
)
/cost

(
Ssb
)
< K2.
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If all conditions are met, the second step of the validation process is consid-
ered. For this, the graph is reversed by flipping the direction of all the edges
of Gδ. It is mentioned as ReverseDirection in the algorithm. The shortest-
(Sb′ ) and second shortest- (Ssb′ ) paths linking vb with the opposite extremity
of the observation window are then computed. If Sb′ leads to the original
key-node, i.e., if vb′ = vkey, and if a similar set of conditions hold for Sb′ and
Ssb′ , then the path Sb is considered to be unambiguous, and is replaced by a
single node in the graph for subsequent iterations of the IHT. This procedure
is called Simplify in the Algorithm 1. It updates the appearance features of
the node as in Equation 3.6 and also the motion parameters. It keeps only
the edges connecting the extremities of the aggregated path to the rest of the
graph. Other connections involving intermediate nodes are removed.

It should be noted that IHT makes the implicit assumption that the trajec-
tory associated to a target is unique in the graph. It means that, for each target,
there are no multiple paths with similar costs in the graph. In practice, how-
ever, different paths starting from the same key-node, but ending in a different
node at the extremity of the observation window, might be quite similar in the
sense that they share identical nodes or detections that are very close to each
other. Those similar paths are not of interest to the testing phase because they
basically define a similar trajectory than the shortest-path. Hence, we con-
sider as the second path a path that ends in a different node than the shortest
path, and that is sufficiently different (i.e., does not share many nodes) from
the shortest-path.

Choosing small (large) values of K1 and K2 makes the constraint more
(less) conservative. In the beginning of the algorithm, we start with small
values of K1 and K2. As the iteration proceeds, we progressively relax the
validation criteria. This makes the overall IHT algorithm greedy, in the sense
that the less ambiguous paths are validated first, thereby making the solution
reasonably independent of the order in which nodes are scheduled as key-
node and appearance hypotheses are tested. This progressive relaxation of
the key-node path validation constraint is denoted by the function Relax in
Algorithm 1. An example of relaxation scheme is described in results section.

3.5 From off-line to incremental IHT

Because we iterate over the nodes, our IHT naturally extends to the incremen-
tal scenarios in which the detections arrive sequentially over time. Compared
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to the off-line approach, there are however few subtleties. They are:

• Incrementing the graph: At time t = 1, the graph is just a set of de-
tections at that instant, i.e., G1 = (D1, ∅). At time t > 1, the graph is
obtained by adding new detections Dt to the so-called previous graph
G t−1, resulting from earlier steps of the algorithm, up to time t− 1. All
nodes ending later than time t− τmax are linked to all the current detec-
tions. The weight of each edge is computed as in Equation 3.4.

• Scheduling of the nodes: Unlike the off-line approach, we schedule the
‘recent’ nodes first. This is done to prevent the fast growth of the graph
at each time. Specifically, we schedule the nodes in decreasing order of
|v|/ max{1, t− t(e)v } so that the ‘recent’ and ‘sufficiently long’ nodes are
selected first.

• Relaxing the validation criteria: We maintain a ‘sliding window’ [t −
δslide, t] where δslide is the length of the sliding window. Inside (respec-
tively, outside) the sliding window, we impose conservative (respec-
tively, relaxed) criteria for K1 and K2. We use δslide = 200 frames.

3.6 Evaluation

We test our proposed IHT algorithm on a toy example and also on the real-life
APIDIS [6] and PETS [82] datasets. We compare IHT with the relavant works
pointed in Sections 3.1 and 3.2, namely KSP [26], GAC [27] and GMCP [60].
The toy example helps us to highlight the benefits of our progressive aggrega-
tion paradigm, while the experiments on real-life examples demonstrate the
practical relevance of our approach.

The proposed approach has been implemented in C++ (for APIDIS dataset)
and MATLAB (for toy example and PETS dataset). The C++ implementation
utilizes Boost Graph Library for representing the graph. The DAG shortest
path algorithm is provided in the library. All experiments are performed on
a desktop computer with 3GHz quad-core CPU, 4 GB of RAM, and running
under Linux.

In the remainder of the section, we first compare IHT specifically with KSP
and GAC on a toy example. KSP serves as a ‘representative’ method that
exploits appearance features in a uniform manner. Afterwards, we discuss
the results and compare with other approaches on APIDIS dataset.
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3.6.1 Toy example

We consider 3 targets whose ground-truth locations {y1, y2, y3} at time in-
stances k ∈ {0, 1, · · · , 10} are obtained by

y1 := 50 sin
(

2πk
10

)
,

y2 := 50 cos
(

2πk
10

)
,

y3 := −20− 50 sin
(

2πk
8

)
. (3.8)

The appearance feature of the i-th target, denoted as fi, is modeled by a 2
state automata as shown in Figure 3.4. The appearances of the state 1 and

s = 1 s = 2

fi ∼ N (µi, σlow) fi ∼ N (µi, σhigh)

p

q

1− p 1− q

Figure 3.4: 2 state automata for modelling the appearance of the i-th target.
When the automata is at state s = 1 (respectively, s = 2), the appearance
fi follows a normal distribution with mean µi and standard deviation σlow

(respectively, σhigh). Best viewed in color.

2 are modelled as N (µi, σlow) and N (µi, σhigh) respectively. We use µi ∈
{0, 120, 240} and σlow = 10 and σhigh = 100. In order to simplify the tran-
sition probability matrix, we fix q = 0.5 and vary p.

The detections and ground-truth trajectories are shown in Figure 3.5.
Implementation details:
We create a graph G = (V , E , W) where

– V is the set nodes with i-th node corresponding to the i-th detection. The
i-th node is characterized by the time instant ti, position yi, appearance
fi (and, optionally feature confidence ci ∈ [0, 1]).

– E ⊆ V × V defines the connectivity between the detections. We cre-
ate edges between the nodes that occur at consecutive time instants, i.e.,
E := {(i, j)|i ∈ V , j ∈ V , tj − ti = 1}.

– W assigns a cost wij to each edge (i, j) ∈ E . We write the cost wij as

wij := w(s)
ij + w(a)

ij , where w(s)
ij and w(a)

ij are the spatio-temporal and
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Figure 3.5: Detections and ground-truth trajectories of the toy example. Best
viewed in color.

appearance costs respectively. The spatio-temporal cost is defined as
w(s)

ij := ‖yj − yi‖2. The definition appearance cost differs from one al-
gorithm to another. First of all, given two appearance features fi and f j,
the appearance dissimilarity dij is computed as

dij := 1−
∣∣∣∣cos

(
π( f j − fi)

180

)∣∣∣∣ .

Then, we define the appearance cost w(a)
ij as in Equation (3.7):

Algorithm Reference appearance Appearance cost, w(a)
ij

KSP None cicjdij + (1− cicj)w(fix)

GAC l-th global appearance, fl cidil + (1− ci)w(fix)

IHT l-th key-node appearance, fl cicldil + (1− cicl)w(fix)

where w(fix) ≥ 0 is a fixed cost, introduced to associate a fixed cost
to nodes for which the appearance is unknown or unreliable. We use
w(fix) = 10 in our experiments.

– For GAC and KSP, we connect the source node to the nodes that occur at
time k = 0 and the nodes that occur at time k = 10 to the terminal node.
The costs of these edges are set to zero. In practice, the set of global
appearances considered by GAC are either known a priori (e.g., provided
by oracle), or have been estimated from the measurements (e.g., using k-
means with 3 clusters in our toy-example case).

For GMCP, we compute the cost of a candidate solution Ti as

C(Ti) := ∑
u∈Ti

[
∑

v∈Ti
v 6=u

w(a)
uv + w(s)

uv?
]
,
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where

v? = argmin
v∈Ti
v 6=u

tv>tu

(tv − tu).

As told in Section 3.1.2, this GMCP formulation corresponds to the traveling
salesman problem (TSP), which is known to be NP-complete. Therefore, it has
to be solved using approximated greedy solution. We have followed the au-
thors in [60], and have adopted the popular opt-2 solution [83]. The solution
to the GMCP problem is obtained greedily as follows. We initialize the solu-
tion by computing the shortest-path from the source to terminal node on the
graph, used in KSP. This is referred to as current solution. To find the neighbor
solutions, we (i) traverse through the current solution, (ii) replace a node along
the current solution by other nodes that co-exist with it, and (iii) compute the
corresponding cost. Afterwards, we choose the path among the neighbor so-
lutions that has the least cost. If this cost is smaller than the cost of current
solution, we replace the current solution by it.

Results: In our simulations, we consider two experimental set-ups. In the
first set-up, we consider that we have no knowledge about the reliability of
the measurement process (e.g., about the state of the automata). Hence, we
set ci = 1 for all detections. In the second set-up, the state of the automata is
assumed to be known and we set ci as

ci =

0.8 if s = 1,

0.1 if s = 2.

We vary the transition probability p from 0 to 0.9 with an increment of 0.1.
For each value of p, we generate 100 realizations of the target appearances and
apply IHT, GAC and KSP algorithms to compute tracks for each of them. Af-
terwards, we compute MOTA score for each algorithm. The results are shown
in Figure 3.6.

From the figure, we see that taking the confidence of the feature measure-
ment into account indeed helps to disambiguate the data association (as re-
flected in the MOTA scores). When we do not take into account the confidence
information, all IHT, GAC and KSP perform similarly, with IHT performing
slightly better than the other two algorithms. The performance improves sig-
nificantly when the confidence measure is incorporated. Surprisingly, the
GMCP performs the worst even though its problem formulation is close to
ideal. Such an inferior performance of GMCP can be accredited to the fact



3.6 Evaluation 47

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

p

M
O

TA

Without confidence measurement

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

p
M

O
TA

With confidence measurement

IHT GAC with known appearances KSP
GAC with kmeans appearances GMCP

Figure 3.6: Performance of IHT, GAC, KSP and GMCP on toy example with
and without taking the confidence of feature measurement information. Best
viewed in color.

that each ‘track’ is extracted greedily and locally from the set of nodes. Unlike
GAC, there is no notion of global solution. Unlike IHT, it does not validate the
goodness of the extracted track.

It is worth noting that the performance of GAC is strongly dependent on
the prior knowledge of the 3 global appearances. The performance in Fig-
ure 3.6 indeed appears to degrade significantly when the 3 appearances are
estimated from the measurements (based on k-means clustering, with k=3).

Our IHT algorithm has two distinct steps: (i) node scheduling, and (ii)
hypothesis validation. To study the importance of these steps, we envision
the following set-ups. We schedule the nodes either at random or in descending
order of appearance confidence. In addition, we validate the shortest-path
either conservatively, as described by Figure 3.3, or always, meaning that we
systematically define a new tracklet based on the shortest-path. The results
are presented in Figure 3.7.

The results show that the node scheduling has negligible impact on the
performance of the IHT algorithm. On the other hand, the conservative vali-
dation of the shortest path has a drastic influence on the performance of IHT.
By comparing Figure 3.7 with Figure 3.6, we observe that IHT performs worse
than KSP when we validate the shortest path immediately. This is not surpris-
ing because IHT investigates greedily on a local section of the graph whereas
KSP works globally on the whole graph.
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Figure 3.7: Effect of scheduling of nodes and validation strategy on the per-
formance of IHT. Best viewed in color.

3.6.2 Results for offline IHT

We report the performance of off-line IHT on 1 minute video (1500 frames at 25
frames per second) of APIDIS dataset. The APIDIS dataset and the generation
of detections is described in Appendex C. In short, the candidate detections
are computed independently at each time instant based on a ground occu-
pancy map, as described in [18]. For each detection, the jersey color and its
digit are computed to define the appearance features.

The parameter αi, introduced in Equation 3.7, is defined for APIDIS dataset
as follows

αi =


0 if Ci ≤ Cmin,

1 if Ci ≥ Cmax,
Ci−Cmin

Cmax−Cmin
otherwise.

(3.9)

where Cmin and Cmax are the limits to define if the feature is considered reliable
or not. Some parameters of our algorithm are chosen as

Parameter Description Value

τmax Connection horizon for new detections 120
γ Missed detection coefficient 3
κ Window proportionality constant 5
(Cmin, Cmax) Thresholds for feature reliability (20,100)
MAX ITER Maximum number of iterations 50

Figure 3.8 compares the performance obtained by the proposed algorithm
when different sets of appearance features are exploited. The results are ob-
tained by enabling (or disabling) certain features in the algorithm and running
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on the 1 minute long video sequence. There are all together GT=544 ground
truth positions.

SW RE FP MS
0

20

40

60

80
11

65

1

52

2

48

0

44

2

44

0

38

0

34

0

33

C
om

po
ne

nt
s

of
M

O
TA

MOTA components for various feature combinations

No features Digit only Color only Both features

Figure 3.8: Components of MOTA metric for various feature combinations
on a 1 minute long video for off-line IHT. The MOTA scores for all 4 cases
are as follows: (i) no feature: 76.71%, (ii) digit feature only: 83.03%, (iii) color
feature only: 84.84%, and (iv) both features: 87.91% . Best viewed in color.

As we can see, the switches and re-initializations are reduced substantially
when the appearance features are used. It can also be seen that the digit fea-
tures, even though they are highly sparse, can disambiguate some tracks.
However, the improvements are not as ample as those from the color fea-
ture. When both features are used, not only the switches are reduced but also
the gaps between tracklets are bridged (thereby, reducing the re-initializations
and misses).

In order to study the effect of the progressive relaxation of the validation
criteria, we envision the following experimental set-ups. First, we fix the val-
ues for K1 and K2 such that the validation criteria are ‘most conservative’ (i.e.,
small values of K1 and K2) and ‘least conservative’ (i.e., large values of K1

and K2). Specifically, we set (K1, K2) = (5, 1/4) for most conservative and
(K1, K2) = (30, 1/1.1) for least conservative criteria. For progressive relax-
ation, we linearly increase K1 from 5 to 30 in 50 iterations and increase K2

linearly from 1/4 to 1/1.1 in 20 iterations and then fix K2 = 1/1.1 for the rest
30 iterations. We increase K2 faster than K1 because the primary condition to
validate a path is its low cost. The results are depicted in Figure 3.9.

From Figure 3.9, we see that relaxing the validation criteria indeed helps to
improve the tracking results in the sense that it avoids identity switches (just
as for a highly conservative criteria), while maintaining re-initialization and
misses at the level obtained with a less conservative criteria. Hence, it keeps
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Figure 3.9: Components of MOTA metric for different values of (K1, K2) on
a 1 minute long video for off-line IHT. Red, blue and green bars correspond
to the ‘least conservative’, ‘most conservative’ and ‘progressively relaxed’ val-
idation criteria respectively. The MOTA scores for all 3 cases are as follows:
(i) least conservative: 87.36%, (ii) most conservative: 78.52%, and (iii) progres-
sively relaxed: 87.91%. Best viewed in color.

the best out of the two criteria.

In Table 3.1, we compare IHT with GAC on a 1 minute video of APIDIS4.
The results for GAC and KSP have been kindly provided by the authors of
GAC. Regarding the comparison, note that KSP does not use appearance fea-
ture, whereas GAC uses digit and color features. Hence, we compare KSP
with IHT that does not use appearance feature and GAC with IHT that uses
both color and digit features.

Method MOTA % MOTP SW
KSP [26] 72.91 14.06 108
GAC [27] 73.07 14.06 110

IHT (no appearance) 76.71 10.39 11
IHT (color+digit) 86.19 10.37 0

Table 3.1: Results on 1 minute video of APIDIS dataset. We compare KSP with
IHT (no appearance) and GAC with IHT(color+digit).

From Table 3.1, we can see that the proposed method outperforms KSP and
GAC. We explain the benefit observed in this latter case by the progressive and
conservative nature of our proposed aggregation process.

4[27] has reported results on 1 minute video of APIDIS.
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3.6.3 Results for incremental IHT

In this section, we present tracking results on both 1 minute and 15 minutes
long video of APIDIS, and PETS dataset.

Results on APIDIS dataset

• Tracking results for 1 minute long video: The tracking results for the
incremental IHT for various feature combinations is depicted in Fig-
ure 3.10. From Figure 3.10, we can see that the errors get significantly
reduced when the appearances features, even if they are sporadic, are
incorporated.
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Figure 3.10: Components of MOTA metric for various feature combinations
on a 1 minute long video for incremental IHT. The MOTA scores for all 4
cases are as follows: (i) no feature: 75.99%, (ii) digit feature only: 82.13%, (iii)
color feature only: 83.94%, and (iv) both features: 86.82% . Best viewed in color.

We compare the performance of incremental IHT with off-line version
in Table 3.2.

From Table 3.2, we can see that the incremental IHT performs almost
similar to off-line approach. However, switching error (SW) is signifi-
cantly better in off-line case.

