Compressive acquisition of linear dynamical systems

Amirafshar Moshtaghpour

May 2015
Outline

- Background
- CS-LDS Architecture
- Estimating the state sequence
- Estimating the observation matrix
- Conclusion
Outline

- **Background**
- CS-LDS Architecture
- Estimating the state sequence
- Estimating the observation matrix
- Conclusion
Background

Compressed Sensing (CS)

- Original signal: \(y \in \mathbb{R}^N \)
- \(K \)-sparse signal: \(s \in \mathbb{R}^N \)
 - \(y = \Psi s \)
 - \(s \) has at most \(K \) non-zero elements
- Measurement matrix: \(\Phi \in \mathbb{R}^{M \times N} \)
 - \(K < M \ll N \)
- Measurement vector: \(z \in \mathbb{R}^M \)
- Measurement noise: \(e \in \mathbb{R}^M \)

One possibility to recover \(y \)
\(\Phi \sim i.i.d \) Gaussian
\(M = 4K \log \frac{N}{K} \)
Background

Compressed Sensing (CS)
- Sparse Signals
- Structured-Sparse Signals
Compressed Sensing (CS)

K-sparse signals comprise a particular set of K-dim subspaces

\[\|signal\|_0 \leq K \]

union of K-dimensional subspaces

A K-sparse **signal model** comprises a particular (reduced) set of K-dim subspaces

Compressive acquisition of linear dynamical systems
Background

Compressed Sensing (CS) [4, 5]

<table>
<thead>
<tr>
<th>a = CoSaMP(Φ, u, s)</th>
</tr>
</thead>
</table>

Input: Sampling Matrix Φ, measurement vector u, sparsity level s

Output: An s-sparse approximation a of the target signal

| a^0 ← 0 |
| v ← u |
| k ← 0 |

repeat

| k ← k + 1 |
| y ← Φ*v |

| Ω ← supp(M_2(y, s)) |

| Ω ← supp(y_{2s}) |

| T ← Ω ∪ supp(a^{k-1}) |

| b|_T ← Φ^†u |

| b|_{T^c} ← 0 |

| a^k ← b_s |

| v ← u - Φa^k |

until halting criterion true

Trivial initial approximation

Current samples = input samples

Iteration index

Form signal proxy

Identify large components

Merge supports

Signal estimation by least-square

Prune to obtain next approximation

Update current samples

Compressive acquisition of linear dynamical systems
Video compressive sensing

- y_t: the image of a scene at time t
- $Y = y_{1:T} = [y_1, \ldots, y_T]$: video of the scene from time 1 to T

Goal: to recover $y_{1:T}$ given $z_{1:T}$

1. Single Pixel Camera (SPC)
 - Duarte et al, 2008
2. Programmable Pixel Camera (P2C)
 - Hitomi et al, 2011
 - Reddy et al, 2011
 - Veeraraghavan et al, 2011

Compressive acquisition of linear dynamical systems
Background

Linear Dynamical System (LDS)

- **Dynamical system**: Change of some variables (state variables)
 - Continuous vs Discrete
 - Linear vs Non-linear

Discrete-time LDS:

\[
\begin{align*}
 x_{t+1} &= A_t x_t + B_t u_t \\
 y_t &= C_t x_t + D_t u_t
\end{align*}
\]

TI autonomous discrete-time LDS:

\[
\begin{align*}
 x_{t+1} &= A x_t \\
 y_t &= C x_t
\end{align*}
\]

- \(t \in \mathbb{R} \): time
- \(x \in \mathbb{R}^d \): state vector (variables)
- \(u \in \mathbb{R}^m \): input vector
- \(y \in \mathbb{R}^N \): observation (output) vector ≠ measurement vector
- \(A \in \mathbb{R}^{d \times d} \): state transition (dynamic) matrix
- \(B \in \mathbb{R}^{d \times m} \): input matrix
- \(C \in \mathbb{R}^{N \times d} \): observation (output or sensor) matrix
- \(D \in \mathbb{R}^{N \times m} \): feed-through matrix

Compressive acquisition of linear dynamical systems
Background

Linear Dynamical System (LDS)

- A matrix \mathbf{H} is called *Hankel matrix* if the entries on the anti-diagonals be the same, i.e. $H_{i,j} = H_{i-1,j+1}$

Given $\mathbf{h} \in \mathbb{R}^N \rightarrow \text{build } \mathbf{H} \in \mathbb{R}^{L \times K}$

