Discriminative Label Propagation for Multi-object Tracking with Sporadic Appearance Features

> Amit Kumar K.C. Christophe De Vleeschouwer

Organization

2

Context/Introduction
 Graph construction
 Label propagation framework
 Optimization
 Results

4

p<u>eline</u> <u>Node</u>

•and many more...

7

time

7

8

Edge

 Relationship between two nodes
 Assigned some weight

8

Detections

Input video

Detect Link the detections Graph=(Nodes,Edges,Weights)

Edge

 Relationship between two nodes
 Assigned some weight

time

11

Focus of the talk!

Specifically,

No appearance measurement

time

Two targets!

Detection with appearance measurement

What if appearance features are not available every time?

Examples...

13

Color histogram is unreliable and hence is discarded.

UK

ling.

Digit feature is available only when it faces the camera.

HENREPEMS

DE GRAEVE

How to link the detections while exploiting such sporadic features?

Construct a set of graphs
Label the nodes consistently

14

How many different relationships between the nodes can you deduce?

Our Close/far in position-time

Our Close/far in appearance(s)

 Two nodes that occur at the same time are different objects.

time

Spatio-temporal graph

Appearance graph

Exclusion graph

17

Represent a sample by a <u>linear combination of</u> its local neighbors.

Locally linear embedding (LLE)

Solve for the "reconstruction" weights $w^{\star} = \operatorname{argmin} \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{w} \|_{2}^{2}$ subject to $\mathbf{1}^{\top} \boldsymbol{w} = 1, \boldsymbol{w} \succeq \mathbf{0}.$ 11)

i=1

Probability simplex

Neighbors of y 18

Represent a sample by a <u>linear combination of</u> <u>its local neighbors</u>.

Locally linear embedding (LLE)

What is sample y? How to define the neighbors X of y?

Solve for the "reconstruction" weights $w^* = \underset{w}{\operatorname{argmin}} \|y - Xw\|_2^2$ subject to $\mathbf{1}^\top w = 1, w \succeq \mathbf{0}$.

Neighbors of $oldsymbol{y}$ 19

Probability simplex

Spatio-temporal graph

Appearance graph

Exclusion graph

Spatio-temporal graph

t: time instant
c: position (bounding box)

Relative importance between time difference and position difference

X: samples within T except those occurring at t

 $oldsymbol{y}=$

Spatio-temporal graph

Appearance graph

Exclusion graph

y: appearance
feature
vector (e.g.,
color histogram)

Appearance graph

X: all other
samples that
have appearance
features,
except those
occurring at t.

Allows connection between nodes for which appearance features occur only sporadically.

teature vector (e.g., color histogram)

Appearance graph

24

samples that have appearance features, except those occurring at t.

Exclusion graph

Spatio-temporal graph

Appearance graph

•Exploit the <u>mutual exclusivity</u> between the nodes.

•X: all nodes that occur at the same time instant.

Exclusion graph

Recall.

Set of graphs

Spatio-temporal and appearance graph(s)

capture the proximity in space, time and appearance.

Exclusion graph

• co-occurring nodes CANNOT have same labels.

Multi-object tracking as a...

Consistent labeling problem in a set of associated graphs.

G = (V, E, W) Graph

 \boldsymbol{z}_i

Label distribution of the i-th node

 $Z = (\boldsymbol{z}_1,...,\boldsymbol{z}_{|V|})^\top$ Label assignment matrix

$\mathcal{E}_G(Z) = \frac{1}{2} \sum_{i=1}^{|V|} \sum_{j \in \mathcal{N}_i} W_{ij} \|\boldsymbol{z}_i - \boldsymbol{z}_j\|^2 \qquad \text{Labeling error}^{[1]}$

 $Z = (\boldsymbol{z}_1, ..., \boldsymbol{z}_{|V|})^\top$

 $\mathcal{E}_G(Z) = rac{1}{2} \sum_{j=1}^{|V|} \sum_{j=1}^{|V|} W_{ij} \|\boldsymbol{z}_i - \boldsymbol{z}_j\|^2$ Labeling error^[1]