• Tracking results for 15 minute long video:

In case of incremental IHT, we can afford to run the algorithm for the 15
minutes of the video. Figure 3.11 compares the performance obtained
by the proposed algorithm when different set of appearance features are
exploited. The results are obtained by enabling (or disabling) certain
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Off-line IHT Incremental IHT
No features Both features No features Both features

FP 1 0 2 1
MS 52 33 50 34
RE 65 34 67 35
SW 11 0 14 3
MOTP 10.39 10.37 10.64 10.46
MOTA % 76.71 87.91 75.99 86.82

Table 3.2: Comparison of off-line and incremental IHT on 1 minute video of
APIDIS dataset.

features in the algorithm and running on the 15 minutes long video se-
quence. There are all together 7460 ground truth positions, i.e., GT=7460.
As we can see, the switches and re-initializations are reduced substan-
tially. However, the false positives increase slightly. When we incorpo-
rate the digit feature only, it can be seen that digit feature, even though it
is highly sparse, can disambiguate some tracks. However, the improve-
ments are not as ample as those from the color feature. It can be justified
due to the fact that color feature is available more often than the digit
feature. When both features are used, not only the switches are reduced
but also the gaps between tracklets are bridged (thereby, reducing the
re-initializations and misses).
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Figure 3.11: Components of MOTA metric for different cases on a 15 min-
utes long video. Indeed, exploitation of color and digit features help to reduce
the errors. The MOTA scores for all 4 cases are as follows: (i) No appearance:
89.1%, (ii) Digit only: 90.5%, (iii) Color only: 91.2%, and (iv) Both features:
92.2%. Best viewed in color.
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Results on PETS dataset

We apply on camera view 1 of the PETS-09 S2.L1 dataset [82] . First, targets
are detected by using the deformable parts model [22]. Then, 8-bin histograms
are computed on RGB channels separately, which are then stacked to obtain
a 24-bin feature vector. The feature is discarded if the overlap between the
bounding boxes exceeds 20%. This makes the resulting feature vector spo-
radic. The results are shown in Table 3.3. The results for discrete-continuous
optimization [84], continuous energy [85] are extracted from [84], whereas the
results for GAC [27] and KSP [26] are extracted from [27].

Method MOTA % MOTP %
KSP [26] 80.00 58.00
Continuous energy [85] 81.84 73.93
Tracking-by-Detection [86] 82.00 56.00
Discrete-continuous optimization [84] 89.30 56.40
GAC [27] 81.46 58.38

IHT (no appearance) 81.18 74.54
IHT (with color histogram) 83.10 74.56

Table 3.3: Tracking results on PETS dataset. To compare MOTP with other
methods, it has been redefined so that it corresponds to the total overlap be-
tween the bounding boxes of the ground-truth and the track, divided by the
total number of matches made.

We can see that our incremental IHT compares favorably with several meth-
ods. It is worth mentioning that it takes only 42 seconds in MATLAB to esti-
mate the feature and process all 795 frames.

3.6.4 Computational complexity and advantages of multi-scale

processing

To study the effect of multi-scale nature of our algorithm, we conduct two
experimental set-ups on 15 minutes video of APIDIS dataset. First, we note
the number of nodes in the graph and the (maximum) time taken by the hy-
pothesis testing step of IHT at each iteration. Second, we estimate the time
taken by IHT with fixed (specifically, |δ| ∈ {10, 50, 500}) and adaptive (i.e.,
|δ| = κ · |vkey|) observation window sizes. The results are shown in Fig-
ure 3.12. From the figure, we observe that the worst case complexity is found
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to be O(n1.475). Besides, the multi-scale nature of the algorithm not only re-
duces the computational time but also improves the tracking accuracy.
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Figure 3.12: Computational complexity of IHT. (Left): The complexity of IHT
is estimated to be O(n1.475). (Right): Running time for multi-scale as well as
fixed-window approaches. Best viewed in color.

3.6.5 Effect of parameters

In this section, we present the performance of incremental IHT algorithm (in
terms of MOTA components) with respect to some key parameters. They are:

Parameter Description
τmax Connection horizon for new detections (Section 3.4.1)
γ Missed detection coefficient (Section 3.4.1)
κ Window proportionality constant (Section 3.4.2)
(Cmin, Cmax) Lower and upper thresholds to compute the reliability (Section 3.6.2)
(K1, K2) Factors to validate the shortest-path (Section 3.4.2)

The results for the working point (τmax = 120, γ = 3, κ = 5, Cmin =

20, Cmax = 100) are (FP = 20, MS = 387, RE = 113, SW = 64, MOTA = 92.2%)
for incremental IHT on APIDIS dataset. Now, we present the performance of
the IHT algorithm (in terms of MOTA components) with respect to these pa-
rameters individually. For this, only one parameter is changed at a time and
all other parameters are fixed at their quiescent values. The results are shown
in Table 3.4.
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τmax γ

30 60 120 240 1 2 3 4 5
FP 7 24 20 22 34 20 20 20 11
MS 426 410 387 380 429 382 387 382 399
RE 162 137 113 111 125 116 113 118 118
SW 74 64 64 76 72 83 64 70 71

κ (Cmin, Cmax)

1 3 5 7 (20,70) (20,100) (20,50) (5,50) (20,30)
FP 14 19 20 33 19 20 19 22 19
MS 417 408 387 380 400 387 402 390 402
RE 120 126 113 110 127 113 116 133 117
SW 62 64 64 73 65 64 70 67 75

Table 3.4: Effect of τmax, γ, κ and (Cmin, Cmax) on 15 minutes video of APIDIS
dataset.

In addition, we also study how various values of K1 and K2 affect the per-
formance of IHT. For this, different values of K1 and K2 are chosen and are
kept fixed throughout the iteration. Recall that K1 constrains the cost of the
shortest-path, whereas K2 constrains the ratio of costs between the shortest-
path and the second shortest-path. Decreasing K1 and/or K2 will therefore
make the IHT conservative, leading to less false positives and less identity
switches. On the flip side, misses and re-initialization errors will increase.
Table 3.5 presents the resulting performance of the IHT .

K1 K2 Relaxed
2 5 15 30 1/1.5 1/2 1/3 1/5

FP 14 18 24 30 70 32 18 17 20
MS 417 401 372 350 363 377 401 445 387
RE 133 120 103 97 101 107 120 149 113
SW 41 60 69 78 97 81 60 58 64

Table 3.5: Effect of K1 and K2 on 15 minutes video of APIDIS dataset. For
comparison, we also present the results for the case in which K1 and K2 are
progressively relaxed.

From Table 3.5, we can observe that both K1 and K2 affect the performance.
As expected, low (respectively, high) values of K1 and K2 result in less (re-
spectively, more) false positives and switching errors but more (respectively,
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less) misses and re-initializations, allowing us to trade-off the errors. We pro-
pose two alternatives to choose these parameters depending on the problem
at hand. First, if the objective is to have conservative tracking in which the
resulting tracklets are reliable, it is suggested to choose low values of K1 and
K2. This option is suitable if one envisions to process these trackets in the next
step so as to stitch them into long trajectories. Second, we propose to start
with small values of K1 and K2 and then progressively relax as the iteration
proceeds. This option is suitable when long (and probably erroneous) trajec-
tories are preferred.

3.6.6 Qualitative results

Some sample frames with tracking results5 for PETS dataset are presented in
Figure 3.13. In each frame, a target has been assigned a track number.

Frame 200 Frame 300 Frame 400

Frame 500 Frame 600 Frame 700

Figure 3.13: Sample frames on the PETS dataset for IHT. For visual clarity, a
tail of 50 frames is also shown. Best viewed in color.

Figure 3.14 presents the sample frames for APIDIS dataset. Results are
shown on virtual camera view, which is obtained by stitching camera views 1
and 6.

We observe following failure cases:

• Duplicate detections: Because of the imperfection of the detector, a tar-
get might be detected multiple times. Such duplicate detections can be
observed when there is a clutter. Unlike typical false positive detections,
they are coherent and, hence, persist longer in time. In such situation,

5A demo video is available at http://sites.uclouvain.be/ispgroup/index.php/

Research/MultiObjectTracking.

http://sites.uclouvain.be/ispgroup/index.php/Research/MultiObjectTracking
http://sites.uclouvain.be/ispgroup/index.php/Research/MultiObjectTracking
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Frame 1

Frame 400

Frame 800

Frame 1200

Figure 3.14: Sample results on a virtual camera of the APIDIS dataset. For
visual purpose, a track segment from past 75 frames has also been drawn. Best
viewed in color.

a new track is assigned to them. A typical example is shown in Fig-
ure 3.15. The problem of duplicate detections can be mitigated by intro-
ducing backward edges in the graph. However, it no longer makes the
graph DAG.

• Track reinitialization and switch: When the targets are in clutter, the
appearance features become noisy. Moreover, there are often some mis-
detections as well as false detections. In such situations, the tracks are
sometimes not well resolved, thereby, resulting in the reinitialization
and sometimes switching of the track identities. An example is shown
in Figure 3.16.
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Frame 221 Frame 222

Figure 3.15: Duplicate detections. Tracks 2 and 3 approach close in frame
221. Notice that 2 is assigned to the yellow player. In frame 222, a new track
13 appears for the same yellow player. Best viewed in color.

Frame 510 Frame 514

Frame 523 Frame 533

Figure 3.16: Identity switch and re-initialization errors. Tracks 16 and 4 come
close to each other in frame 510. Note that track numbers 16 and 4 are assigned
to the yellow and the blue players respectively. In frame 514, track 4 vanishes
(miss). Track number 20 is assigned for the yellow player in frame 523 (reini-
tialization). Moreover, track 16 (which was assigned to the yellow player) is
now assigned to the blue player (switch). Finally, tracks 16 and 20 continue in
frame 533. Best viewed in color.

3.7 Conclusion and future perspectives

This chapter proposed a novel framework for matching of detections while
exploiting unreliable and/or sporadic appearance features. It proceeds with
hypothesis testing in an iterative framework which considers the input data
at different time scales. The iterative principle helps in aggregating the ap-
pearance observations on tracklets by computing unambiguous local paths,
thereby creating nodes with more reliable appearance cues. It also reduces the
size of the graphs, and thus the complexity, handled by successive iterations
of the algorithm. The multi-scale aspect allows matching decisions to be taken
at different time horizons and is elegantly embedded in the framework.

Future work will focus on the generalized inference of tracklet appearance
and also on investigating different scheduling mechanisms for selecting key-
node.



From Tracking to

Recognition 4
In previous chapter, we have noticed that sporadically available features can
be exploited to track multiple targets in videos. It should be noted that the
‘conservativeness’ of the iterative hypothesis testing (IHT) might prevent the
association of tracklets into a long trajectory for each target.

In this chapter, we describe how we can build on such conservative but
reliable tracklets to estimate their identities, thereby grouping them into con-
sistent trajectories. Doing so, we solve both recognition as well as track-
completion problems. For this purpose, we exploit the tracklet appearances
to drive the belief propagation in a graph. In short, we first estimate the initial
identity distribution to each tracklet from the accumulated appearance fea-
tures. Since these appearance features can be noisy and/or sporadic, some
tracklets will have more ambiguous identity distribution than others. After-
wards, we exchange messages between the tracklets to infer the identity of
the more ambiguous tracklets from the less ambiguous ones. We demonstrate
how prioritizing the propagation of messages between the tracklets based on
their reliability helps in achieving better results.

4.1 Introduction

In this chapter, we see multi-target tracking and identification as a two-stage
process. In the first stage, the plausible target candidates are first detected
independently in each frame, e.g., based on [18]. Each detection is character-
ized by a set of features and their corresponding confidence values. Typically,
the confidence assigned to a feature depends on various factors, e.g., whether
the detection is occluded and/or visible on the camera view or not, whether
the detection is close to the camera view or not, etc. Afterwards, the detec-

59
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tions are aggregated into tracklets, which are defined to group consecutive
detections that obviously correspond to the same physical object. The practi-
cal implementation of this aggregation process is a research topic by itself. We
built on the solution described in [23] for this step, but any other alternative
could be envisioned [26, 69]. The benefits obtained from such aggregation
process are twofold. First, it reduces the number of entities that have to be
processed in the second stage. Second, it provides more reliable and more
accurate knowledge about the target appearance, since a target is observed
several times along its tracklet.

In the second stage, which embeds the main contributions of this chapter, a
graph-based belief propagation formalism is considered to estimate the iden-
tity of each tracklet. Each node in the graph corresponds to a tracklet, and is
assigned a probability distribution of identities, based on the confidence as-
signed to the observed tracklet appearance. Typically, a low confidence in the
tracklet appearance measurement, or a measurement that is similar to several
targets, both result into a flat and thus ambiguous identity distribution for
the tracklet. An edge between two tracklets represents that their identities are
dependent, meaning that the knowledge of the identity of one tracklet brings
some information about the identity of the other. This usually happens in
two cases: (a) when the tracklets co-exist at the same time, and (b) when the
tracklets are sufficiently close in space, time and/or appearance. The belief
propagation module exploits the graph structure and the similarity between
the nodes to compute the posterior probability distribution of identities at the
nodes. We view this as an inference problem, looking for the most likely iden-
tity of a tracklet, given the identities of the other tracklets. As a main contri-
bution, this chapter introduces an original scheduling mechanism to order the
propagation of identity beliefs along the graph. In short, the intuition behind
our approach consists in propagating the less ambiguous identity information
before more ambiguous identity cues.

The ability to drive the belief propagation, based on the level of ambigu-
ity associated to the identity of each node, differentiates our work from most
earlier works dealing with identity assignment. Two examples of related ear-
lier works are [72] and [63]. In [72], the authors assume that a track-graph,
denoting when targets are isolated and describing when they interact, exists.
Assuming that the feature vectors of isolated tracks are reliable, they define a
measure of similarity between them. Later, they formulate the identity linking
as a Bayesian inference problem in order to find the most probable set of paths.
For this, they use standard message passing technique. In [63], the authors use
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a conditional random field to identify players in broadcast sport videos. For
this, they use a set of features, like SIFT interest points, MSER regions, color
histograms, etc. in order to propagate easy-to-classify images of a player to
other images.

We differentiate our work from the above works in the sense that the au-
thors in both papers assume that the feature descriptors have the same relia-
bility throughout the time. Therefore, those earlier works do not account for
the ambiguity of the identity assignment during message passing.

The remainder of the chapter is organized as follows. Section 4.2 first
reviews the work of [23], to explain how the detections are aggregated into
tracklets, and how each tracklet gets an identity distribution based on its ap-
pearance. Section 4.3 provides a brief introduction to the standard belief prop-
agation, and then describes the proposed priority-based belief propagation.
Finally, an experimental validation is provided and discussed in Section 4.4.

4.2 Tracklet definition and prior identity distribution

In this section, we introduce how the inputs to our identity assignment prob-
lem are computed. Assuming that the candidate targets are independently
detected at each time instant, we briefly explain how they are aggregated into
short tracks of detections that quite likely correspond to the same physical ob-
ject (called tracklets). We then define how the prior identity probability distri-
bution of each tracklet is estimated, based on the accumulation of appearance
cues observed along the tracklet.

4.2.1 Tracklet definition

Given a set of candidate detections, the tracking is generally formulated as a
data-association problem in a graph [69, 67, 23]. As introduced earlier, the de-
tections have a set of appearance features and their corresponding confidence
values. The confidence value of a feature reflects the reliability of its measure-
ment. To link such detections, we follow an iterative aggregation strategy,
as in [23]. Starting with a graph in which each detection is a node, the strat-
egy progressively aggregates the nodes of the graph into bigger nodes, named
tracklets. Each node corresponds to a tracklet. Specifically, each iteration con-
siders a node, named key-node, and investigates how to link it with either
previous or subsequent nodes, assuming that the appearance of the key-node
is the appearance of the target. This hypothesis testing procedure computes a
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list of shortest-paths to/from the key-node. Only the path that is significantly
better than the other alternative paths defines a tracklet. The main advan-
tage of such a strategy is that it can benefit from the appearance features that
are sporadically available, or affected by a non-stationary noise, along the se-
quence of detections.

The outcome of the aggregation process is a set of tracklets. Formally, each
tracklet v is characterized by the following features:

• The positions of the starting and ending, denoted as x(s)v and x(e)v respec-
tively,

• The starting and ending time of the tracklet, denoted as t(s)v and t(e)v re-
spectively,

• The average appearance features of the object detected along the track-
let, and their corresponding confidence values. These features give an
initial estimate of its identity distribution, as discussed in the next sec-
tion.

4.2.2 Assigning identity distribution based on appearance fea-

tures

In the previous section, we have presented how the tracklets are defined. This
section explains how to assign an identity distribution to each of them.

We assume that there are M targets, each of them being characterized by N
appearance features, which are assumed to be known a priori. Nevertheless,
the appearance features can be learned automatically too [87].

Let the i-th feature of the j-th target be denoted by f (j)
i , 1 ≤ j ≤ M. Then,

the feature set for the j-th target is F (j) = { f (j)
1 , ..., f (j)

N }. For example, in a
basketball match, color and digit on the jersey of the player can be considered
as features. In this case, N = 2 and F = {color, digit}.