Hankel matrix

$$
\mathbf{H} =
\begin{bmatrix}
 h_1 & h_2 & \cdots & h_K \\
 h_2 & h_3 & \cdots & h_{K+1} \\
 \vdots & \vdots & \ddots & \vdots \\
 h_L & h_{L+1} & \cdots & h_N \\
\end{bmatrix}
$$

$K = N - L + 1$

Given $\mathbf{Y} = y_{1:T} \in \mathbb{R}^{N \times T} \rightarrow \text{build } \mathbf{H} \in \mathbb{R}^{LN \times K}$

Block-Hankel matrix

$$
\mathbf{H} =
\begin{bmatrix}
 \mathbf{y}_1 & \mathbf{y}_2 & \cdots & \mathbf{y}_K \\
 \mathbf{y}_2 & \mathbf{y}_3 & \cdots & \mathbf{y}_{K+1} \\
 \vdots & \vdots & \ddots & \vdots \\
 \mathbf{y}_L & \mathbf{y}_{L+1} & \cdots & \mathbf{y}_T \\
\end{bmatrix}
$$

$K = T - L + 1$
Background

Linear Dynamical System (LDS)

\[
H = \begin{bmatrix}
y_1 & y_2 & \cdots & y_K \\
y_2 & y_3 & \cdots & y_{K+1} \\
\vdots & \vdots & \ddots & \vdots \\
y_L & y_{L+1} & \cdots & y_T \\
\end{bmatrix} = \begin{bmatrix}
Cx_1 & Cx_2 & \cdots & Cx_K \\
CAx_1 & CAx_2 & \cdots & CAx_K \\
\vdots & \vdots & \ddots & \vdots \\
CA^{L-1}x_1 & CA^{L-1}x_2 & \cdots & CA^{L-1}x_K \\
\end{bmatrix}
\]

= \begin{bmatrix}
C \\
CA \\
\vdots \\
CA^{L-1} \\
\end{bmatrix} \times \begin{bmatrix} x_1 & x_2 & \cdots & x_K \end{bmatrix}

= O(C, A)C(x),

\[H = U_dS_dV_d^T.\]

Compressive acquisition of linear dynamical systems
Background

LDS model for video sequences

- Challenges for video sequences:
 - Ephemeral nature of videos
 - High-dimensional signals

Few frames

Six basis frames

All frames can be estimated using linear combinations of SIX images
Outline

- Background
- CS-LDS Architecture
- Estimating the state sequence
- Estimating the observation matrix
- Conclusion
CS-LDS Architecture

Authors: A. C. Sankaranarayanan, P. K. Turaga, R. Chellappa, and R. G. Baraniuk, 2013

Goal: to build a CS framework, implementable on the SPC, for videos that are modeled as LDS.

- We seek to recover \mathbf{C} and $\mathbf{x}_{1:T}$, given compressive measurements of the form

$$\mathbf{z}_t = \Phi_t \mathbf{y}_t = \Phi_t \mathbf{C} \mathbf{x}_t$$

- $\mathbf{z}_t \in \mathbb{R}^M$, $\Phi_t \in \mathbb{R}^{M \times N}$
- Bilinear unknowns \rightarrow non-convex optimization problem

Fig. 2. Block diagram of the CS-LDS framework.

Compressive acquisition of linear dynamical systems
CS-LDS Architecture

\[\frac{N}{M} = 20, \text{ SNR: 25.81 dB} \]

\[\frac{N}{M} = 50, \text{ SNR: 24.09 dB} \]
CS-LDS Architecture

\[
\begin{align*}
\mathbf{z}_t &= \begin{bmatrix} \tilde{z}_t \\ \tilde{z}_t \end{bmatrix} = \begin{bmatrix} \tilde{\Phi} \\ \tilde{\Phi}_t \end{bmatrix} y_t, \quad \tilde{z}_t = \tilde{\Phi} C x_t, \\
\tilde{z}_t &\in \mathbb{R}^{\tilde{M}} \\
\tilde{z}_t &\in \mathbb{R}^{\tilde{M}} \\
M &= \tilde{M} + \tilde{M}
\end{align*}
\]

1. **State sequence estimation:**
 1. Build Hankel Matrix
 2. Compute SVD
 3. Compute estimated state sequences

Compressive acquisition of linear dynamical systems
2. Observation matrix estimation:

