
Greedy algorithms for multi-channel sparse 
recovery

Public ISP seminar at UCL

Jean-François Determe



Summary

 Main topic: How noise impacts (S)OMP & overview of noise 
stabilization with SOMP

 Outline:
 Introduction compressive sensing (7 slides -> 9 minutes)
 Support recovery algorithms (3 slides -> 5 minutes)
 Multiple measurement vector signal models (4 slides -> 6 minutes)

-------------------------------------------------------------------------------------------------------------------
 Analysis of SOMP with noise (8 slides -> 12 minutes)
 SOMP with noise stabilization (6 slides -> 8 minutes)
 Conclusion (2 minutes)

 Total time for presentation: about 40-45 minutes + Q&A

 Presentation = only an overview of my work (no technical details, not
every contribution)
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Compressive sensing (CS)

Idea : Observe and recover a signal                  using m << n linear measurements: 

where                         describes the measurement process

Problem : Since m << n, arbitrary signals     cannot be recovered 
Solution : Assume prior knowledge/structure about 

Sparsity :    can be expressed using s < m vectors from the appropriate o.n. basis

Few non-zero 
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Support explanation

 Sparsity example:

6



Compressive sensing (CS)

Idea : Observe and recover a signal                  using m << n linear measurements: 

where                         describes the measurement process

Problem : Since m << n, arbitrary signals     cannot be recovered 
Solution : Assume prior knowledge/structure about 

Sparsity :    can be expressed using s < m vectors from the appropriate o.n. basis

has low cardinality

In practice :      is generated randomly using sub-Gaussian distributions 
and         satisfy the required properties for CS with similar probabilities

Simplification:                       and 

Few non-zero 
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Compressive sensing (CS)

Simplification:                       and 

Two ways to understand why random projections are neat

 Recovering is more easy using random, diverse projections (very similar
projections are not efficient to capture information about     )

 Proper random entries in     make the atoms ``more orthogonal’’ to one
another. Easier to distinguish atoms in the sum

Quantity becomes a good proxy for    

In practice: Meas. matrix     can have Gaussian entries or Rademacher entries (+/- 1
with equal probabilities) + normalization factor  
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Sparse (compressible) 1D signal
Example

 D14 wavelets – Level of decomposition = 3
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Sparse (compressible) 2D signal
Example

 D8 wavelets – Level of decomposition = 2
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RIP and RICs

Idea: Observe and recover a sparse signal                  using m << n linear measurements: 

where                         describes the measurement process

Solution: Restricted isometry property (and associated RICs)

RIP:      satisfies the RIP (with a RIC of order s      ) if 

for any s-sparse vector     

Interpretation: RICs quantify to what extent a measurement matrix is suitable for CS
Good RIC Bad RIC

Question: How to quantify how good the measurement matrix     is?
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Support recovery algorithms

Idea: Observe and recover a sparse signal                  using m << n linear measurements: 

where                         describes the measurement process

Several algorithms can recover the support of     on the basis of     and  

Two main classes of support recovery algorithms

 Algorithms based upon convex optimization (e.g., basis pursuit, basis pursuit
denoising, and Dantzig selector)
 Higher computational requirements (CPU time + memory)
 Best performance (theoretical + numerical)

 Greedy algorithms (e.g., MP, OMP, CoSaMP, and SP)
 Lower computational requirements
 May be less reliable than, e.g., basis pursuit.

My thesis focuses on greedy algorithms (OMP-like algorithms)
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Orthogonal matching pursuit

Orthogonal matching pursuit (OMP) tries to express the measurement
vector using columns from
Generates an estimated support (its size is prescribed beforehand)

 OMP = iterative algorithm
 Adds one element to estimated support at each iteration

 At each iteration:
 Look for atom/column most closely resembling the measurement vector -> inner product
 Add this atom to estimated support
 Remove the atom contribution to the measurements (-> approximation only)

If      = estimated support at iteration t => build proxy for
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Performance comparison for 
greedy algorithms

Noiseless case Noisy case

OMP competitiveOMP not competitive
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MMV Signal model (1)

where

Extension of basic CS model : - Multiple measurement vector (MMV) signal model
- Additive Gaussian noise with      variances 

K sparse signals/measurement channels/measurement vectors:

- K sensors observe a common physical
phenomenon (chemical composition,
image, wireless spectrum, etc.)
- Local variability unequal 
- Yet: observed rough structure is 

identical for each sensor
are similar (if not equal)

- Sensors with different noise variances
Central node Sensor

Joint support:
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MMV Signal model (2)

Objective: Recover the joint support on the basis of                    and     .

where

Extension of basic CS model : - Multiple measurement vector (MMV) signal model
- Additive Gaussian noise with      variances 

K sparse signals/measurement channels/measurement vectors:

 Number of measurements = m
 Number of atoms/columns = n
 Number of measurement

vectors/ channels = K


With matrices:

Joint support:
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Remarks on MMV signal models

 MMV extensions of SMV algorithms are available (e.g., SOMP, 
SCoSaMP, SSP)

