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time

Node
A hypothetical variable
•Time instant
•Position
•Bounding box
•Color histogram
•and many more...
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What if appearance features are not 
available every time?

time

No appearance 
measurement

12

Detection with 
appearance 
measurement

Specifically,

Two 
targets!

12



Color histogram is unreliable 
and hence is discarded.

Digit feature is available  
only when it faces the 

camera.

Examples...
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How to link the 
detections while 
exploiting such 

sporadic features?

Construct a set of graphs

Label the nodes consistently
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Construct a set of graphs...

time

How many different relationships 
between the nodes can you deduce?

Position
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Construct a set of graphs...

time

•Close/far in position-time
•Close/far in appearance(s)
•Two nodes that occur at the same time are 
different objects.

Position
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Construct a set of graphs...
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Represent a sample by a linear combination of 
its local neighbors.

~ Locally linear embedding (LLE)

Solve for the “reconstruction” weights

x4x1

x2 x3

y

w1

w2 w3

w4
y ⇡

4X

i=1

wixi

w?
= argmin

w
ky �Xwk22 subject to 1>w = 1,w ⌫ 0.

Neighbors ofy Probability simplex18

Construct a set of graphs...
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Construct a set of graphs...

What is sample y?
How to define the neighbors X of y?
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Spatio-temporal graph Appearance graph Exclusion graph
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Construct a set of graphs...
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T

y

Spatio-temporal graph
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Construct a set of graphs...

y = (�t, c)>

t: time instant     
c: position (bounding box)

Relative importance between 
time difference and position 
difference

{

X: samples within T except 
those occurring at t
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Spatio-temporal graph Appearance graph Exclusion graph
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Construct a set of graphs...
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Appearance graph
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Construct a set of graphs...

y

y: appearance 
feature         
vector (e.g., 
color histogram)

X: all other 
samples that 
have appearance 
features, 
except those 
occurring at t.
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Appearance graph

24

Construct a set of graphs...

y

y: appearance 
feature         
vector (e.g., 
color histogram)

X: all other 
samples that 
have appearance 
features, 
except those 
occurring at t.

Allows connection between nodes for 
which appearance features occur only 

sporadically.
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Spatio-temporal graph Appearance graph Exclusion graph
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Construct a set of graphs...
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Exclusion graph
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Construct a set of graphs...

•Exploit the mutual exclusivity 
between the nodes. 

•X: all nodes that occur at the 
same time instant. y
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Recall..

A set of graphs
Spatio-temporal and appearance graph(s) 

• capture the proximity in space, time and 
appearance.

Exclusion graph

• co-occurring nodes CANNOT have same labels. 
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Multi-object 
tracking as a...

Consistent labeling problem in a set 
of associated graphs.
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Some preliminaries
G = (V,E,W )

Z = (z1, ..., z|V |)
>

Graph

EG(Z) =
1

2

|V |X

i=1

X

j2Ni

Wijkzi � zjk2

Label distribution of 
the i-th node 

zi

Label assignment matrix

Labeling error[1]

[1] X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised learning using Gaussian fields 
and harmonic functions”, ICML, 2003. 29
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probability that the 
i-th node has a 

label 1 ≤ j ≤ |V|.
zi(j)
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= Tr(Z>LZ)

Graph Laplacian
•Positive semi-definite
•Labeling error is convex.
L = D �W

D = diag(d1, ..., d|V |)

di =
X

j2Ni

Wij

= 1
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So far,

Laplacian L is used to denote a graph.

Labeling error measures the inconsistency 
in labels between the neighboring nodes

Labeling error in CONVEX.
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In our framework,

• 1 spatio-temporal graph

• K appearance graph(s)

• 1 exclusion graph

L(+)
p , p = 1, ...,K

L(+)
0

L(�)

Laplacian(s)

We would like to:

minimize error due to spatio-temporal 
and appearance graphs

maximize error due to exclusion graph
35
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Z? = argmin
Z2P

KX

p=0

↵pTr(Z
>L(+)

p Z)�Tr(Z>L(�)Z)
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:= argmin
Z2P

[f(Z)� g(Z)]

Difference of convex functions![2]

[2] B. K. Sriperumbudur and G. R. G. Lankriet, “On the convergence of the concave-convex 
procedure”, NIPS, 2009 
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Solve the convex optimization problem
Z(k+1) = argmin

Z2P

h
f(Z)�rg>(Z(k))Z

i

Linearize     at current solution g(Z) Z(k)

Set k = k + 1

Repeat

Until kZ(k+1) � Z(k)kF < ✏

Iterative solution
Randomly initialize Z(0) 2 P

Set      k = 0
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Some results

Three datasets

APIDIS (multi-view, basketball)

PETS2009 S2/L1 (monocular, surveillance)

TUD Stadtmitte (monocular, surveillance)
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Results
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Some numerical 
results

Multiple Object Tracking Accuracy (MOTA)

Multiple Object Tracking Precision (MOTP)
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Some numerical 
results

Multiple Object Tracking Accuracy (MOTA)

Multiple Object Tracking Precision (MOTP)

Measures # errors in tracking

Measures how well the detection is 
aligned with the ground truth
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Some numerical 
results

DATASET
No AppearanceNo Appearance With AppearanceWith Appearance

DATASET
MOTA MOTP MOTA MOTP

TUD Stadtmitte 62.6 73.5 79.3 73.9

PETS 2009 S2/L1 82.75 71.21 91.01 70.99

APIDIS 81.25 57.13 83.80 60.01
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Thank you!

Any questions?
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