The appearance of a tracklet is defined by averaging the appearance fea-
tures, measured in each detection of the tracklet. Let the average appearance

features for a tracklet v be denoted by F (v)
= { f

(v)
1 , ..., f

(v)
N }. This allows us to

define the probability of the tracklet v having identity j, denoted by pv(j), as

pv(j) ∝
N

∏
i=1

exp

−‖ f (j)
i − f

(v)
i ‖1

τ
(v)
i

 for 1 ≤ j ≤ M (4.1)

where τ
(v)
i weights the influence of the i-th feature on identity assignment,

and is related to the confidence assigned to the ith feature of the tracklet v. It
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decreases when the appearance feature becomes more accurate and reliable.
When τ

(v)
i is very large or when the appearance of a tracklet is far from all tar-

get appearances, the probability distribution, in Equation 4.1, tends to uniform
distribution, i.e., the identity assignment becomes ambiguous as all identities
are equally likely. Conversely, when the tracklet appearance is closer to a tar-
get appearance, the probability distribution becomes peaky around that iden-
tity, implying that the identity assignment is less ambiguous. Consequently,
depending on the observed appearance features and their confidence values,
some tracklets have less ambiguous identity distributions than others.

4.3 Belief propagation

In this section, belief propagation is considered to exchange identity informa-
tion between the tracklets. The purpose is to compute posterior identity prob-
abilities by merging the prior identity distributions and exploiting the graph
structure. We first survey the principles of belief propagation. We then present
how the belief propagation graph is constructed in our application scenario.
Eventually, we introduce the main contribution of our paper, which lies in an
original priority-based scheduling mechanism to select the nodes from which
the identity information is propagated.

4.3.1 Standard belief propagation

In this section, we briefly recall the framework for the belief propagation tech-
nique. An undirected graph G = (V , E) is given, where V is the set of nodes
in the graph and E represents the association between the nodes. The neigh-
borhood of node v ∈ V is denoted by Nv.

We assume that each node v ∈ V and each edge (u, v) ∈ E are associated
with potential functions φv and φuv respectively. The purpose of belief propa-
gation is to find a labeling function l that labels each node v ∈ V with a label
lv ∈ L, |L| = M being the total number of labels, so as to maximize the joint
likelihood function:

p(l) ∝ ∏
v∈V

[
φv(lv) ∏

u∈Nv

φuv(lu, lv)
]

(4.2)

Generally, it is done iteratively by exchanging “messages” between the nodes.
Let m(t)

u→v be the message that the node u sends to a neighboring node v at iter-
ation t. Intuitively, m(t)

u→v(lv) is the belief that node u thinks about the label lv
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of node v at any iteration t. Each message is initialized uniformly. Afterwards,
new messages are updated (in sum-product form) at each iteration as:

m(t)
u→v(lv) ∝ ∑

lu∈L

[
φuv(lu, lv) φu(lu) ∏

s∈Nu\v
m(t−1)

s→u (lu)︸ ︷︷ ︸
:=hu(lu)

]
, (4.3)

where hu(lu) is referred to as the pre-message of u. After T iterations, a belief
vector bv is computed for each node as:

b(T)
v (lv) ∝ φv(lv) ∏

s∈Nv

m(T)
s→v(lv) (4.4)

4.3.2 Graph of identity beliefs and definition of potential terms

In this section, we will first explain the graph formalism for the belief propa-
gation. Later, we will explain how the potential terms are constructed in our
application scenario.

As discussed in Section 4.2, the output of aggregation step is a set of track-
lets. Each tracklet has its starting and ending time-stamps and positions.
Moreover, each tracklet is assigned an initial identity distribution, based on
the observed appearance features. These tracklets are gathered into a graph,
G = (V , E), where V is a set of nodes, with each node corresponding to a track-
let; E is a set of edges, defining the connectivity between the nodes in V . An
edge between nodes u and v implies that their identities are dependent. Thus,
knowing the identity of one brings some information about the other. Specif-
ically, the support of the tracklets can be used to enforce the constraint that
two tracklets, which co-exist at the same time, should belong to two different
physical targets. This defines a mutex edge between them. Additionally, the
knowledge of the extremities of the tracklets (and their appearances) enables
us to estimate the proximity between them such that if the tracklets are suffi-
ciently close, they are likely to share the same identity. In contrast, if they are
significantly far apart, they are encouraged to have different identities. This
defines a temporal edge between them. An example is elucidated in Figure 4.1.

Now, we explain how we associate the potential terms to each node and
edge. The unary potential term φv(lv) is defined to be the likelihood of the
node v ∈ V having a label lv. As the prior identity distribution pv(lv), com-
puted by Equation 4.1, represents how likely the label lv is, we use it as the
estimate of the unary potential. That is, φv(lv) = pv(lv), lv ∈ L.

The pairwise potential term φuv is defined to reflect that the identities of
u and v are dependent. Typically, in our practical scenario, it is defined such
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Time

Position

Figure 4.1: Graph structure. Each node has an identity distribution: white
- a peaky distribution, black - a flat distribution, and gray - an intermediate
distribution. Solid lines represent temporal edges whereas mutex edges are
shown in dashed lines.

that, when u and v are likely to correspond to the same physical target (e.g.,
because they are close in appearance or in space and time), φuv(lu, lv) tends
to zero for lu 6= lv, and to 1 for lu = lv. In contrast, when they are likely to
correspond to different physical targets (e.g., because they co-exist in time),
φuv(lu, lv) should be defined so that φuv(lu, lv) tends to zero for lu = lv, and to
1 for lu 6= lv.

Following those general principles, we define the potentials over the mu-
tex and temporal edges in our graph structure as follows. In case of mutex
edges, u and v should have different labels. Therefore,

φuv(lu, lv) =

{
ε if lu = lv
1− ε otherwise,

(4.5)

where ε is a small positive number. Setting ε = 0 enforces that the identities
of the nodes are unique at a given time. However, it is possible that two nodes
share the same identity. This, for example, happens when a tracklet incorrectly
aggregates (see Section 4.2) detections that correspond to different physical
targets, resulting in a mixed identity distribution. In such cases, imposing
ε = 0 might lower the performance of the system. In our settings, we use
ε = 0.1.

In case of temporal edges, we express φuv in terms of the distance duv be-
tween them. When the distance between the nodes is small, they should be
encouraged to share the same label and vice versa. We define

φuv(lu, lv) =

{
exp(−duv/τdist) if lu = lv
1− exp(−duv/τdist) otherwise,

(4.6)
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where τdist is a constant. Now, we turn our attention towards the definition
of the distance between the nodes. Two cases are distinguished. On the one
hand, if both u and v have reliable identity estimate, then the computation
of the Bhattacharyya distance between the belief vectors bu and bv is used to
define the distance between the nodes. We denote the entropy of belief vector
of a node u by E(u). Then, if E(u) < τTH and E(v) < τTH then,

duv =

[
1−

|L|

∑
i=1

√
bu(i)bv(i)

]1/2

(4.7)

We set τTH = 0.5 and τdist = 0.3. The choice of τTH is not critical, as long as it
is chosen small enough, as illustrated by the the results.

On the other hand, if one of the nodes does not have reliable identity esti-
mate, then the computation of the Bhattacharyya distance between the belief
vectors is irrelevant. In such cases, when the nodes are close in time (i.e.,
|t(s)v − t(e)u | < τmax), the position information is used to measure their distance
duv. If they are far in space, they should have different identities, and con-
versely if they are close in space, they should be encouraged to share the same
identity. We set τmax = 120 which allows to investigate nodes that are upto 6
seconds (at the frame rate of 20 fps) far apart, and the distance is computed as:

duv =
∥∥∥x(s)v − x(e)u

∥∥∥
2

(4.8)

We use τdist = 450.
In contrast, when the nodes are far in time, even the position cannot guide

the definition of the distance. In this case, no message is exchanged between
the nodes as it does not help to disambiguate the possible labels of the nodes.

4.3.3 Priority scheduling of belief message exchanges

The standard belief propagation (BP) technique, described in Section 4.3.1,
does not prioritize nodes, which means that the nodes are selected in an ar-
bitrary order to send messages to their neighbors. Moreover, all the nodes
transmit messages to their neighbors.

However, in our graph, some nodes are less ambiguous about their iden-
tities than others. Such non-uniform distribution of ambiguity over the nodes
should allow faster convergence of the BP because the messages sent by less
ambiguous nodes are more informative. Consequently, they can help the more
ambiguous neighbors to disambiguate their labels. Therefore, it sounds natu-
ral to prioritize the nodes such that less ambiguous nodes transmit their mes-
sages first. Interestingly, the authors in [88] have followed the same intuition
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to solve an image completion problem. We have adapted the principle of be-
lief propagation prioritization to our identity assignment context.

As already mentioned, priority is related to the ambiguity of the node
identity. The definition of ambiguity (and hence the priority) of a node v
depends on the peakedness of the current belief vector bv that has been es-
timated by the BP algorithm. We use entropy of the belief vector, defined as
H(v) := −∑

|L|
i=1 bv(i) log(bv(i)), to measure the ambiguity of node v. The en-

tropy is maximum when the belief vector has a flat distribution and decreases
with the peakedness of the distribution. Therefore, the node v is assigned a
higher priority if it has lower entropy and vice versa. We have tested other
approaches for the priority (e.g., cardinality of the confusion set [88], kurtosis,
etc.). However, the results are not significantly better than the ones obtained
with the entropy measure.

Apart from priority-based scheduling, to avoid propagating confusing in-
formation, the construction of exchanged messages is also affected by the am-
biguity of the information available in each node. Specifically, during the con-
struction of message mu→q, the node u is supposed to gather messages from
all its neighbors, except q, to construct hu. However, since there can be some
nodes in the neighborhood of u which are more ambiguous than u, the mes-
sages coming from those nodes could be considered as being uninformative,
or even confusing, since they are nearly flat, meaning that all labels are equally
likely. Thus, we only consider those nodes that are less ambiguous than u to
compute hu. The practical implementation of this principle works as follows.
Each node is assigned a committed flag, initialized to false in the beginning of
each iteration of the message exchange process. Once a node is scheduled to
exchange messages with its neighbors, its flag is set to true. In this way, the
less ambiguous neighbors of u have their committed flags set to true as they
have been scheduled before u. Similarly, the more ambiguous nodes will have
their committed flags set to false. Following the same kind of idea, the mes-
sage mu→q is constructed and sent only if q is more ambiguous than u, i.e., if
the committed flag of q is false. This is illustrated in Figure 4.2.

The algorithm for the priority based belief propagation is presented in Al-
gorithm 3.

After T iterations, we assign the label lv to a node v, as

lv =

{
l∗x if b(T)v (l∗x) > κb(T)v (l∗y ),
undefined otherwise.

(4.9)

where l∗x = arg maxlx∈L b(T)v (lx) and l∗y = arg maxly∈L\l∗x b(T)v (ly). We use κ =



68 Chapter 4. From Tracking to Recognition

s

u

q

ms→u

mu→q

S Q

Figure 4.2: Message construction and dissemination at node u (in blue). The
node u gathers information from its less ambiguous neighbors, S (in white).
Afterwards, u transmits message to its more ambiguous neighbors, Q (in
gray).

4.

4.4 Evaluation

We apply the proposed method on the output of the detector and tracklet ag-
gregation process, as described in [23]. We run the algorithm on 10 minutes
of APIDIS dataset [6]. The distribution of the cameras is not symmetrical,
meaning that there are more cameras on one side than the other. Hence, the
observation of appearance features is more reliable on one side of the court
than on the other side. The identity and the position of the players have been
manually defined at every second. This provides the reference ground truth
used in our evaluation.

In the rest of the section, the results for different configurations of the
graph and different belief propagation algorithms are presented.

4.4.1 Quantitative results

In order to elucidate the effect of message passing in the performance of the
system, we explored the following variations of the identity assignment al-
gorithm: (a) No BP (no message passing is done, equivalent to treating each
node independently); (b) Standard BP (nodes are chosen either sequentially
or in an arbitrary order); and (c) Priority BP (nodes are prioritized in increas-
ing order of ambiguities). Table 4.1 presents the metrics for the above message
passing techniques.

From the Table 4.1, we can observe that the message passing between the
nodes indeed boosts the accuracy of the system from 68.14% to 89.04% at the
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Algorithm 3 Priority Belief Propagation
Initialize: bv(lv)← pv(lv) and φv(lv)← pv(lv) ∀v ∈ V , lv ∈ L
for t = 1 to T do

v.committed← false ∀v ∈ V
R ← V
whileR 6= ∅ do

u←Schedule(R) # Prioritize node u according to its level of ambiguity
u.committed← true
S ← {s|s ∈ Nu, s.committed=true} # Less ambiguous neighbors of u
hu ← Compute the pre-message of u from S
Q ← {v|v ∈ Nu, v.committed=false} # More ambiguous neighbors of u
for all v ∈ Q do

m(t)
u→v ← ComputeMessage(u, v, hu, τmax)

bv ← Compute belief for node v
end for
R ← R \ u

end while
end for
Assign identity to each node v ∈ V according to the Equation 4.9.

cost of a slight increase in the mismatch1 error from 1.48% to 2.54%. Interest-
ingly, we can observe that the results are better for random access of the nodes
as compared to the sequential access. More importantly, the scheduling of the
nodes improves the performance drastically as compared to the arbitrary ac-
cess of the nodes.

In Figure 4.3, we can observe how the average entropy of the system evolves
at each iteration. We can see that the priority BP not only attains the lowest
entropy but also converges rapidly. It shows that the order in which the nodes
transmit message indeed affects the convergence of the system, thereby, af-
fecting the quality of the solution.

In addition, we explored how the graphical model affects the performance
of the priority BP. For this purpose, we have run priority BP on other three
different variations of the full graph. They are defined as: (a) No edges (nodes
are not connected by edges, and are hence independent); (b) Mutex edges
only (with only the mutex edges between the nodes); (c) Temporal edges only
(with only the temporal edges between the nodes).

1We used the term wrong identification in [24].
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Accuracy(%) FP(%) MM(%) MS(%)
No BP 68.14 0.13 1.48 30.25
Std. BP (sequential) 73.59 0.15 1.76 24.50
Std. BP (random) 83.69 0.16 2.36 13.79

Priority BP 89.04 0.15 2.54 8.27

Table 4.1: Comparison of performance metrics for different node scheduling
approaches.
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Figure 4.3: Evolution of average entropy for different node scheduling
mechanisms. Best viewed in color.

The performances of all models are shown in Table 4.2. We can draw two
main conclusions. First, adding edges to the baseline system allows exploiting
the correlation between the nodes. Second, both the temporal edges and the
mutex edges help in improving the performances.

Performance metrics for all configurations of the graph

Table 4.3 presents the results of all three message passing techniques, de-
scribed above. We can see that the yellow team is recognized better than the
blue team. This might be accredited to asymmetry of the position of the cam-
eras around the court.
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Accuracy(%) FP(%) MM(%) MS(%)
No edges 68.14 0.13 1.48 30.25
Mutex edges 80.32 0.15 2.03 17.50
Temporal edges 84.49 0.15 2.71 12.65

Both edges 89.04 0.15 2.54 8.27

Table 4.2: Performance metrics for priority-based BP on four graphical mod-
els.

Team Metrics No BP Std. BP
Priority BP

Mutex Temporal Both

Blue

Accuracy(%) 48.74 55.54 70.11 77.45 86.37
FP(%) 0.24 0.24 0.24 0.24 0.24

MM(%) 0.71 1.04 1.82 2.26 2.42
MS(%) 50.31 43.18 27.83 20.05 10.91

Yellow

Accuracy(%) 87.54 91.64 90.53 91.54 91.71
FP(%) 0.03 0.07 0.07 0.07 0.07

MM(%) 2.25 2.48 2.25 3.16 2.65
MS(%) 10.18 5.81 7.15 5.23 5.58

Avg.

Accuracy(%) 68.14 73.59 80.32 84.49 89.04
FP(%) 0.13 0.15 0.15 0.15 0.15
MM%) 1.48 1.76 2.03 2.71 2.54
MS(%) 30.25 24.50 17.50 12.65 8.27

Table 4.3: Performance metrics for all configurations.

Performance with respect to the entropy threshold

This threshold is used in the definition of the pairwise potential to determine
whether the current identity estimate is reliable or not. If the identities of two
nodes are reliable, then the potential function is defined by the Bhattacharyya
distance between their beliefs. Otherwise, the position feature is used for the
definition.

When this threshold is small, the potential function between the nodes is
governed by the identity estimate only when the nodes have small entropy.
That is, these nodes are already unambiguous, and the exchange of message
between them does not bring extra information. This can be observed from
the Table 4.4, in which the metrics do not significantly differ for τTH ≤ 0.3.
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Conversely, when the threshold is high, many temporal edges will be driven
by the Bhattacharyya distance, and even if the spatio-temporal information is
discriminant, ignored and replaced by the ambiguous identity information.
Consequently, the system will not be able to exploit the position features.
More importantly, unreliable messages (and possibly wrong messages) might
be exchanged between the nodes, which, in turn, might degrade the perfor-
mance. This can be seen from the Table 4.4 in which the metrics get worse for
τTH > 0.5.