G = (V, E, W) Graph

 $i=1 \ i \in \mathcal{N}_i$

 $oldsymbol{z}_i$ Label distribution of the i-th node

Label.assignment matrix

G = (V, E, W)Graph

 \boldsymbol{z}_i

 \boldsymbol{z}_i

Label distribution of the i-th node

 $Z = (\boldsymbol{z}_1, ..., \boldsymbol{z}_{|V|})^\top$ Label assignment matrix

 $\mathcal{E}_G(Z) = \frac{1}{2} \sum_{i=1}^{|V|} \sum_{j \in \mathcal{N}_i} W_{ij} \|\boldsymbol{z}_i - \boldsymbol{z}_j\|^2 \qquad \text{Labeling error}$ $\frac{W_{ij}}{z_j}$

G = (V, E, W) Graph

 \boldsymbol{z}_i

Label distribution of the i-th node

 $Z = (\boldsymbol{z}_1,...,\boldsymbol{z}_{|V|})^{ op}$ Label assignment matrix

 $\begin{aligned} \mathcal{E}_G(Z) &= \frac{1}{2} \sum_{i=1}^{|V|} \sum_{j \in \mathcal{N}_i} W_{ij} \| \boldsymbol{z}_i - \boldsymbol{z}_j \|^2 & \text{Labeling error}^{[1]} \\ &= \mathbf{Tr}(Z^\top LZ) \end{aligned}$

Graph Laplacian ●Positive semi-definite •Labeling error is convex. L = D - W $D = \operatorname{diag}(d_1, \dots, d_{|V|})$ $\mathcal{E}_G(Z) = rac{1}{2} \sum_{i=1}^{|V|} egin{array}{c} d_i &= \sum_{j \in \mathcal{N}_i} W_{ij} \ &= 1 \ &= 1 \ &= 1 \ = 1 \ J \in \mathcal{N}_i \ &= \mathbf{Tr}(Z^{ op} L Z) \end{array}$

abel distribution of he i-th node

abel assignment matrix

abeling error^[1]

raph

So far,

 Laplacian L is used to denote a graph.
 Labeling error measures the <u>inconsistency</u> in labels between the neighboring nodes
 Labeling error in CONVEX.

In our framework,

Laplacian(s)

 $L_{0}^{(+)}$

I(-)

1 spatio-temporal graph
K appearance graph(s)
1 exclusion graph

$$L_p^{(+)}, p = 1, ..., K$$

Se would like to:

<u>minimize</u> error due to spatio-temporal and appearance graphs

[®] <u>maximize</u> error due to exclusion graph

K $Z^{\star} = \operatorname{argmin}_{Z \in \mathcal{P}} \sum_{p=0} \alpha_p \operatorname{Tr}(Z^{\top} L_p^{(+)} Z) - \operatorname{Tr}(Z^{\top} L^{(-)} Z)$

 $:= \arg\min_{Z \in \mathcal{P}} \left[f(Z) - g(Z) \right]$

Difference of convex functions!^[2]

[2] B. K. Sriperumbudur and G. R. G. Lankriet, "On the convergence of the concave-convex procedure", NIPS, 2009 38

Iterative solution

Randomly initialize $Z^{(0)} \in \mathcal{P}$

Set k = 0

Repeat

Linearize g(Z) at current solution $Z^{(k)}$ Solve the convex optimization problem $Z^{(k+1)} = \arg\min_{Z \in \mathcal{P}} \left[f(Z) - \nabla g^{\top}(Z^{(k)})Z \right]$

Set k=k+1 $\|Z^{(k+1)}-Z^{(k)}\|_F<\epsilon$

Some results

Three datasets
 APIDIS (multi-view, basketball)
 PETS2009 S2/L1 (monocular, surveillance)
 TUD Stadtmitte (monocular, surveillance)

Results

Some numerical results

Multiple Object Tracking Accuracy (MOTA)
Multiple Object Tracking Precision (MOTP)

Some numerical results

Multiple Object Tracking Accuracy (MOTA)
Multiple Object Tracking Precision (MOTP)

Measures # errors in tracking

Measures how well the detection is aligned with the ground truth

Some numerical results

DATASET	No Appearance		With Appearance	
	MOTA	MOTP	ΜΟΤΑ	MOTP
TUD Stadtmitte	62.6	73.5	79.3	73.9
PETS 2009 S2/L1	82.75	71.21	91.01	70.99
APIDIS	81.25	57.13	83.80	60.01

Thank you!

Any questions?