- \(\mathbf{C} \) is time-invariant
- Given \(\mathbf{Z} \) and \(\hat{\mathbf{X}} \), recover \(\mathbf{C} \)

\[
\min_{\mathbf{C}} \sum_{i=1}^{d} \left\| \Psi^T \mathbf{c}_i \right\|_1 \quad \text{s.t.} \quad \forall t, \left\| \mathbf{z}_t - \Phi_t \mathbf{C} \hat{\mathbf{x}}_t \right\|_2 \leq \epsilon,
\]

- \(\Psi \) is sparsifying basis for the columns of \(\mathbf{C} \)
Outline

- Background
- CS-LDS Architecture
- **Estimating the state sequence**
- Estimating the observation matrix
- Conclusion
Estimating the state sequence

QS#1: What are the sufficient conditions for reliable estimation?

Definition: (Observability of an LDS) An LDS is observable if the current state can be estimated from a finite number of observations (for any possible state sequence).

Lemma: Observable LDS(\mathbf{A}, \mathbf{C}) \iff the observability matrix $\mathbf{O}(\mathbf{A}, \mathbf{C})$ is full rank.

Remark: $N \gg d \rightarrow$ LDS(\mathbf{A}, \mathbf{C}) is observable with high probability

Lemma: for $N > d$, the LDS($\mathbf{A}, \tilde{\Phi}\mathbf{C}$) is observable with high probability, if
 - $\tilde{M} \geq d$
 - Entries of $\tilde{\Phi}$ are i.i.d samples of a sub-Gaussian distribution.

Sum up: Then we can estimate state sequences by factorizing the block-Hankel matrix.
Estimating the state sequence

QS#2: How about $\tilde{M} = 1$? (one common measurement for each video sequence)

Theorem: $\tilde{M} = 1$ and the elements of $\tilde{\Phi} \in \mathbb{R}^{1 \times N}$ be i.i.d from a sub-Gaussian distribution. With high probability $\mathbf{O}(\mathbf{A}, \Phi \mathbf{C})$ is full rank if
- The state transition matrix is diagonalizable,
- Its eigenvalues and eigenvectors are unique.

QS#3: How about $\tilde{M} < 1$? (missing measurements in some time instants)
- We obtain common measurements at some time instants $I \subset \{1, \ldots, T\}$
- We have knowledge of $\tilde{z}_i, i \in I$
- Incomplete knowledge of the block-Hankel matrix

Matrix completion: $\min \text{rank } (\mathbf{H}(\tilde{z}_i))$ s.t. $i \in I$
- Non-convex

Solution: (Nuclear norm) $\min \|\mathbf{H}(\tilde{z}_i)\|_*$ s.t. $i \in I$
Estimating the state sequence

Accuracy of state sequence estimation from common measurements

- $T = 500, d = 10$
- Reconstruction SNR $= 10 \log_{10} \left(\frac{\sum_{t=1}^{T} \|y_t\|_2^2}{\sum_{t=1}^{T} \|y_t - \hat{y}_t\|_2^2} \right)$

Compressive acquisition of linear dynamical systems
Outline

- Background
- CS-LDS Architecture
- Estimating the state sequence
- Estimating the observation matrix
- Conclusion
Estimating the observation matrix

- Images are sparse in some domains like Wavelet and DCT.
- Smooth changes in sequential frames
 - The motion is spatially correlated.
 - The supports of frames are highly overlapping.
 - The columns of \mathbf{C} captures dominant motion patterns.
 - \mathbf{C} can be interpreted as a basis for the frames of the video.
 - The columns of \mathbf{C} are sparse in the same domain.

$$\min_{\mathbf{c}_i} \sum_{i=1}^{d} \left\| \Psi^T \mathbf{c}_i \right\|_1 \quad \text{s.t.} \quad \forall t, \left\| \mathbf{z}_t - \Phi_t \mathbf{C} \hat{\mathbf{x}}_t \right\|_2 \leq \epsilon,$$

- Insufficient for recovering \mathbf{C}
 - $\hat{\mathbf{x}}_t \approx \mathbf{L}^{-1} \mathbf{x}_t$

LDS ($\mathbf{A}, \mathbf{C}, \mathbf{x}$) \equiv LDS ($\mathbf{L}^{-1} \mathbf{A} \mathbf{L}, \mathbf{C} \mathbf{L}, \mathbf{L}^{-1} \mathbf{x}$)