0.05 0.1 0.3 0.5 0.6 0.8
Accuracy(%) 87.79 87.79 87.79 89.04 87.08 84.07
FP(%) 0.15 0.15 0.15 0.15 0.15 0.27
MM(%) 2.54 2.54 2.54 2.54 2.54 2.57
MS(%) 9.52 9.52 9.52 8.27 10.23 13.09

Table 4.4: Performance with respect to the threshold on entropy τTH.

Impact of the node ambiguity level estimation method

The results presented so far are obtained by scheduling the nodes according
to their entropies. Our objective is to prioritize the nodes that have a peaked
distribution over the ones with flat distribution. Thus, we can define various
metrics that estimate the measure of peakedness of the identity distribution.
Apart from the entropy, we have tested two methods to estimate the level of
ambiguity of the nodes. They are the cardinality of the confusion set and the
kurtosis of the belief vector.

Confusion set

The notion of confusion set has been introduced in [88]. Given the belief vector
bv, one way to count the confidence of this node is simply to count the num-
ber of likely labels, e.g., those whose belief value exceed a certain threshold
τb. More number of labels imply that the node identity is more ambiguous.
Labels with high probability exist for that node and hence it is more ambigu-
ous. Of course, the relative beliefs b(rel)

v (lv) = bv(lv)− b(min)
v (where, b(min)

v =

minlv bv(lv)) matter in this case. Thus, the set CS(v) = {lv ∈ L | b(rel)
v (lv) ≥ τb}

corresponds to the confusion set of v, and its cardinality |CS(v)| is an estimate
of the ambiguity of v.
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The performance of the system with various values of the τb is presented
in Table 4.5.

0.01 0.03 0.1 0.3
Accuracy(%) 90.16 89.05 86.23 69.84

FP(%) 0.15 0.15 0.15 0.13
MM(%) 2.52 2.45 2.24 1.85
MS(%) 7.17 8.35 11.38 28.18

Table 4.5: Performance metrics with respect to τb.

From the table, it can be deduced that the larger value of τb implies that
the cardinality of the confusion set will be low and thus many nodes will have
similar priorities, which, in turn, deteriorate the performance of the system.

Kurtosis of the belief vector

Another method to estimate the peakedness of the belief vector is to com-
pute its kurtosis. The kurtosis is the fourth central moment, divided by fourth
power of the standard deviation of a distribution. It is a descriptor of the shape
of the distribution and higher kurtosis values correspond to peaky distribu-
tions. Thus, we use the kurtosis as the estimate of the level of ambiguity of the
identity distribution and schedule the nodes in decreasing order of kurtosis.
The results of kurtosis for assigning priority to nodes are as follows:

Accuracy=89.09% FP=0.15% MM=2.54% MS=8.22%.

4.4.2 Qualitative results

In this section, we provide some qualitative results.

Performance metrics

Figure 4.4 depicts the performance metrics for the targets across time. Even
though there are 21 targets in the ground truth, there are 2 referees and 4
spectators (which correspond to ID 1, 10, 12, 14, 15 and 16) for which there
is no appearance features. Therefore, the identities for these targets have not
been computed.
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Figure 4.4: Performance metrics for priority belief propagation across time
for each target. Each line corresponds to a single player track. Left: Baseline
system where no belief propagation is performed (accuracy = 68.14%). Mid-
dle: nodes are scheduled in the order they are stored in memory and hence
no priority (standard BP) (accuracy = 73.59%). Right: Nodes are prioritized
according to their level of ambiguity (priority BP) (accuracy = 89.04%).

Sample frames

Some sample frames2 are shown in Figure 4.5.

4.5 Conclusion

In this chapter, we presented an approach to solve identity (or, label) assign-
ment problem in a scenario for which target candidates have been detected
and observed independently with various degree of reliability in the belief
propagation framework. Messages are transmitted between the detections to
infer the identity of ambiguous observations, based on the reliable identities
available from non-ambiguous appearance features. We show that the order
in which messages are exchanged between the nodes affects the quality of the
solution. We have proposed a priority-based node scheduling mechanisms
to favour the transmission of information from less ambiguous to more am-
biguous nodes. The above approach has been applied on a real-life basketball
game to recognize the players. The correct recognition rate of 89% demon-
strates the effectiveness and efficiency of the proposed approach.

2A demo video is available at http://sites.uclouvain.be/ispgroup/index.php/

Research/MultiObjectTracking.

http://sites.uclouvain.be/ispgroup/index.php/Research/MultiObjectTracking
http://sites.uclouvain.be/ispgroup/index.php/Research/MultiObjectTracking
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Frame 450

Frame 850

Frame 1250

Frame 1450

Frame 250

Figure 4.5: Sample frames for priority belief propagation. At each frame,
estimated IDs of the players are shown, along with a 50-frame long track.
Green- correct recognitions; Red-wrong identifications; Blue-misses. As we
can see, referees do not have distinct appearance features and thus their iden-
tities are almost uniformly distributed among the blue players. Best viewed in
color.
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5
5.1 Introduction

In this chapter, we present an alternate formulation of the multi-object track-
ing problem, for which an efficient solution can be computed and that does not
require prior knowledge of the possible appearances. We adopt a graph-based
label propagation framework. We construct a number of distinct graphs, one
for each appearance feature, apart from the usual spatio-temporal graph. Ad-
ditionally, we also construct an exclusion graph in order to reflect the fact
that two detections that occur at the same time should be assigned to dis-
tinct labels. Hence, we construct N + 2 ‘complementary’ graphs (one spatio-
temporal, N appearance, one exclusion), where N is the number of appear-
ance features. An example is shown in Figure 5.1. In case of a sport game, for
example, the jersey color and the digit, printed on it, can be considered as two
appearance features, and result in two distinct appearance graphs.

During graph construction, a node is assigned to each detection. For all the
graphs except the exclusion one, edges connect pairs of nodes with a weight
that increases with the similarity between the nodes in terms of space, time or
appearance. The higher the weight, the more likely the two nodes correspond
to the same physical target. Exceptionally, the edges of the exclusion graph
only connect nodes that cannot belong to the same physical target. This is
justified/relevant, for example, when the detections occur at the same time.

Given these graphs, the tracking problem is formulated as finding a con-
sistent label assignment, which means that (i) the nodes that are sufficiently

77
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(a) Detections (b) Spatio-temporal graph (c) Appearance graph (d) Exclusion graph

Figure 5.1: Graph construction. (a) An example with two targets (red and
blue) with associated detections at each time. Gray detections mean that no
appearance feature is available. (b) Spatio-temporal graph that depicts the
spatio-temporal association between the nodes, (c) Appearance graph that
connects nodes even if they are far in time. (d) Exclusion graph in which edges
connect nodes that coexist at the same time. In graphs (b) and (c), thickness of
an edge is proportional to its weight. Best viewed in color.

close in space and time are labeled similarly, (ii) the nodes that are close (re-
spectively, far) in appearance are labeled similarly (respectively, differently),
and (iii) the nodes that co-exist at the same time are labeled differently. The
consistency of labeling is measured by the labeling energy, which accumulates
the difference in the labels between a node and other nodes that are connected
to it. Due to the definition of weights in our graphs, a good labeling should
minimize the energy in the spatio-temporal and the appearance graphs while
maximizing the energy due to the exclusion graph. This chapter includes the
following contributions:

• Formulation of the multi-object tracking with sporadic appearance fea-
tures as a labeling problem in a number of complementary graphs (Sec-
tion 5.2).

• An efficient solution to the labeling problem, splitting the ‘big’ problem
into ‘small’ node-wise problems that can be solved locally, optionally
based on a parallel implementation (Section 5.3).

• An extension of the local label propagation process to handle incremen-
tal tracking scenarios (Section 5.4).

The rest of the chapter is organized as follows: the formulation of the track-
ing problem is presented in Section 5.2. The proposed solution is detailed in
Section 5.3. Afterwards, we move to the incremental graph construction and
label propagation formalism in Section 5.4. A brief review of the related work
is presented in Section 5.5. Experimental results are presented in Section 5.6.
Section 5.7 concludes the chapter.
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5.2 Tracking problem formulation

This section first describes the construction of the associated graphs. After-
wards, the multi-object tracking is formulated as a graph-consistent labeling
problem.

5.2.1 Graph construction

We consider three distinct types of graphs. Hence, each graph should be con-
structed separately. Nevertheless, the constructions of spatio-temporal and
appearance graphs follow the same approach, derived from the locally linear
embedding (LLE) technique [89]. It assumes that data points can be accurately
reconstructed by a weighted linear combination of their local neighbors. We
motivate the linearity assumption by the fact that (i) target motion is linear in
a small temporal window, and (ii) appearance features lie on a manifold. The
number of neighbors is a design parameter, and should be chosen according
to the kind of feature and the problem at hand.

In the following, we represent the feature of the i-th detection by f i and we
concatenate the feature of its neighbors into F(i) as F(i) := ( f 1, f 2, · · · , f |Ni |),
where Ni is the set of neighbors of i. Afterwards, the graph construction can
be formulated as the problem of finding the vector of reconstruction weights
w?

i that minimizes the following optimization problem

w?
i = argmin

wi∈∆|Ni |

‖ f i − F(i)wi‖2
2 +

λ
2 ‖wi‖2

2, (5.1)

where ∆m := {w ∈ Rm | w � 0, 1>w = 1} is the probability simplex of size
m. The reason to constrain the weights to belong to the simplex, i.e., to choose
the weights to be non-negative and to sum to unity, is that it promotes weight
vector sparsity, leading to an efficient optimization in Section 5.3. This can
be shown by taking the Lagrange multipliers of the positive simplex which
amounts to promote a small `1-norm of the weights in addition to the cost
minimization used in Equation 5.1. Promoting too much sparsity is however
not desired. If a sample is similar to several other samples (e.g., a feature oc-
curs several times along the sequence of detections), the sparse reconstruction
selects only one neighbour and ignores the rest. In order to mitigate this limi-
tation, we add a quadratic part λ

2 ‖wi‖2
2, which offers an additional advantage

of making the problem strongly convex, resulting in a unique w?
i . This can be

seen as similar to an elastic net regularization [90] in the sense that the spar-
sity term is imposed by the constraints. We use λ = 10−2‖ f i‖2. By taking the
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parameter λ proportional to ‖ f i‖2, the optimization becomes independent of
a scaling of f i.

Once the weights for each data point are computed, we gather them into a
graph G = (V , E , W), where

– V is the set of nodes, with i-th node corresponding to the i-th detection.
We denote the number of nodes by n = |V|.

– E defines the connectivity between the samples such that an edge (i, j)
is created between nodes i and j only when the weight w?

i (j), resulting
from Equation 5.1, is non-zero, i.e., E = {(i, j) | w?

i (j) > 0}.

– W assigns a weight to each edge such that

wij =

w?
i (j) if (i, j) ∈ E ,

0 otherwise.
(5.2)

Now, we explain the specific issues in the construction of each graph.
Spatio-temporal graph. In case of the spatio-temporal graph, f i is defined

by the time instant ti and the location information xi (e.g., bounding box of
the detections). Hence, f i = (γti, xi)

>, where γ affects the relative impor-
tance of the time difference compared to the location difference between the
data points. A non-zero γ ensures that the prediction of the position of a de-
tection from its neighbors is consistent with both location and time-stamps of
the neighbors, assuming that the targets move at constant velocity in a small
temporal neighborhood. We use γ = 3 pixels/frame. The neighbors Ni are
defined to be the samples whose time indices fall within a small temporal
window of size T except ti and which do not violate the spatio-temporal con-
straints imposed by the exclusion graph (see below). T should be large enough
to bridge local missed detections, but also small enough so that linear motion
assumption holds.. We use T = 10 frames. Since the window includes the
samples from both the past and the future, a linear motion model is implicitly
embedded in our method.

Appearance graph. In case of the appearance graph, f i corresponds to an
appearance feature (e.g. color histograms, etc.). Since we are considering the
fact that a feature might occur only sporadically,Ni is defined to constitute all
the samples except the samples that co-occur with the i-th sample and that do
not have appearance features.

Exclusion graph. This graph captures the constraints associated to the fact
that some detections cannot share the same labels. For example, two detec-
tions that occur at the same time instant should have different labels. This is
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usually referred to as time exclusivity. This information is encoded by setting
wij = 1 if ti = tj. Similarly, we can enforce gating constraint so that two de-
tections that violate the maximum speed constraint cannot belong to the same
trajectory, i.e, wij = 1 if ‖xi − xj‖2 > vmax|ti − tj|, where vmax is the maximum
speed of the target. Thus, Ni comprises of the detections that either co-exist
with the i-th detection or violate the gating constraint.

5.2.2 Multi-object tracking as consistent labeling problem

Given a set V of n vertices (i.e., the detections or the tracklets in tracking sce-
nario), we consider a label assignment Y = (y1, ..., yn)

> that is defined to as-
sign a m-dimensional1 label distribution yi ∈ ∆m to the i-th node, where ∆m is
a m-dimensional probability simplex. Each dimension of the label distribution
yi corresponds to a target. Formally, the k-th dimension, yi(k), k = 1, · · · , m,
can be interpreted as the probability of the node i being the k-th target. Conse-
quently, Y is a row-stochastic matrix, with each row summing to unity. There-
fore, we write Y ∈ Pnm, where Pnm is the set of all row-stochastic matrices of
size n×m. We consider a graph G = (V , E , W) as explained earlier. This graph
is assumed to assign large positive weights to edges that connect vertices that
are likely to have similar labels (typically because they are close in time and
space, or because they have similar appearance). In [29], a harmonic function
approach is introduced to measure the inconsistency of the label assignment
matrix Y with respect to the graph G. Specifically, it measures the `2-norm of
the difference between the labels assigned to nodes that are connected in the
graph G, and the labeling energy2 is defined as

EL(Y) := 1
2

n

∑
i=1

n

∑
j=1

wij‖yi − yj‖
2
2 = Tr(Y>LY), (5.3)

where Tr is the trace of a matrix and L is the graph Laplacian, defined as
L = D−W , where D is a diagonal matrix whose i-th diagonal element is
dii := ∑j∈Ni

wij.3 For a graph with non-negative weights, i.e., wij ≥ 0, L is
positive semi-definite and consequently the labeling energy in Equation (5.3)
is convex in Y .

1In the case where m is not known a priori, we set m = n, considering the worst case in which
each detection corresponds to a different target.

2In the literature, it is commonly referred to as the harmonic energy.
3Due to the definition of weights in our graphs, we have dii = 1. Therefore, D is an identity

matrix.
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In our framework, we have N + 2 distinct graphs. As all the graphs have
the same set of nodes, we frequently refer to a graph by its Laplacian L in
the sequel. We represent the exclusion graph by L(−), and other graphs by
L(+)

l , l ∈ {0, ..., N}, where l = 0 corresponds to the spatio-temporal graph and
1 ≤ l ≤ N corresponds to the l-th appearance graph. We explicitly intro-
duce the minus (respectively, plus) superscript in order to emphasize that we
would like to maximize (respectively, minimize) the labeling energy on the
corresponding graph.

Given the measure of labeling energy on each graph, we want to define
a label assignment Y? that minimizes the labeling energies due to L(+)

l and
maximizes the labeling energy due to L(−). Mathematically, we have

Y? := argmin
Y∈Pnm

N

∑
l=0

αlEL(+)
l

(Y)− EL(−)(Y)

= argmin
Y∈Pnm

E
L(+)

eff
(Y)− EL(−)(Y) (5.4)

where L(+)
eff := ∑N

l=0 αl L
(+)
p , and αl ≥ 0 weighs the contribution of labeling

energy due to l-th graph. The choice of αl depends on the scenario at hand,
i.e., on the prior knowledge available about the relevance of the features. In
practice, the relevance of a labeling energy depends on how its associated fea-
ture is related to targets identities. For example, while tracking sport players,
the decrease in labeling energy associated to the color graph is not of primary
importance since the players from the same team have similar colors. Hence,
detections sharing the same color might correspond to distinct players/labels.
In such case, it is meaningful to lower the weight assigned to the color graph
as compared to the spatio-temporal graph. In other cases, for which a unique
specific color is assigned to each target, a large weight should be assigned to
the color graph. Since αl ≥ 0 and L(+)

l is positive semi-definite, L(+)
eff is also

positive semi-definite. Given Y?, the i-th node is assigned the label that corre-
sponds to the largest entry in y?

i .

5.3 Graph-consistent labels computation

In this section, we explain how to compute the solution Y? of the problem,
defined in Equation (5.4). First, we present a global label assignment solution,
based on the difference of convex programming. Afterwards, we introduce a
node-wise optimization approach to solve the problem efficiently.
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5.3.1 Joint label assignment optimization

Let us rewrite Equation (5.4) as

Y? = argmin
Y∈P

Tr(Y>L(+)
eff Y)− Tr(Y>L(−)Y)

:= argmin
Y∈P

[
g(Y) := f (Y)− h(Y)

]
, (5.5)

where f (Y) := Tr(Y>L(+)
eff Y) and h(Y) := Tr(Y>L(−)Y). As L(+)

eff and L(−) are
positive semi-definite matrices, both f (Y) and h(Y) are convex in Y , whereas
g(Y) is non-convex. Specifically, Equation (5.5) belongs to a family of prob-
lems, called difference of convex (DC) programming, and an iterative majoriza-
tion minimization [91] algorithm can be used to solve the problem, as presented
in Algorithm 4. Starting with a random label distribution Y (1) ∈ P , the algo-
rithm iteratively linearizes h(Y) around the k-th iterate Y (k) and solves the
resulting convex function f (Y)−∇h>

(
Y (k)

)
Y using the projected gradient

method [92]. The number of iterations Tjoint depends on the convergence tol-
erance.

