Diffusion weighted imaging challenges the neurohistology: dream or reality?

PhD student Damien Jacobs and PhD Benoit Scherrer Universite catholique de Louvain (UCL, Belgium) Boston Children's Hospital (Harvard, USA) Promotors: Benoit Macq, Anne des Rieux, Bernar Gallez

04/02/2015

Application to the spinal cord

Gray Matter

2

White Matter

Spinal cord studied by diffusion tensor imaging

One fascicle at macro-scale resolution (~mm, in vivo diffusion weighted imaging on human)

One fascicle at macro-scale resolution (~mm, in vivo diffusion weighted imaging on human)

Hypothesis: spinal cord can be represented as an uniaxial fiber population in the head-feet axes

High heterogeneity at micro-scale resolution (~100 μ m, ex vivo diffusion weighted imaging on animals)

Can you identify the different contribution of the heterogeneous signal for one fascicle ?

The partial (!) microstructure of the white matter in a voxel:

Can you identify the different contribution of the heterogeneous signal ?

The partial(!) microstructure of the white matter in a voxel: neurofilaments and the extra-cellular space

800 μm

Can you identify the different contribution of the heterogeneous signal ?

The partial(!) microstructure of the white matter in a voxel: body cell of neurons (blue dots)

Multi compartiment models taking into account the heterogeneity: DIAMOND

Several levels of heterogeneity can be identified with a tensorial distribution:

$$S_{k} = S_{0} \int_{\mathbf{D} \in \operatorname{Sym}^{+}(3)} P(\mathbf{D}) \exp\left(-b_{k} \mathbf{g}_{k}^{T} \mathbf{D} \mathbf{g}_{k}\right) d\mathbf{D}$$

Multi compartiment models taking into account the heterogeneity: DIAMOND

Multi compartiment models taking into account the heterogeneity: DIAMOND

Multi compartiment models taking into account the heterogeneity: NODDI

$$A = (1 - \nu_{iso})(\nu_{ic}A_{ic} + (1 - \nu_{ic})A_{ec}) + \nu_{iso}A_{iso}$$

Watson distribution

These both models have been validated on healthy patients

evaluate these diffusion models on neuropathologies.

These both models have been validated on healthy patients

evaluate these diffusion models on neuropathologies. Which model?

Define a pre-clinical model to study the Wallerian degeneration process based on imaging quality: - reduce the bleeding effect

- control and lesion on the same slices
- limit the functional loss due to the model

These both models have been validated on healthy patients

evaluate these diffusion models on neuropathologies. Which model?

Define a pre-clinical model to study the Wallerian degeneration process based on imaging quality: - reduce the bleeding effect

- control and lesion on the same slices
- limit the functional loss due to the model

Rhizotomy, transection of the dorsal roots

Anatomy and Functions of Spinal cord

Aleksandar Jankovski, MED, UCL

Protocol for the rhizotomy study

Characterization of the Wallerian degeneration:

After 3 days:

- astrocyte activation
- axonal loss
- After 1 week:
 - clearance of the debris
 - microglia activation

After 1 month:

- demyelination
- oligodendrocyte activation ?

neurofilament staining: Axonal loss

neurofilament staining: Axonal loss

GFAP staining: astrocyte activation

Iba1 staining: microglia activation

Oligodendrocyte staining: activation, migration?

Myelin staining: demyelination

Myelin staining: demyelination

Results for **DIAMOND** and **NODDI**

Longitudinal evolution for DIAMOND

Approach of multicompartiment model + heterogeneous parameter?

Can we define other structure ? - yes, all structure can be studied

-> develop a dictionary

How can we fix the number of compartiment ? - cross-validation method

-> rapid and robust optimization method

The signal in the CNS can be generalized as : (J-P. Thiran, Neuroimage, 105 (2015) p32-44)

with the condition : $n_i + n_h + n_r = 1$

The signal in the CNS can be generalized as :

(J-P. Thiran, Neuroimage, 105 (2015) p32-44 and Alexander. Neuroimage. 54 (2012))

Model

Stick

Cylinde

Generate a dictionary in all directions of the acquisition for each compartiment:

(J-P. Thiran, Neuroimage, 105 (2015) p32-44 and Alexander, Neuroimage, 54 (2012))

Use the prior of the fiber directions to optimize the problem:

(J-P. Thiran, Neuroimage, 105 (2015) p32-44 and Tournier, Neuroimage, 23 (2004))

Use the prior of the fiber directions to optimize the problem:

(J-P. Thiran, Neuroimage, 105 (2015) p32-44 and Alexander, Neuroimage, 54 (2012))

 \square do not use the condition: $n_i + n_h + n_r = 1$

Thank you for your attention