For any invertible matrix $\mathbf{L} \in \mathbb{R}^{d \times d}$
Estimating the observation matrix

- suppose \(\mathbf{C} \) is canonical sparse: \(\Psi = \mathbf{I} \) (wlog)
- **Worst case:** disjoint sparsity pattern
- **Best case:** same sparsity pattern
- Recovering \(\mathbf{C} \) using column group sparsity

\[
\begin{align*}
(P_{\ell_2-\ell_1}) \min \sum_{i=1}^{N} \|s_i\|_2 & \quad \text{s.t } \mathbf{C} = \Psi S, \forall t, \|z_t - \Phi_t C \hat{\mathbf{x}}_t\|_2 \leq \epsilon, \\
\end{align*}
\]

- **Solver:** Model-based CoSaMP
- Value of \(\tilde{M} \):

\[
\tilde{M}T = 4dK \log(N/K) \quad \Longrightarrow \quad \tilde{M} = 4 \frac{dK}{T} \log(N/K)
\]
Estimating the observation matrix

Model-based CoSaMP

Algorithm 1: \(\hat{C} = \text{Model-based CoSAMP} (\Psi, K, z_t, \hat{x}_t, \Phi_t, t = 1, \ldots, T) \)

Notation:
- \(\text{supp}(\text{vec}; K) \) returns the support of \(K \) largest elements of \(\text{vec} \)
- \(A_{\Omega,} \) represents the submatrix of \(A \) with rows indexed by \(\Omega \) and all columns.
- \(A_{\cdot,\Omega} \) represents the submatrix of \(A \) with columns indexed by \(\Omega \) and all rows.

Initialization
- \(\forall t, \Theta_t \leftarrow \Phi_t \Psi \)
- \(\forall t, v_t \leftarrow 0 \in \mathbb{R}^M \)
- \(\Omega_{\text{old}} \leftarrow \phi \)

while (stopping conditions are not met) **do**
- Compute signal proxy:
 \(R = \sum_t \Theta_t^T v_t \hat{x}_t^T \)
- Compute energy in each row:
 \(r(k) = \sum_i R^2(k, i) \) for \(k \in [1, \ldots, N] \)
- Support identification and merger:
 \(\Omega \leftarrow \Omega_{\text{old}} \cup \text{supp}(r; 2K) \)
- Least squares estimation:
 - Find \(A \in \mathbb{R}^{(\Omega) \times d} \) that minimizes \(\sum_t \| z_t - (\Theta_t)_{\cdot,\Omega} A \hat{x}_t \|_2 \)
 - \(B_{\Omega,} \leftarrow A, B_{\Omega^c,} \leftarrow 0 \)
- Pruning support:
 - \(b(k) = \sum_i B^2(k, i) \) for \(k \in [1, \ldots, N] \)
 - \(\Omega \leftarrow \text{supp}(b; K), S_{\Omega,} \leftarrow B_{\Omega,}, S_{\Omega^c,} \leftarrow 0 \)
- Form new estimate of \(C \):
 \(\hat{C} \leftarrow \Psi S \)
- Update residue:
 - \(\forall t, v_t \leftarrow z_t - \Theta_t S \hat{x}_t \)
 - \(\Omega_{\text{old}} \leftarrow \Omega \)

Compressive acquisition of linear dynamical systems

2
Estimating the observation matrix

Ground truth

Oracle LDS: 24.97 dB

CS-LDS: 22.08 dB

Frame-to-Frame CS: 11.75 dB

\[
\frac{N}{M} = 234 \text{ for all methods}
\]

Oracle LDS:
No CS (Nyquist sampling) + knowledge of \(d\)

Sparsity: DCT, Wavelet
Meas.: Noiselet, Gaussian

Compressive acquisition of linear dynamical systems
Outline

- Background
- CS-LDS Architecture
- Estimating the state sequence
- Estimating the observation matrix
- Conclusion
Conclusion

- Not efficient to use conventional CS for video sequences
 - Ephemeral nature
 - High-dimensional

- Model video sequences as
 - Low-dimensional dynamic parameters (the state sequences)
 - High-dimensional static parameters (the observation matrix)

- Solution included
 - SVD
 - Convex optimization

[3] [Online]: CS-LDS, www.ece.rice.edu/~as48/research/cslds.

Thanks for Your Attention.

Any Question?