Algorithm 4 Joint label assignment optimization
Input

Graph Laplacians: {L(+)
l , l = 0, ..., N}, L(−)

Scaling weights: {αl , l = 0, ..., N}
Number of iterations: Tjoint

Output
Label assignment matrix: Y?

Procedure:
Choose an initial solution Y (1) ∈ Pnm randomly.
For k = 1, ..., Tjoint

Compute ∇h(Y (k)), gradient of h(Y) at Y (k).
Solve the convex optimization problem

Y (k+1) ← argmin
Y∈Pnm

[
f (Y)−∇h>(Y (k))Y

]
by the projected gradient method [92].

End For
Return Y? ← Y (Tjoint+1).

It is worth noting that the gradient of Tr(Y>LY) is (L + L>)Y . Therefore,
both L and its transpose L> are considered identically during gradient de-
scent.
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Complexity analysis: Since there are n nodes, the graph Laplacian is a
n × n matrix. Each node is assigned to a m-dimensional label distribution.
Consequently, Y is a n × m matrix. The projected gradient method [92] per-
forms gradient descent step followed by projection step for Tp times. Each
step has a naive complexity of O(n2m).4 Thus, the overall complexity is
O(n2mTpTjoint). The parameters Tp and Tjoint depend on a fixed tolerance
value.

The main disadvantage of the above solution is that its computational com-
plexity grows quadratically with the number of nodes. Therefore, it cannot
scale to large graphs. Furthermore, it can only handle off-line tracking prob-
lems because the optimization problem formulation is based on the whole
graph.

In the sequels, we describe how to circumvent these limitations based on a
node-wise decomposition.

5.3.2 Node-wise label assignment optimization

In order to address the complexity issue of the joint label propagation algo-
rithm, we adopt a node-wise decomposition of the objective function. That is,
instead of solving a “big” and “global” optimization problem, each node up-
dates locally and sequentially its label distribution in order to decrease the
global objective. The approach is similar to the Gauss-Seidel iteration (or,
co-ordinate descent approach). The advantages of such decomposition are
twofold. First, the computational complexity gets significantly reduced, mak-
ing the framework applicable to large graphs, potentially based on parallel
implementation. Second, as we solve the problem by iterating over the nodes,
it becomes possible to handle tracking problems for which the graphs grow
incrementally, as new detections are gradually computed along the time.

In the remainder of the section, we first explain our proposed efficient and
node-wise label propagation solution, and derive the conditions under which
the global objective function monotonically decreases. Afterwards, we intro-
duce a strategy to scale up the algorithm using parallel implementation.

Node-wise decomposition

In this section, we first generalize the energy in Equation (5.3) by replacing
the 1

2‖yi − yj‖2
2 term by a convex and symmetric function φ(yi, yj). After-

4This complexity can be improved toO(kmn) if the graph Laplacian is k-sparse, which is often
the case.
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wards, we decompose the global optimization problem in Equation (5.5) into a
node-wise optimization problem such that the high dimensional optimization
problem is turned into a sequence of small problems in each node. In doing
so, we derive the class of φ functions that guarantees monotonic decrease of
the objective function.

Formally, replacing the `2-norm by φ in Equation (5.3), we write the objec-
tive function in Equation (5.5) as

g(Y) =
n

∑
i=1

n

∑
j=1

[
N

∑
l=0

αlw
(l)
ij − w(−)

ij

]
φ(yi, yj) ≡

n

∑
i=1

n

∑
j=1

w(eff)
ij φ(yi, yj), (5.6)

where we define w(eff)
ij := ∑N

l=0 αlw
(l)
ij − w(−)

ij . Denoting ãij := aij + aji, we
then isolate the contribution of the p-th node as

g(Y) = ∑
j

w(eff)
pj φ(yp, yj) + ∑

i 6=p
∑

j
w(eff)

ij φ(yi, yj)

= ∑
j

w̃(eff)
pj φ(yp, yj) + ∑

i 6=p
∑
j 6=p

w(eff)
ij φ(yi, yj) (5.7)

= gp(y1, · · · , yn) + ∑
i 6=p

∑
j 6=p

w(eff)
ij φ(yi, yj) (5.8)

where we assume φ(yi, yi) = 0 and φ(yi, yj) = φ(yj, yi) in Equation (5.7), and

we introduce gp(y1, · · · , yn) := ∑j w̃(eff)
pj φ(yp, yj) for brevity in Equation (5.8).

Given Y (k) = (y(k)
1 , · · · , y(k)

n )> ∈ Pnm, we choose an index p ∈ {1, · · · , n}
and compute a new iterate Y (k+1) = (y(k+1)

1 , · · · , y(k+1)
n )> ∈ Pnm that satisfies

y(k+1)
i


= y(k)

i if i 6= p,

∈ argmin
y∈∆m

gi(y
(k)
1 , · · · , y, · · · , y(k)

n ) if i = p.
(5.9)

Then, by construction,

g(Y (k+1)) = gp(Y (k+1)) + ∑
i 6=p

∑
j 6=p

w(eff)
ij φ(y(k)

i , y(k)
j )

≤ gp(Y (k)) + ∑
i 6=p

∑
j 6=p

w(eff)
ij φ(y(k)

i , y(k)
j )

= g(Y (k))

Therefore, we conclude that under the following assumptions:

• the loss function φ(·, ·) is convex,
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• the loss function is coincident5, i.e., φ(yi, yi) = 0,

• and the loss function is symmetric with respect to its arguments, i.e.,
φ(yi, yj) = φ(yj, yi),

the optimization step at any fixed node p

y(k+1)
p ∈ argmin

y∈∆m

gp(y
(k)
1 , · · · , y, · · · , y(k)

n )

= argmin
y∈∆m

∑
j

w̃(eff)
pj φ(y, y(k)

j ) (5.10)

monotonically decreases the objective function g(Y). Equation (5.10) is still a
DC problem and it can be solved by using majorization-minimization technique,
as discussed in Section 5.3.1. It should be noted that when φ is chosen to be
the `2-norm, the above conditions are satisfied.

The label propagation process is finally achieved by sequentially updating
the label distribution over the nodes, possibly Tcon > 1 times, until g(Y (k))

does not decrease any more. We summarize the overall process in Algo-
rithm 5. Note that we do not assume anything about the structure of the
graph, thereby allowing loops in the graph.

Complexity analysis: Each node solves a m-dimensional DC program us-
ing the projected gradient method. Let the number of iterations required for
the convergence of the projected gradient method be Tp′ , which is compara-
ble to Tp in Section 5.3.1. The complexity of the DC optimization in a specific
node is therefore O(mTp′). Since there are n nodes and since we traverse the
nodes Tcon times, the overall complexity is O(mnTp′Tcon). From experiments,
we have seen that Tcon � Tjoint. Comparing with the complexity of joint ap-
proach, which is O(n2mTpTjoint), the node-wise decomposition approach has
an improvement ofO(nTjoint/Tcon). Therefore, the improvement becomes sig-
nificant when n increases, making it a better choice for large-scale problems as
confirmed by our experiments.

Parallel implementation

The node-wise decomposition of the objective function also paves the way for
a parallel implementation of the label optimization. This allows our proposed
approach to scale up further with the size of the graph. In this section, we first

5The coincidence property will make the loops irrelevant and generally we do not need loops
in the graph.
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Algorithm 5 Node-wise label assignment algorithm
Input

Weight matrices: {W (l), l = 0, · · ·K}, W (−)

Scaling weights: {αl , l = 0, · · ·K}
Number of iterations: Tcon

Output
Label assignment matrix: Y?

Procedure
Set W (eff) ← ∑l αlW (l) −W (−)

Set W̃
(eff) ←W (eff) + W (eff)>

Choose initial solution, Y (1) ∈ Pnm

Set k← 1
For t = 1, · · · , Tcon

Initialize U ← V
While U 6= ∅

Select a node p from U
Solve ỹ← argmin

y∈∆m

∑j W̃(eff)
pj φ(y, y(k)

j )

Y (k+1) ← (y(k)
1 , · · · , y(k)

p−1, ỹ, y(k)
p+1, · · · , y(k)

n )>

U ← U \ {p}
k← k + 1

End While
End For
Return Y? ← Y (Tcon)

Note: we have observed that the order in which p is chosen from U does not affect the labeling
energy much. Consequently, we chose nodes in the sequential order.

derive a condition under which the parallelization of the coordinate descent
decreases the objective function.

Let us choose the set of nodes J for parallel coordinate descent. We rep-
resent its complement by J̄ := V \ J . Then, we can decompose the objective
function as 6

g(Y) = ∑
i∈J

gi(Y)− ∑
i∈J

∑
j∈J

w̃(eff)
ij φ(yi, yj)

+ ∑
i∈J̄

∑
j∈J̄

w(eff)
ij φ(yi, yj) (5.11)

The negative terms in Equation (5.11) are called interference terms. To nul-
lify these terms, we pickup the nodes in J such that there are no edges be-
tween them, i.e., ∀(i, j) ∈ J × J , W̃(eff)

ij = 0. Under this condition, we can

6Detailed derivation is provided in Appendix A.
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write

g(Y) = ∑
i∈J

gi(Y) + ∑
i∈J̄

∑
j∈J̄

w(eff)
ij φ(yi, yj) (5.12)

and solve the local optimization problem

y(k+1)
i ∈ argmin

y∈∆m

gi(y
(k)
1 , · · · , y, · · · , y(k)

n ) (5.13)

in parallel for each node i ∈ J . Then, the resulting label assignment matrix
Y (k+1), defined as

y(k+1)
i


∈ argmin

y∈∆m

gi(y
(k)
1 , · · · , y, · · · , y(k)

n ) if i ∈ J ,

= y(k)
i otherwise,

decreases monotonically the objective function, i.e., g(Y (k+1)) ≤ g(Y (k)). As a
consequence, as long as the nodes that are processed in parallel are not neigh-
bors, a monotonic decrement of the objective function is guaranteed. In Sec-
tion 5.6.2, we demonstrate the benefit of parallelization with a simple yet ef-
fective batch-based scheduling approach.

5.4 From off-line to incremental label propagation

In previous sections, we described the off-line graph construction and label
propagation steps. However, in many real-life applications, detections arrive
progressively along the time. To handle such scenarios, while being as close as
possible to the off-line formalism, we embed the node-wise label propagation
within an incremental graph construction process. Once the novel detections
arrive, the graph is incremented by incorporating them. Afterwards, we re-
optimize the label distribution by iterating over the nodes using the node-wise
decomposition.

In the incremental graph construction, we do not have access to the future
samples. Consequently, the LLE-based graph construction of Section (5.2.1)
cannot be used. This has two implications. First, we need to define an explicit
strategy to gradually incorporate new targets in the scene. Second, the im-
plicit linear motion model cannot be embedded while constructing the spatio-
temporal graph since future detection locations are not known at construction
time.

The remainder of the section first explains how new detections are con-
nected to the existing nodes. It then describes how labels are propagated
through the incremented graph.
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5.4.1 Incremental graph construction

We assume that the detections arrive sequentially along the time. Let the set of
detections at time t be denoted by D(t). Also, let the graph up to time t− 1 be
G(t−1) = (V (t−1), E (t−1), W (t−1)). As the graph evolves with time, it is implicit
that the number of nodes n and the size of the label vector m are dynamic
quantities. For the sake of simplicity, we write n := n(t) and m := m(t).

Since we have 3 different kinds of graphs, namely the spatio-temporal
graph, the appearance graph(s) and the exclusion graph, the incrementation
is different for each kind of graph. Nonetheless, in all graphs, the new detec-
tions are first added to the set of vertices V (t−1) to generate V (t). Edges and
weights are incremented separately for each graph as follows.

In case of the exclusion graph, we create new edges between the nodes that
occur at time t. Also, we create edges from the nodes at time t to the existing
previous nodes if they are not within the gating region. Each exclusion edge
has a weight 1.

For the spatio-temporal and the appearance graphs, we connect each node
at time t with the nodes in a window [t − Tc, t), where Tc is the connection
window size and controls the size of the graph. Large Tc results in dense
graphs whereas small Tc results in sparse graphs. Once the neighborhood is
defined, we assign a weight Wij between a novel node i and an existing node
j as

wij =

{
exp(− 1

σ2 d( f i, f j)
2) if |ti − tj| ≤ Tc,

0 otherwise,
(5.14)

where ti and f i denote the time instant and the features of the i-th node re-
spectively, d(·, ·) measures the dissimilarity between the features f i and f j,
and σ is a scaling parameter. Tc and σ parameters are adapted to each kind
of graph. In our experiments, Tc is set to 10 frames for the spatio-temporal
graph (as in off-line graph construction), but is extended up to 200 frames in
the appearance graph to bridge the gaps caused by the sporadic nature of the
feature.

The parameter σ should be larger than the typical distance measured be-
tween the features of two detections corresponding to the same targets, while
being smaller than the typical distance measured between distinct targets. In
practice, our values for σ have been selected by looking at the two distribu-
tions of distances between pairs of detections that correspond to the same or
different targets. We use σ = 20 in the spatio-temporal graph and σ = 0.05 in
the appearance graph. Also, we use d(·, ·) := ‖ · − · ‖2 but any other distance
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measure can be envisioned.

To account for the cases in which some detections (nodes) are likely to cor-
respond to new targets, we introduce a virtual source node in the graph. This
unique source node is connected to every node in the spatio-temporal graph.
The weight of the edge connecting the source node to the i-th node is repre-
sented by w(s)

i . This weight depends on the prior knowledge we might have
about where and/or when a target is likely to appear in the field of view. In
our case, we consider that a new target appears either in the beginning of
the tracking process, or when entering the scene on the borders of the im-
age. Therefore, the weights should be large for the detections that are close
to the image border and/or that appear in the beginning of the tracking. For
the i-th detection, we compute the smallest distance d(min)

i from the detection

to the image border. Then, we compute w(s)
i by replacing d(·, ·) by d(min)

i in
Equation (5.14). Note that when some prior knowledge is available about the
appearance of the targets entering the scene, e.g., because the digit of the play-
ers sitting on the dug-out in team sport games is known, edges to the source
node could be defined in the appearance graph as well. Once the weights are
defined, they are normalized such that ∑j∈{Ni∪s} wij = 1.

5.4.2 Label propagation in the incremented graph

After incrementing the graphs, we perform node-wise label propagation as
defined by Algorithm 6. We denote the labels distribution over G(t) after k
iterations of the label propagation process by Y (t,k). Moreover, Y (t) denotes the
labels distribution after the convergence of the propagation process at time t.
We first initialize the label distribution matrix at time t, denoted by Y (t,1), by
augmenting the label distribution matrix at time t− 1, denoted by a n(t−1) ×
m(t−1)-dimensional matrix Y (t−1), as follows:

Y (t,1) =

(
Y (t−1) | 0n(t−1)×|D(t) |

U(t)

)
(5.15)

where 0n(t−1)×|D(t) | is a n(t−1) × |D(t)|-dimensional zero matrix and U(t) is a

|D(t)| ×
(
|D(t)|+ m(t−1)

)
-dimensional matrix such that U(t)

ij = 1/(|D(t)| +
m(t−1)). Obviously, U(t) is a (uniform) row-stochastic matrix, and a uniform
label distribution is assigned to the novel nodes.

After initialization, we iterate over all the nodes (except the virtual source
node) and solve the node-wise optimization problem, introduced in Section
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5.3.2,

y(t,k+1)
i ∈ argmin

y∈∆(t)
m

gi(y
(t,k)
1 , · · · , y, · · · , y(t,k)

m ) + w(s)
i φ(y, ei), (5.16)

where ei ∈ ∆(t)
m is a singleton vector having 1 at the i-th index and zero else-

where. It promotes the assignment of a new label to the i-th node when it is
close to the spatio-temporal border (i.e., when w(s)

i ≈ 1).

Algorithm 6 Incremental graph construction and label propagation algorithm
at time t

Input:
D(t): detections at time t,
G(t−1): graph at time t− 1,
Y (t−1): label assignment matrix at time t− 1.
Tcon: number of iterations for ‘consensus’

Output:
G(t): graph at time t,
Y (t): label assignment matrix at time t.

Procedure:
G(t) = connectGraph(G(t−1),D(t)) # Refer to Section 5.4.1.
Label propagation:

Initialize Y (t,1).
Set Z ← Y (t,1).
For k = 1, · · · , Tcon

For each node i = 1, · · · , n
z̃ = LocalLabelUpdate(Z,G(t))
Z = [z1, · · · , zi−1, z̃, zi+1, · · · , zn]>

End For
End For
Set Y (t) ← Z

In Algorithm 6, LocalLabelUpdate corresponds to the local label optimiza-
tion performed by each node as in Equation (5.16) respectively.