 Focus of this presentation =  SOMP exclusively

 Several applications for MMV signal models:
 Source localization: each measurement vector corresponds to a specific time instant
 Localization in 5G networks
 Spectrum sensing/sub-Nyquist acquisition with the modulated wideband converter

where
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Simultaneous orthogonal 
matching pursuit

where and 

Simultaneous orthogonal matching pursuit (SOMP) tries to jointly express the
K measurement vectors using a unique set of columns from
Joint support recovery, i.e., one common support for all the sparse signals

 SOMP = iterative algorithm
 Adds one element to estimated support at each iteration

 At each iteration:
 Look for atom/column most closely resembling all the measurement vectors
 Add this atom to estimated support
 Remove the atom contribution to the measurements (-> approximation only)

If      = estimated support at iteration t => build proxy for
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Analysis of SOMP with noise
Objective & Main quantities

 Noisy signal model with additive Gaussian measurement noise

 General objective: understand how the additive Gaussian noise affect the 
performance of SOMP

 Main results:
 Upper bound on the probability that SOMP fails (i.e., picks an incorrect atom) for s+1 iterations
 Corresponding minimal value of K for a prescribed maximum probability of failure
 Numerical results confirm the theory is (mostly) correct

where
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Analysis of SOMP with noise
Quantities without noise

 Iteration t, quantities from the noiseless case:

where

= Highest value of SOMP metric for correct atoms
= Highest value of SOMP metric for incorrect atoms

=> correct decisions in noiseless case
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Upper bound prob. failure

 Upper bound on the probability of error of SOMP for        iterations

 Main interpretations:
 => probability of failure might be 1 as 
 Both meas. matrix and SNR should be « good » enough when compared to noise
 Prob. failure decreases exponentially with K if 

 Detailed interpretation of each quantity on next slide

where
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Min. value of K for given
probability of error (1)

 Minimum value of K to achieve probability of error for        iterations

 : to what extent is appropriately designed (                  )?
 : signal-to-noise ratio for all the K channels
 : term related to SNR and quality of meas. matrix 
 : penalty depending on noise std. dev. uniformity (-> sparsity of    )
 : theoretical constant (                    )
 : noise-related penalty on robustness without noise
 : increases with # of atoms n and support size |S|

 Theoretical expression is not sharp

with

where

 Upper bound on the probability of error for        iterations :
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Min. value of K for given
probability of error (2)

 Minimum value of K to achieve probability of error : 

 Rewrites

with

 Useful for simulations

where
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Simulation framework

 Goal: Validate theoretical analysis
 Method: Carry out simulations and compare results with formula

 Identify the values of      ,    , and     on the basis of simulations.
 Assess whether theoretical curve fits simulation curves
 Assess whether identified values are coherent with theory

 Detailed signal model is not described here
 Identification procedure not discussed either
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Simulations – Results (1)

Question 1: Do theoretical curves fit empirical ones?

YES 28



 should be <= 1 in theory but discrepancy is OK
 is lower than
 It can be shown that is way too low wrt the theory

 but proof method explains why
 and                                  increases with support cardinality
 See « Future work » in the thesis

Simulations – Results (2)

Question 2: Are the identified values coherent with the theory? 

Analysis mostly OK for     and   
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The contributions so far

 Contribution:
 Thorough analysis of noiseless and noisy SOMP (theory + 

simulations)
 Related publications:

 “On The Exact Recovery Condition of Simultaneous Orthogonal Matching 
Pursuit”, IEEE Signal Processing Letters, vol. 23, no. 1, 2016

 “Improving the Correlation Lower Bound for Simultaneous Orthogonal Matching 
Pursuit”, IEEE Signal Processing Letters, vol. 23, no. 11, 2016

 “On the Noise Robustness of Simultaneous Orthogonal Matching Pursuit”, IEEE 
Transactions on Signal Processing, vol. 65, no. 4, 2017.
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SOMP with noise stabilization
(SOMP-NS)

where

(Our) Answer: Resort to the theory and find how to minimize an upper 
bound on the probability of SOMP-NS failing to perform correct decisions.

Question : What are the optimal weights       ?

Idea: The SNRs of the measurement
vectors are unequal weight the
impact of each measurement vector
according to its reliability.
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Theoretical probability of failure
Optimal weights

 If we assume 

Question 1: Does SOMP-NS  yield improvements?

Question 2: Theoretically optimal weights = truly optimal weights?
Simulations

Formula stems from our analysis of SOMP with noise
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Theoretically opt. Weights vs. 
truly optimal ones

 K = 2,

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Theoretically opt. Weights vs. 
truly optimal ones

 K = 2,


 n = 1000, real and complex signal models
(random sign or random phase),

 Two different signal patterns 
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Signal patterns

SP1: signal pattern with non-zero
entries of X with equal moduli

SP2: signal pattern with Gaussian
non-zero entries (N(0,1)), common for
all columns, that are then normalized

Similar non-zero moduli Dissimilar non-zero moduli
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Theoretically opt. Weights vs. 
truly optimal ones (Results)
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Conclusion

 Contributions:
 Analysis of SOMP with and without noise
 Proposal and analysis of SOMP-NS
 Numerical validation for both contributions

Thank you for your attention!
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 Backup slides
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Orthogonal matching pursuit
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Simulations – Results
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