In order to bound the complexity of our incremental framework, and to
turn it into to an on-line procedure, we consider a sliding window [t− To, t]
and forget the history of the graph outside the window. Afterwards, the dis-
tributions of nodes that lie outside the window are frozen, and the node-wise
optimization, defined in Equation (5.16), is only considered for the nodes that
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belong to the window. The window size To trades-off the tracking accuracy
and the computational (and memory) resources.

5.5 Related work

This section provides a brief review of the recent and related works under the
following categories:

Label propagation in graphs. Propagation of labels in a graph has been
extensively studied in machine learning in the framework of semi-supervised
learning approach, and a concise survey of recent developments in this field
can be found in [93] and references therein. In short, most of these approaches
assume that the label of a node is approximated as the linear combination of
the labels of its neighbours [94]. In [95], the authors use a mixed label prop-
agation in which (i) they measure the bipolar similarity (e.g., Karl Pearson’s
correlation coefficient that lies in the range [-1,1]) between the samples, and
(ii) construct a ’positive’ and a ’negative’ graph based on the sign of the co-
efficient. Afterwards, they minimize the ratio between labeling energies due
to the positive and negative graphs. This is done by semi-definite relaxation
in order to assign a binary label to each node of the graph. Our method dif-
fers from [95] both in the definition of the graph similarities, and the label
propagation method. Specifically, since we use multi-class labels instead of
binary labels, and impose that the label distribution at each node should lie
on a probability simplex, our problem is difficult to cast into their formalism.
Therefore, we adopt difference of convex programming approach to solve our
problem.

Message passing. Message passing (belief propagation) approaches have
been used to label the nodes in a graph in tracking/recognition scenario [64,
24] and in disparity estimation, image completion scenario [39]. Each node
gathers messages from its neighbors, optimizes locally a problem, and then
transmits its message. This approach has been shown to be exact in trees but
the convergence is not guaranteed in presence of loops. In contrast, we do
not assume any structure of the graph to guarantee the convergence of our
approach.

In [64], a subset of the nodes is initially labelled and then a conditional
random field is used to infer the label of the remaining nodes. For this, the au-
thors compute various appearance features and assume that the features are
always available with similar accuracies. Hence, their approach cannot exploit
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appearance features that are sporadic or affected by non-stationary noise. In
[24], the authors utilized such non-stationary and sporadic features in order
to prioritize the propagation of belief related to the label probability distribu-
tion. Even though this approach exploits sporadically available appearance
features, it relies on the assumption that the target appearances are known
beforehand, which is not the case of our approach.

Mutual exclusion. The exploitation of a specific constraint associated to
the structure of the graph (e.g., the exclusivity constraint associated to the de-
tections that coexist in time) has been considered in [96, 97] in order to learn
discriminative appearance features. In these papers, first of all, a low-level
but reliable tracker is used to connect unambiguous detections into tracklets.
Afterwards, positive samples are defined by pairs of detections that belong
to the same tracklet, while negative samples correspond to pairs that belong
to tracklets that likely correspond to distinct objects (because they overlap in
time). Lastly, these samples are used to train an AdaBoost [98], which in turn
selects the discriminative appearances. This work is orthogonal to our pro-
posal since it could help our approach to select the discriminative features,
while defining the appearance graph(s).

In [85, 84], the authors define a mutual exclusion term based on the phys-
ical distance between two detections that occur at the same time. The term
goes to infinity as the distance goes to zero. This is motivated by the fact that
two objects cannot occupy the same space simultaneously. Our formulation is
different in that our mutual exclusion term is defined in terms of the similarity
in the label distribution rather than the position.

Distributed proximal optimization: Our label propagation method by
node-wise optimization cannot be truly characterized as a distributed com-
putation but it raises this possibility for future developments. In such a sce-
nario, we noticed that in [99], the authors devise a proximal optimization on
graph that has quadratic convergence by using the Nesterov’s method [100].
Knowing if their approach, which assumes positive graph weights for forcing
convex optimization, can be adapted to general weights and DC minimization
is a matter of future study.

Laplacian eigenmaps latent variable model (LELVM): LELVM [101] de-
fines an out-of-sample mapping of the Laplacian eigenmaps. Given a graph,
in which the weight of an edge xi ∼ xj is constructed as wij := exp(−‖ f i −
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f j‖2
2/σ2), the latent points Y are the solution of

minimize Tr(Y>LY)
subject to Y ∈ Rn×|L|, Y>DY = I, Y>D1 = 0.

where D is a diagonal matrix with its i-th diagonal element defined as Dii :=

∑j wij, and L := D−W is the graph Laplacian. When a new sample f arrives,
[101] defines an out-of-sample mapping F( f ) = y for a new point f as a semi-
supervised learning problem, by recomputing the embedding as in previous
equation (i.e., augmenting the graph Laplacian with the new point), but keep-
ing the old embedding fixed. LELVM has been used for tracking human pose
in [102]. Our incremental label propagation is similar to LELVM in the sense
that we also augment our graph and then solve for the “latent” label distribu-
tion. However, LELVM cannot handle newly occurring targets as it assumes
that the new sample f belongs to one of the classes defined by L. Moreover,
it keeps the old “latent” distributions unchanged, which is not the case in our
approach.

5.6 Evaluation

The proposed algorithm has been evaluated on the following well-known and
challenging datasets: APIDIS [6], PETS-2009 S2/L1 [82] and TUD Stadtmitte
[103]. APIDIS is a multi-camera sequence acquired during a basketball game,
whereas the other two are monocular sequences.

5.6.1 Implementation details

Both the joint and node-wise label propagation algorithms have been im-
plemented on MATLAB running on a 2.4 GHz quad core CPU with 4 GB
RAM. The parallel implementation of the node-wise label propagation has
been done separately in C++ using Boost Graph Library and OpenMP.

Pedestrian datasets. For these datasets, a node is assigned to each indi-
vidual detection. The size of the temporal neighborhood in spatio-temporal
graph is chosen to be 10 frames. Thus, T = 10. When processing time is an is-
sue, we can envision processing the dataset in batches or running a low-level
but reliable tracker first to reduce the complexity (which we perform in the
APIDIS dataset).

APIDIS dataset. We first pre-process the data by aggregating some of the
detections into tracklets based on a spatio-temporally local but reliable tracker.
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The advantages are twofold. On the one hand, it reduces the number of nodes
in the graph, thereby reducing the complexity of the algorithm. On the other
hand, it helps to aggregate the appearance feature(s) along the tracklet in or-
der to infer the appearance more accurately. The local but reliable tracker
associates two detections between successive frames into a tracklet when they
are separated by less than 15 cm and there is no other detection that is closer
than 15 cm from any of them. The resulting tracklets define the nodes in our
graphs. The neighborhood of the spatio-temporal graph is defined to connect
the tracklets within 100 frames on each side, which allows us to connect track-
lets that are up to 4 seconds apart. In the exclusion graph, the neighborhood
of a node consists of all the nodes that overlap in time. Finally, the appearance
features of a tracklet is inferred by averaging the appearance features of the
detections along the tracklet.

Post processing. Once the label propagation step is over, we filter out some
tracks. That is, we label a track to be a false positive if one of the two criteria
is satisfied:

• the track-length, defined as the number of detections along the track, is
less than 10 frames,

• the track is primarily composed of low confidence detections. This is
done by checking if the maximum confidence value along the track is
less than 0.8. This case is prevalent in PETS and TUD datasets.

We employ the above heuristics because of the fact that false tracks that result
from consistent false positive detections are usually shorter than regular tar-
get tracks and that the false positive detections have lower confidence values,
compared to the true detections.

A glimpse of running times is shown in Table 5.1.

Time taken
Low-level Graph Label propagation

Dataset tracker construction Joint Nodewise
TUD - 2 min 3 min 25 sec
PETS - 3 min 40 min 5 min
APIDIS 15 sec 1 min 5 min 1 min

Table 5.1: Time taken by various stages of the algorithm on the examined
datasets.
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5.6.2 Results

In this section, we first present the tracking results for our label propaga-
tion frameworks, applied to offline-constructed graphs. Then, we present
the tracking results for the incremental graph construction and label propa-
gation. The computational advantages due to the node-wise decomposition
and parallelization are presented afterwards. Lastly, some qualitative results
are presented.

Tracking results for offline-constructed graphs

To better compare with the literature, we consider two versions of the method.
The first one uses only the spatio-temporal information. Thus, we construct
only the spatio-temporal and the exclusion graphs. This is equivalent to set-
ting α0 = 1 and αp = 0, ∀p 6= 0 in our algorithm. In contrast, the second one
considers both the spatio-temporal and the appearance features. For the TUD
and PETS datasets, we use α0 > α1 (α0 for the spatio-temporal graph and α1

for the appearance graph). This constrains the spatio-temporal consistency
more strictly than the appearance consistency. The reason is that the targets
wear similar clothes and therefore have similar appearances in the datasets.
In the experiments, we use α0 = 1 and α1 = 0.5.7

We compare our results with several methods such as the continuous en-
ergy (CE) minimization [85], the discrete-continuous (D-C) minimization [84],
the GMCP tracker [60], the K-shortest paths (KSP) [26], the global appearance
constraints (GA) [27] and the iterative hypothesis testing (IHT) [23]. The CE
and D-C trackers estimate the most probable trajectories by minimizing their
energies. These energy terms consist in a combination of observation energy,
dynamic energy, mutual exclusion energy, track persistence energy, etc. In ad-
dition, the D-C tracker uses cubic splines for modeling the motion of the tar-
get, and favors the reduction of the number of trajectories. The GMCP tracker
solves greedily a generalized minimum clique problem to extract tracklets that
have the most stable appearance features and the most consistent motion. KSP
tracker solves a network-flow formulation of the tracking problem and min-
imizes the sum of pairwise association costs between consecutive detections
to estimate K tracks. GA improves KSP by incorporating long-range appear-
ance information. IHT embeds an hypothesis testing strategy into a greedy
shortest-path computation procedure to exploit the appearance features that
are unreliable and/or sporadically available.

7We varied α1 ∈ [0.1, 1] but did not observe significant performance changes.
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In Tables 5.2 and 5.3, we first observe that the joint and node-wise label op-
timization approaches give similar performances. Regarding the comparison
with previous approaches, note that KSP, CE and D-C do not exploit appear-
ance features. Hence, we compare them to the first version of our approach,
which does not use the appearance features. Similarly, since GA, IHT and
GMCP exploit the appearance features, we compare them to the second ver-
sion of our approach.

The tracking results for the TUD Stadtmitte dataset are presented in Ta-
ble 5.2. From Table 5.2, we see that our method is better than previous meth-

Method MOTA MOTP SW
Continuous energy [85] 60.5 65.8 7
Discrete-continuous (D-C) [84] 61.8 63.2 4
GMCP tracker [60] 77.7 63.4 0
Joint (no appearance) 62.6 73.5 17
Joint (with appearance) 79.3 73.9 4
Node-wise (no appearance) 63.0 73.6 16
Node-wise (with appearance) 79.6 73.9 4

Table 5.2: Performance on the TUD Statdmitte dataset. The D-C and GMCP
results are copied from [84] and [60].

ods both in terms of MOTP and MOTA. This is because our approach is able to
connect the detections even if they are far in time, resulting in longer and con-
sistent tracks. However, our method is slightly worse than GMCP in terms
of ID switches. This might be because GMCP uses motion information in a
global manner in order to ensure a smooth displacement while connecting the
tracklets, which is not the case in our formalism.

The results on the PETS-2009 S2/L1 dataset are presented in Table 5.3.

From Table 5.3, again we observe that our proposed approach outperforms
most contemporary approaches. When the appearance features are ignored,
the MOTA metric is better than KSP but worse than D-C. This might be be-
cause of the fact that D-C exploits higher-order motion models, whereas our
formalism does not. We assert the fact that a linear motion is implicit in our
formalism in order to justify our superior performance against KSP and GA,
which do not take the motion information into account. When the appearance
information is incorporated, the performance is improved significantly from
82% to 91%. Moreover, the switching error is drastically reduced.

The results for the APIDIS dataset are presented in Table 5.4. Since GA and
IHT are the only methods from the literature that are able to exploit sporadic
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Method MOTA MOTP SW
Discrete-continuous (D-C) [84] 89.30 56.40 -
Continuous energy [85] 81.84 73.93 15
KSP [26] 80.00 58.00 28
GMCP tracker [60] 90.30 69.02 8
GAC [27] 81.46 58.38 19
IHT [23] 83.0 74.0 -

Joint (no appearance) 82.75 71.21 25
Joint (with appearance) 91.01 70.99 5
Node-wise (no appearance) 83.0 71.23 25
Node-wise (with appearance) 91.03 71.00 5

Table 5.3: Tracking results on the PETS 2009-S2/L1 dataset. The D-C, IHT,
GMCP and GA results are obtained from [84, 23, 60, 27].

appearnace features, we focus the comparison with them. As before, first we
computed the results without using any appearances. This is done by setting
α0 = 1, α1 = 0, α2 = 0, where the indices 0, 1 and 2 correspond to the spatio-
temporal, the color and the digit graphs respectively. Afterwards, we use both
the digit and the color features. As the color feature is less discriminant (be-
cause the players from the same team wear jersey of the same color) than the
digit feature, we set α1 < α2. Empirically, we use α0 = 1, α1 = 0.1, α2 = 0.5.

Method MOTA MOTP SW
IHT (no appearance) [23] 85.83 60.83 18
IHT (color+digit) [23] 86.19 60.90 12
GA (no appearance) [27]∗ 72.91 53.13 108
GA (color+digit) [27]∗ 73.07 53.15 110

Joint (no appearance) 81.25 57.13 49
Joint (color+digit) 83.80 60.01 45
Node-wise (no appearance) 81.3 57.15 49
Node-wise (color+digit) 83.82 60.00 45

Table 5.4: Results on the APIDIS dataset (1500 frames). The tracking results
have been provided by the authors of [23, 27]. [*] Since the detection results
for [27] are different than that for the [23] and ours, we relax the distance
threshold to 40 cm (from 30 cm) for the tracking results of [27].

As mentioned earlier, the detector used in [27] is different from the one
used in [23], and in our approach. Based on the MOTP scores of each method,
we suspect that the detector used in [27] is less accurate than the one used in
[23] and in our approach. Therefore, for a fairer comparison, we relaxed the
distance threshold for [27] from 30 cm (a value recommended for the APIDIS
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dataset) to 40 cm while computing the MOTA metrics. To better understand
the impact of this threshold, we provide a detailed comparison of the three
approaches for different values of the threshold in Table 5.5.

Distance Threshold
30 cm 40 cm 50 cm

MOTA MOTP SW MOTA MOTP SW MOTA MOTP SW

GA [27]
no appearance 47.86 46.50 98 72.91 53.13 108 83.66 59.41 70

color+digit 47.81 46.51 106 73.07 53.15 110 84.00 59.47 69

IHT [23]
no appearance 85.83 60.83 18 93.34 68.42 18 96.16 73.84 19

color+digit 86.19 60.90 12 93.45 68.51 12 96.26 73.79 12

DLP (joint)
no appearance 81.25 57.13 49 85.50 73.14 50 87.86 77.40 52

color+digit 83.80 60.01 45 86.71 73.81 45 88.08 77.56 46

DLP (incremental)
no appearance 74.40 54.20 52 82.47 70.15 56 85.87 76.32 57

color+digit 80.23 58.45 47 84.58 72.19 51 86.54 74.45 54

Table 5.5: Comparison of performance on the APIDIS dataset for different
distance thresholds.

Even though our approach performs significantly better than GA [27], the
results are slightly worse than IHT [23]. We see two potential reasons for
this. First, our graph construction method assumes that the features are al-
ways reliable (whenever they are present). This is not the case for the iterative
hypothesis testing that takes into account the confidence of feature measure-
ment while connecting two nodes. Doing so, it lowers the impact of noisy
appearance features as compared to the reliable ones. Second, the iterative
hypothesis testing framework associates two nodes only when the connection
is sufficiently reliable than alternative connections. This prevents potential
track switches. This is well-reflected by the switching errors.

Tracking results for incrementally constructed graphs

We constructed the graph as described in Section 5.4.1 and performed incre-
mental label propagation. The construction of the graph in case of APIDIS
dataset is slightly different than the other two datasets. In this case, if new de-
tections can be unambiguously matched to the existing nodes, they are aggre-
gated into a single tracklet. Otherwise, we create new nodes for the detections
and connect them with existing nodes. The tracking results are presented in
Table 5.6. We observe that the tracking accuracy of the incremental approach
is slightly worse than the off-line method. This reveals the importance of em-
bedding a linear motion model during graph construction.

In order to trade-off the complexity with the quality of the incremental
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PETS dataset
MOTA MOTP SW

No appearance 79.32 70.70 26
With appearance 86.56 71.40 6

TUD dataset
No appearance 61.60 73.30 13
With appearance 77.20 73.40 2

APIDIS dataset
No appearance 74.40 54.20 52
With appearance (color+digit) 80.23 58.45 47

Table 5.6: Results of the incremental graph construction and label propagation
approach.

solution, we considered only the nodes which lie within the observation win-
dow [t−To, t] to perform label propagation. The rest of the nodes were ‘frozen’,
meaning that the node-wise optimization was not performed on those nodes.
The results are elucidated in Figure 5.2 for the TUD Statdmitte dataset. As
we can see, the processing time monotonically increases with the size of the
observation window. However, this is not the case with tracking accuracy. It
initially increases with respect to the observation window but saturates after
some value. Alternatively, one could define other heuristic in order to freeze
the nodes. For example, one could decide to freeze a node if the change in its
label distribution over time is smaller than some pre-defined threshold.
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Figure 5.2: Trade-off between the processing time and the tracking accuracy
for different observation window size for the TUD Stadtmitte dataset. Best
viewed in color.
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Computational advantages of the node-wise decomposition and paralleliza-

tion

In order to study the effect of node-wise decomposition, we constructed the
graph off-line with different number of frames. Once the graph was con-
structed, we used both joint and node-wise approaches for label propaga-
tion with 10 random initializations. Afterwards, we computed the process-
ing times for both approaches to reach the same labeling energy (equal to the
labeling energy of the joint optimization after convergence). The results are
shown in Figure 5.3. We can see the dramatic improvement in computational
speed, especially when the size of the graph increases. We observed that one
iteration (over the whole graph) of the node-wise label optimization appears
to reduce the labeling energy much faster than one iteration of the joint opti-
mization.
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Figure 5.3: Processing times for the joint and the node-wise approaches for
different size of the graph. Best viewed in color.

To assess the advantages offered by the parallel implementation, we con-
sider a simple scheduling strategy. We assume batch processing of nodes, and
Algorithm 7 presents a simple (yet effective) method to choose the nodes to be
processed in parallel by the P processors at each round of the batch process.
We represent the neighbors of a node i as Ni, i.e., Ni := {j|w̃(eff)

ij 6= 0}. Let
U and J respectively denote the list of the unprocessed nodes and the set of
nodes to be processed at the next batch. Initially, we set U = V . Our node
selection strategy is directly based on the non-inference condition, derived in
Section 5.3.2, and selects non-interfering nodes at random.

For each number of processor, we ran the algorithm 10 times and noted
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Algorithm 7 Node selection strategy for parallelization
Initialize list of unprocessed nodes, U ← V .
While U 6= ∅

Initialize J ← ∅.
Initialize list of available nodes, A ← U .
For k = 1, ..., P

If A 6= ∅
Select a node i from A at random.
J ← J ∪ {i}.
A ← A \ {i ∪Ni}.

End If
End For
Solve the problem in Equation (5.13) in parallel.
U ← U \ J

End While

Note: J might not always contain P nodes at each batch. This is mainly due to the fact that if J
contains node i for parallel processing, we cannot choose any node j ∈ Ni . In our experiments,
we observe that |J | = P only 98% of the time.

the evolution of objective function along time. The results are depicted in
Figure 5.4. Note that the time is different from Figure 5.3. This is because of
the fact that the parallel implementation is done in C++.

Although we can see that the computational time gets reduced, the reduc-
tion is not proportional to the degree of parallelism. This sub-optimal speed-
up factor is due to the fact that we run the algorithm in batches of |J | nodes.
As a consequence, the time required to process a batch is governed by the
longest time taken to process by one of its nodes. This is illustrated in Fig-
ure 5.5.
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Figure 5.5: Occupancy and time taken by the nodes in a batch. (Left:) we
see that J contains P = 4 nodes almost 98% of the time. (Right:) Some of
the nodes in the batch take longer time than others. These nodes pose the
bottleneck to the speed-up factor. Best viewed in color.
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Figure 5.4: Processing time and speed-up factors of the node-wise label
propagation for different number of processors (P = 1 to P = 4). For each
case, we perform 10 runs of the algorithm which are drawn with the same
color. Top row: TUD dataset, bottom row: PETS dataset. Best viewed in color.

Effect of parameters

Our algorithm has several parameters. They are:

γ Scaling factor for time (Section 2.2)
T Connection window size (Section 2.2)
vmax Maximum speed for gating constraint (Section 2.2)
αl Weight assigned to the l-th labeling energy (Section 2.3)
Tc Connection window size (Section 2.2)
σ ‘Heat‘ parameter (Section 4.2)
To Observation window for bounding complexity (Section 4.2)

The effect of αl and To have already been discussed in Section 5.6.2. In
this section, we present and discuss how these parameters are chosen and/or
what are their effects on the performance.

The MOTA for the quiescent point (γ = 3, t = 10, vmax = 10) for the TUD
dataset is 77.2%. In this section, we present and discuss the effect of these
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parameters individually. For this, only one parameter is changed at a time
and all other parameters are fixed at their quiescent values.

In Table 5.7, we present the effect of T, γ and vmax on the MOTA as well
as the time taken for graph construction step for TUD dataset. Increasing
vmax typically reduces the time to construct the graph as it will discard many
detections that violate the gating constraint from the neighborhood. On the
flip side, these detections receive non-zero weights in the exclusion graph
and they receive different labels, resulting in reduced MOTA. Increasing T
increases the connectivity of the graph (which leads to increased time to con-
struct the graph). We observe that the MOTA increases up to certain value
of T and then starts decreasing again. On the one hand, when T is small,
it might not be effective to bridge the local missed detections. On the other
hand, large T not only is more prone to wrong connections but also might not
satisfy the linear motion model assumption. Interestingly, γ does not seem to
affect MOTA much. However, we have observed that setting a large γ restricts
the number of neighboring nodes that remain eligible for non-zero weights,
which in practice will sharply reduce the graph construction time. For exam-
ple, graph construction step for (γ = 1, T = 100) was around 10 times slower
than that for (γ = 7, T = 100).

T γ vmax

5 10 20 30 100 1 3 5 7 5 10 20 30
MOTA (%) 76.9 77.2 76.7 76.3 70.2 77.1 77.2 77.3 77.2 74.3 77.2 75.8 65.6
Time (Seconds) 1.03 1.33 1.48 1.42 31.46 1.25 1.33 1.17 1.28 1.27 1.33 1.37 1.18

Table 5.7: Effect of parameters on the TUD dataset.

We report the effect of connection window size on the performance in Ta-
ble 5.8.

Tc, frames 50 100 200 ∞

PETS
MOTA (%) 84.32 86.52 86.56 83.95

Time (Seconds) 300 390 480 918

TUD
MOTA 70.11 72.86 73.40 69.82

Time (Seconds) 78 126 150 312

Table 5.8: Effect of connection window size for the appearance graph on
MOTA and overall (graph construction and label optimization) time. Tc = ∞
means that all the past detections have been considered.

From Table 5.8, we observe that increasing Tc increases the computation
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Detections Spatio-temporal graph Appearance graph Exclusion graph

g(Y) = −0.53
Iteration 1

g(Y) = −4.87
Iteration 5

g(Y) = −7.79
Iteration 20

g(Y) = −9.16
Iteration 70

Figure 5.6: Sample graphs and label evolution on a subset of detections
from PETS dataset. The abscissa and the ordinate correspond to time and
position respectively. The top row shows the input detections and the three
constructed graphs. For clarity, edges that have weights smaller than 10−2

are suppressed. The bottom row depicts the evolution of label of the nodes
along with the corresponding labeling energy. Initially, each node is assigned
a random label distribution. As the iteration progresses, the nodes are labelled
consistently. Best viewed in color.

time. However, the MOTA is improved only up to some value (200 frames in
our experiments) after which it starts decreasing. This is mainly due to the
fact that the chances of wrong associations increase with large Tc.

Qualitative results

Now, we present some qualitative results8. Figure 5.6 depicts the detections,
constructed graphs and the inferred labels.

Some sample frames of our tracking results are presented in Figure 5.7. In
case of the APIDIS dataset, the frames from camera 1 and 6 are stitched in
order to provide an entire view of the field.

Two typical failure cases in our tracking system are depicted in Figures 5.8
and 5.9. In Figure 5.8, an identity switch is depicted. The identities of two
targets are momentarily switched. This might be because of the fact that we
do not consider the appearance feature if the overlap between their bounding
boxes exceeds 5%. Therefore, neither the position nor the appearance disam-
biguates the identities of the targets. Later on, when the targets are separated,

8A demo video is available at http://sites.uclouvain.be/ispgroup/index.php/

Research/MultiObjectTracking.

http://sites.uclouvain.be/ispgroup/index.php/Research/MultiObjectTracking
http://sites.uclouvain.be/ispgroup/index.php/Research/MultiObjectTracking
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Frame 100 Frame 325 Frame 760

Frame 7022 Frame 7154 Frame 7197

Frame 285 Frame 534

Frame 1195 Frame 1350

Figure 5.7: Sample frames from the PETS2009-S2/L1 (first row), the TUD Stat-
dmitte (second row) and the APIDIS (third and fourth rows) datasets. For the
sake of clarity, a tail of 50 frames is added. The numbers represent the distinct
IDs of the tracks. Best viewed in color.
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the algorithm is able to assign the correct label to the targets.

Frame 703 Frame 708 Frame 710 Frame 712

Figure 5.8: Instantaneous identity switch. In frame 703, targets 18 and 22
come close. Their bounding boxes overlap significantly in the frame 708 and
their identities are momentarily switched. Afterwards, the targets separate
and their identities are retained in frames 710 and 712. Best viewed in color.

Figure 5.9 shows an example of false positive. This happens because of
the spurious detections provided by the object detector. Our current approach
does not model such spurious detections, which are typically characterized by
their low confidence values, explicitly.

Frame 7073 Frame 7077 Frame 7082 Frame 7094

Figure 5.9: False positive. A false target 3 appears in frame 7073 and lasts
until frame 7094. Best viewed in color.

5.7 Conclusion and future works

In this chapter, we have focused on the problem of multi-object tracking under
sporadic appearance features. For this purpose, a number of complementary
graphs have been constructed to capture the spatio-temporal and the appear-
ance information. Afterwards, the multi-object tracking has been formulated
as a consistent labeling problem in the associated graphs. The proposed solu-
tion is based on DC (difference of convex) programming, for which we have
provided both the joint as well as node-wise label optimization solutions. We
show that node-wise label propagation allows us to scale up the algorithm
with the number of nodes. Two further extensions of the proposed approach
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have been investigated. First, we have proposed a parallel implementation of
the node-wise label propagation. Second, the node-wise decomposition has
been embedded in an incremental graph construction step.

Interesting paths to investigate in future research include the extensions of
the framework to embed higher order motion models in the spatio-temporal
graph construction, and to handle the range of features confidence levels in
a continuous manner. This would be in contrast with our current approach,
which turns the variable reliability of the features into sporadic measurements
through hard thresholding.



Conclusions and

Future Works 6
6.1 Conclusions

Multi-object tracking (MOT) is an important issue in computer vision. It has
numerous applications in multiple disciplines such as player tracking in sport
analysis, people’s tracking in surveillance, cell movement in biology, crack
evolution in material science, etc.

We focused on detection-based multi-object tracking approach. In such ap-
proach, objects-of-interest are first detected at each time instant. Afterwards,
MOT is formulated as the problem of linking these detections into tracks of
single targets using location and appearance features using graph-based for-
malisms. Previous graph-based methods impose strict assumptions about
the features reliability and availability, resulting in a simplified formulation.
These simplifications are not applicable in the scenarios for which the level of
noise affecting the feature observation process is not constant for al detections,
resulting in features affected by non-stationary noise or even sporadic in time
and space.

In this thesis, we have addressed the MOT problem in presence of such
unreliable features. First, we formulated the problem as an iterative hypothesis
testing (IHT) strategy in Chapter 3. A node was selected to define a possible
target appearance hypothesis. Given this hypothesis, a shortest-path compu-
tation was performed to check if the node could be aggregated to its neigh-
boring nodes unambiguously. The criteria for checking the ambiguity of the
shortest-path was relaxed progressively. We observe that the proposed IHT
is not only effective in exploiting such noisy and/or sporadic appearance fea-
tures, but also computationally efficient due to its multi-scale strategy.

Chapter 4 builds on top of the IHT and addresses the problem of assigning
labels (or, identities) to the tracklets in the context of sport player recognition.

109
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As the appearance features cannot be detected with the same reliability along
the sequence, the identity of a tracklet, inferred from the accumulated appear-
ance features, is not always unambiguous. In order to infer the identities of
the ambiguous tracklets, messages are exchanged between the tracklets (or,
nodes). We have shown that the order in which messages are exchanged be-
tween the tracklets affects the quality of the solution. Specifically, we have
proposed to prioritize the nodes so that (i) less ambiguous nodes transmit
their messages first, and (ii) messages are gathered only from the less ambigu-
ous nodes. We have observed that such prioritizing not only converges faster
but also provides better recognition rate.

In Chapter 5, we have formulated the MOT problem as a labeling prob-
lem in a number of complementary graphs. First of all, a number of graphs is
constructed by exploiting various relationships between the detections such
as spatial proximity, appearance similarity and exclusivity. Afterwards, la-
bels are assigned to the nodes such that the nodes that are similar in terms
of space and appearance are labeled similarly, whereas the nodes that violate
spatio-temporal constraints (e.g., nodes that co-exist at the same time) receive
different labels. Our formulation leads to a difference of convex problem that
can be solved by the majorization-minimization technique. Afterwards, an ef-
ficient solution to the labeling problem has been proposed by decomposing
the big problem into small node-wise problems that can be solved locally. The
decomposition not only reduces the computational complexity, but also sup-
ports an incremental and scalable graph construction. Moreover, it opens the
possibility for a parallel implementation.

6.2 Future works

In this section, we first suggest possible improvements to each contribution
of the thesis. Afterwards, we propose some interesting paths for further re-
search.

We start with the iterative hypothesis testing (IHT) strategy, presented
in Chapter 3. Currently, the inference of the tracklet appearance is done by
weighted average of the appearances of individual detections within the track-
let (refer to Equation 3.6). This is based on the assumption that the appearance
features are affected by Gaussian noise. We would like to stress that this infer-
ence should be adapted to the characteristics of the feature observation pro-
cess. For example, when the appearance features of the detections are affected
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by outliers, a RANSAC-like approach should be used. Moreover, the appear-
ance dissimilarity of a node with respect to the key-node is computed as the
`2-distance between them (refer to Equation 3.7). Obviously, this definition
of the distance does not generalize to all kinds of features and it needs to be
defined according to the feature type. For example, when region covariance
[104] is considered to describe the appearance, the distance between two re-
gion covariance matrices cannot be effectively described by `2-distance. Based
on these two observations, we suggest to adapt the tracklet appearance infer-
ence step and appearance dissimilarity definition with the tracking scenario
at hand.

The discriminative label propagation (DLP) framework, presented in Chap-
ter 5, can be improved in several ways. Some of them are:

• Embedding higher order motion models. By embedding the higher
order motion models during graph construction step, false detections
can be handled more effectively as they are generally incoherent with
motion models.

• Using confidence levels in a continuous manner. Currently, the graph
construction step turns the variable reliability of the features into spo-
radic measurements by hard thresholding. By exploiting the feature
confidence values, the label propagation can be improved.

• Exploiting exclusivity based on appearance information. Currently,
the exclusion graph is constructed based on the spatio-temporal infor-
mation only. It does not exploit the fact that two detections cannot be
assigned to the same target when they differ in appearance. Incorporat-
ing exclusivity from appearance information is relevant to certain appli-
cations such as sports. In sports, the jersey color can be often extracted
reliably and the color dissimilarity can be used to assert the fact that two
detections with different jersey colors cannot be labeled similarly.

In the remainder of the section, we discuss about the possible directions
for further research.

Deployment of our tracking solutions. Our proposed solutions can be de-
ployed in several scenarios such as biological cell tracking, evolution of cracks
in metals under tension, sport player tracker, etc. Each of these scenarios have
some specificities to be addressed. For example, merging and splitting of cells
are interesting to the biologists for lineage construction, cell evolution event
detection (birth, division, death, etc.). Since our IHT works with hypotheses
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and is computationally efficient, we believe that it can be adapted to handle
these specificities easily and track numerous cells over a long period of time.

Learning of target appearances for long-term tracking. To track targets
reliably over long time, a tracker should learn the target appearances discrim-
inatively. Starting with a pre-defined pool of features, a subset of features
and cut-points that discriminate the targets are selected by using, for exam-
ple, AdaBoost [98] or random fern classifier [105]. Random ferns are shown
to be more robust than AdaBoost subject to wrong training samples [106].
The training samples are defined automatically, by exploiting structural con-
straints, like ‘detections that occur at the same time-instant must be different’,
or ‘unambiguously matched detections should be same’, etc. as in [96, 97].
Such discriminatively learned appearance features can be directly integrated
into IHT framework to compute the appearance (dis)similarity of a node with
respect to the key-node appearance. Moreover, the appearance graph con-
struction step in DLP can benefit from such appearance features too.

Learning of graphs. Most of the graph-based MOT solutions are design-
based, i.e., the spatial and appearance distances are combined in some ad-hoc
way. Due to recent availability of many (diverse) MOT datasets 1,2, it is timely
and relevant to learn the graph(s) and to infer the tracks simultaneously. We
can envision to extend both IHT and DLP to learn the parameters.

1www.motchallenge.net
2http://www.codesolorzano.com/celltrackingchallenge/Cell_Tracking_Challenge/

Welcome.html

www.motchallenge.net
http://www.codesolorzano.com/celltrackingchallenge/Cell_Tracking_Challenge/Welcome.html
http://www.codesolorzano.com/celltrackingchallenge/Cell_Tracking_Challenge/Welcome.html


Derivations A
In this appendix, we provide detailed derivation/explanation of

• solution of the DC program using majorization-minimization technique
(Section A.1),

• node-wise decomposition of the global objective function (Section A.2),
and

• non-interference criterion of the parallelization (Section A.3).

These concepts have been presented in Chapter 5.

A.1 Majorization-minimization

In this appendix, we explain how we can minimize a DC problem using ma-
jorization minimization technique. We write our objective function as

g(Y) =
K

∑
l=0

αlTr(Y>L(+)
l Y)− Tr(Y>L(−)Y)

:= f (Y)− h(Y)

where f (Y) := ∑K
l=0 αlTr(Y>L(+)

l Y) and h(Y) := Tr(Y>L(−)Y) and both con-
vex in Y . We can ‘majorize’ g(Y) using convexity of h(Y) as

g(Y) = f (Y)− h(Y)

≤ f (Y)−
[

h(Y (k)) +∇h>(Y (k))(Y − Y (k))
]

= f (Y)−∇h>(Y (k))Y − h(Y (k))

+∇h>(Y (k))Y (k)

:= ĝ(Y , Y (k)) (A.1)

113
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where the inequality in Equation (A.1) is due to the convexity of h(Y). We
can see that g(Y) ≤ ĝ(Y , Y (k)), ∀Y ∈ Pnm with the equality holding when
Y = Y (k). In the literature, ĝ(Y , Y (k)) is called the majorization of g(Y) [91].
Since we have ∇ĝ(Y) = ∇ f (Y) − ∇h(Y (k)), the Lipschitz constant of ∇ĝ,
written in short as LC(∇ĝ), is same as that of ∇ f̂ , i.e., LC(∇ĝ) = LC(∇ f ).

From Equation A.1, the solution

Y (k+1) = argmin
Y∈Pnm

ĝ(Y , Y (k)) (A.2)

follows the inequality

g(Y (k+1)) ≤ ĝ(Y (k+1), Y (k)) ≤ ĝ(Y (k), Y (k)) = g(Y (k)), (A.3)

where the first inequality and the last equality follow from Equation (A.1) and
the second inequality follows from Equation (A.2). Therefore, above iterate
in Equation (A.2) monotonically decreases g(Y). In order to solve the convex
problem in Equation (A.2), we use the projected gradient method [92], which
is a special forward-backward splitting method [107], as

Y (l+1) = ProjP
(

Y (l) − βl∇ĝ(Y (l), Y (k))
)

, (A.4)

where Proj is the projection onto the probability simplex P , and βl is the
step size that can be fixed or determined by the line search. We can set βl ≤
1/LC(∇ĝ) = 1/LC(∇ f ) = 1/λmax, where λmax is the largest eigenvalue of
L(+)

eff := ∑K
l=0 αl L

(+)
l .

Alternatively, a DC program can also be minimized by using proximal
methods [108]. We refer the readers to [108] for details.

A.2 Node-wise decomposition of the global objec-

tive function

In this section, we derive our node-wise decomposition of the objective func-
tion

g(Y) =
n

∑
i=1

n

∑
j=1

[
K

∑
l=0

αlw
(l)
ij − w(−)

ij

]
‖yi − yj‖

2
2. (A.5)

Formally, replacing the `2-norm by a convex loss function φ in Equation (A.5),
we write the objective function as
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g(Y) =
n

∑
i=1

n

∑
j=1

[
K

∑
l=0

αlw
(l)
ij − w(−)

ij

]
φ(yi, yj) ≡

n

∑
i=1

n

∑
j=1

w(eff)
ij φ(yi, yj), (A.6)

where we define w(eff)
ij := ∑K

l=0 αlw
(l)
ij − w(−)

ij .
We would like to isolate the contribution of the p-th node as

g(Y) =
n

∑
i=1

n

∑
j=1

w(eff)
ij φ(yi, yj)

=
n

∑
j=1

w(eff)
pj φ(yp, yj) + ∑

i 6=p

n

∑
j=1

w(eff)
ij φ(yi, yj) (A.7)

=
n

∑
j=1

w(eff)
pj φ(yp, yj) + ∑

i 6=p

[
w(eff)

ip φ(yi, yp) + ∑
j 6=p

w(eff)
ij φ(yi, yj)

]
(A.8)

=
n

∑
j=1

w(eff)
pj φ(yp, yj) + ∑

i 6=p
w(eff)

ip φ(yi, yp)︸ ︷︷ ︸
gp(Y)

+ ∑
i 6=p

∑
j 6=p

w(eff)
ij φ(yi, yj) (A.9)

In Equation (A.9), the second term is independent of yp and we define
gp(Y) as

gp(Y) :=
n

∑
j=1

w(eff)
pj φ(yp, yj) + ∑

i 6=p
w(eff)

ip φ(yi, yp) (A.10)

Given Y (k) = (y(k)
1 , · · · , y(k)

n )> ∈ Pnm, we choose an index p ∈ {1, · · · , n}
and compute a new iterate Y (k+1) = (y(k+1)

1 , · · · , y(k+1)
n )> ∈ Pnm that satisfies

y(k+1)
i


= y(k)

i if i 6= p,

∈ argmin
y∈∆m

gi(y
(k)
1 , · · · , y, · · · , y(k)

n ) if i = p.
(A.11)

Then, by construction,

g(Y (k+1)) = gp(Y (k+1)) + ∑
i 6=p

∑
j 6=p

w(eff)
ij φ(y(k)

i , y(k)
j ) (A.12)

≤ gp(Y (k)) + ∑
i 6=p

∑
j 6=p

w(eff)
ij φ(y(k)

i , y(k)
j ) (A.13)

= g(Y (k)). (A.14)

That means, the node-wise minimization will monotonically decrease the ob-
jective function. This approach is similar to the co-ordinate descent method.

It should be noted that we have not assumed anything in Equation (A.10),
except the convexity of φ. To proceed, we make following assumptions:
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• The loss function φ is coincident, i.e., φ(yi, yi) = 0.

• The loss function is symmetric with respect to its arguments, i.e., φ(yi, yj) =

φ(yj, yi).

Then, we can simplify Equation (A.10) as

gp(y1, · · · , yn) =
n

∑
j=1

(
w(eff)

pj + w(eff)
jp
)
φ(yp, yj)

=
n

∑
j=1

w̃(eff)
pj φ(yp, yj), (A.15)

where w̃(eff)
pj := w(eff)

pj + w(eff)
jp . It should be noted that gp(Y) is a difference

of convex (DC) function which can be minimized by using majorization min-
imization [91] or proximal methods [108].

A.3 Parallel implementation

In this section, we derive the non-interference criterion for the parallelization.
Recalling Equation (A.6), we write our objective function as

g(Y) =
n

∑
i=1

n

∑
j=1

w(eff)
ij φ(yi, yj)

As discussed earlier, we can decompose the objective function around node
p as

g(Y) = gp(Y) + ∑
i 6=p

∑
j 6=p

w(eff)
ij φ(yi, yj) (A.16)

where gp(Y) := ∑j w̃(eff)
pj φ(yp, yj) and w̃(eff)

pj := w(eff)
pj + w(eff)

jp .
Let us decompose the second term around node q 6= p. Then,

∑
i 6=p

∑
j 6=p

w(eff)
ij φ(yi, yj) (A.17)

= ∑
j 6=p

w(eff)
qj φ(yq, yj) + ∑

i/∈{p,q}
∑
j 6=p

w(eff)
ij φ(yi, yj) (A.18)

= ∑
j 6=p

w(eff)
qj φ(yq, yj) + ∑

i/∈{p,q}
w(eff)

iq φ(yi, yq) + ∑
i/∈{p,q}

∑
j/∈{p,q}

w(eff)
ij φ(yi, yj)

(A.19)

= ∑
j 6=p

(w(eff)
qj + w(eff)

jq )φ(yq, yj) + ∑
i/∈{p,q}

∑
j/∈{p,q}

w(eff)
ij φ(yi, yj) (A.20)

= gq(Y)− w̃(eff)
qp φ(yp, yq) + ∑

i/∈{p,q}
∑

j/∈{p,q}
w(eff)

ij φ(yi, yj) (A.21)
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where we used the fact that φ(yq, yq) = 0 in the second term of Equation (A.19)

to proceed to Equation (A.20) and we use the fact that gq(Y) := ∑j w̃(eff)
qj φ(yq, yj)

in Equation (A.21).

Consider the third term in Equation (A.21). We decompose it at node r as

∑
i/∈{p,q}

∑
j/∈{p,q}

w(eff)
ij φ(yi, yj) (A.22)

= gr(Y)− w̃(eff)
rp φ(yp, yr)− w̃(eff)

rq φ(yq, yr) + ∑
i/∈{p,q,r}

∑
j/∈{p,q,r}

w(eff)
ij φ(yi, yj)

(A.23)

Combining all the terms, we can write the objective function as

g(Y) = gp(Y) + gq(Y) + gr(Y)−
[
w̃(eff)

pq φ(yp, yq) + w̃(eff)
rp φ(yp, yr)

+ w̃(eff)
qr φ(yq, yr)

]
+ ∑

i/∈{p,q,r}
∑

j/∈{p,q,r}
w(eff)

ij φ(yi, yj) (A.24)

We can generalize the decomposition of Equation (A.24) as

g(Y) = ∑
i∈J

gi(Y)− ∑
i∈J

∑
j∈J

w̃(eff)
ij φ(yi, yj) + ∑

i∈J̄
∑
j∈J̄

w(eff)
ij φ(yi, yj), (A.25)

where J is the set of nodes at which the objective function has been decom-
posed, and J̄ is its complement.

The negative terms in Equation (A.25) are called interference terms. To nul-
lify these terms, we should pickup the nodes in J such that there are no edges
between the nodes in J , i.e., ∀(p, q) ∈ J × J , w(eff)

pq = w(eff)
qp = 0. Then,

Equation (A.25) becomes

g(Y) = ∑
i∈J

gi(Y) + ∑
i∈J̄

∑
j∈J̄

w(eff)
ij φ(yi, yj) (A.26)

At each node i ∈ J , we solve a local optimization problem as

y(k+1)
i ∈ argmin

yi∈∆m

gi(y
(k)
1 , ..., y(k)

i−1, yi, y(k)
i+1, ..., y(k)

n ) (A.27)

We denote by Y (k+1) := [y(k)
1 , ..., y(k+1)

p , ..., y(k+1)
q , ..., y(k+1)

r , ..., y(k)
n ]> the la-

bel assignment matrix after having its |J | coordinate(s) updated in parallel.
Then,
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g(Y (k))− g(Y (k+1)) = ∑
i∈J

[
gi(Y (k))− gi(Y (k+1))

]
+ ∑

i∈J̄
∑
j∈J̄

[
w(eff)

ij φ(y(k)
i , y(k)

j )− w(eff)
ij φ(y(k)

i , y(k)
j )
]

= ∑
i∈J

[
gi(Y (k))− gi(Y (k+1))

]
(A.28)

Consider

gi(Y (k))− gi(Y (k+1))

= ∑
j

w̃(eff)
ij

[
φ(y(k)

i , y(k)
j )− φ(y(k+1)

i , y(k+1)
j )

]
= ∑

j∈J
w̃(eff)

ij

[
φ(y(k)

i , y(k)
j )− φ(y(k+1)

i , y(k+1)
j )

]
+ ∑

j∈J̄
w̃(eff)

ij

[
φ(y(k)

i , y(k)
j )− φ(y(k+1)

i , y(k)
j )
]

(A.29)

In Equation (A.29), the first term is zero because we have chosen nodes
i and j such that there are no edges between i and j, i.e., w̃(eff)

ij = 0. By the

same argument, we can add a term ∑j∈J w̃(eff)
ij

[
φ(y(k)

i , y(k)
j )− φ(y(k+1)

i , y(k)
j )
]

in Equation (A.29). Thus, we have

gi(Y (k))− gi(Y (k+1)) = ∑
j∈J

w̃(eff)
ij

[
φ(y(k)

i , y(k)
j )− φ(y(k+1)

i , y(k)
j )
]

+ ∑
j∈J̄

w̃(eff)
ij

[
φ(y(k)

i , y(k)
j )− φ(y(k+1)

i , y(k)
j )
]

= ∑
j

w̃(eff)
ij
[
φ(y(k)

i , y(k)
j )− φ(y(k+1)

i , y(k)
j )
]

≥ 0. (A.30)

where the inequality follows because of the definition of y(k+1)
i in Equa-

tion (A.27). Combining Equations (A.28) and (A.30), we conclude that g(Y (k)) ≥
g(Y (k+1)). Therefore, the objective function decreases at each iteration and the
overall decrement is sum of individual decrements.
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Datasets C
The proposed algorithms have been evaluated on the following well-known
and challenging datasets: APIDIS [6], PETS-2009 S2/L1 [82] and TUD Stadt-
mitte [103]. APIDIS is a multi-camera sequence acquired during a basketball
game, whereas the other two are monocular sequences. In the following, we
refer to PETS-2009 S2/L1 and TUD Stadtmitte by PETS and TUD respectively.

APIDIS is a 15 minute video dataset is generated by 7 cameras distributed
around a basketball court. The frame rate is 25 fps. The candidate detec-
tions are computed independently at each time instant based on a ground
occupancy map, as described in [18]. For each detection, the jersey color and
its digit are computed to define the appearance features. In short, the jersey
color is computed as the average blue component divided by the sum of av-
erage red and green components, over the foreground silhouette of the player
within the detected rectangular box. However, depending on whether the de-
tection is close (far) from the camera, and also whether the detection is visible
(occluded) in each camera view, the measurement is considered (discarded).
The digit feature is obtained by running a digit-recognition algorithm [87] in
the same rectangular region. The digit feature is inherently sporadic as it is
available only when the digit on the jersey faces the camera. These features
are computed for all available cameras. Finally, the confidence of the feature
is computed for each feature individually as

• for color feature, it is computed the ratio of number of cameras, for
which features are computed, to the total number of available cameras.

• for digit feature, it is set to either zero or one. It is set to one if the digit-
recognition algorithm decides that the digit is present inside at least one
of the cameras. Otherwise, it is set to zero. Note that this might not
correspond to the actual confidence in the estimated/recognized digit.
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For example, an actual jersey number is 10 might be recognized by the
digit-recognition algorithm as digit 0 but the confidence is set to 1.

The ground-truth is obtained from [6]. Some authors use a subset of this
video. For example, Russel et al. [73] uses only 500 frames, whereas Ben Shitrit
et al. [27] uses only 1 minute (=1500 frames) of this dataset. The main challenge
in the APIDIS dataset comes from the inherent sporadic nature of the digit
feature. Moreover, the jersey color is not measured with the same reliability
level, since it becomes unreliable in case of occlusions between players.

A sample of such a measurement is shown in Figure C.1 for a specific
player (digit=8, color=0.24). It can be easily observed that the appearance
characteristics are noisy and sometimes missing. Indeed, these features can-
not always be reliably measured for each frame because of occlusions, illumi-
nation change, unfavorable shirt orientation with respect to the camera, etc.
Despite the fact that these features are noisy and sporadic, they are very dis-
criminant and relevant because they allow the identification of the players
which, in turn, supports the interpretation of the game directly.
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Figure C.1: Shirt color and digit measurement along time for a player
(digit=8, color=0.24). The shirt color feature is more frequently available than
the digit feature. However, the color measurement is not reliable all the time.
The digit feature is highly sporadic. Best viewed in color.

Some sample frames of the APIDIS dataset are depicted in Figure C.2.
PETS and TUD are publicly available monocular datasets. The PETS dataset

is 795 frames long, with moderate target density. However, the pedestrians
wear similar dark clothes, which makes appearance comparison very chal-
lenging. TUD is 179 frames long but the targets frequently occlude each other
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Frame 900

Frame 1200

Frame 1500

Figure C.2: Sample frames of APIDIS dataset. Only views 1 and 6 are shown.

because of the low view-point. Detection results and the ground-truth are ob-
tained from [109]. Afterwards, 8-bin CIE-LAB color histograms are computed
for each channel of each bounding box, resulting in a 24-bin appearance vec-
tor. We ignore the histogram(s) if the overlap ratio between any two bounding
boxes exceeds 5%. This makes the features sporadic over time.

Some sample frames from PETS and TUD datasets are depicted in Fig-
ure C.3.



124 Appendix C. Datasets

Frame 0 Frame 200 Frame 400

(a) PETS dataset

Frame 7022 Frame 7100 Frame 7150

(b) TUD dataset

Figure C.3: Sample frames from PETS and TUD datasets. Best viewed in
color.
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