

Applications of PCA and low-rank plus sparse decompositions in high-contrast Exoplanet imaging

0...0

RTEX

Carlos A. Gómez, ULG

UCL, 2016/02/04

Exoplanets

Challenges of direct imaging

- Contrast
- Angular separation
- Speckles

Imaging from the ground

 Atmospheric turbulence distortion

Adaptive optics

Credits: Stuart Littlefair

Credits: LYOT project

Coronagraphy

Coronagraphs used to mask

the star light

- Vortex coronagraph
 - Diamond substrate
 - Optical / IR transmission
 - Mechanical / thermal properties
 - Diamond etching (Uppsala)
 - Installed at largest ground based telescopes

Delacroix et al. 2014

Speckles

Aime et al 2014

Two kinds: short lived atmospheric speckles and quasi-static speckles originating from the telescope/instrument (which limits AO exposures)

$$p_{MR}(I, I_c, I_s) = \frac{1}{I_s} \exp\left(-\frac{I+I_c}{I_s}\right) I_o\left(\frac{2\sqrt{II_c}}{I_s}\right)$$

Signal-to-noise

When doing small angle high-contrast imaging we are in the small sample statistics regime (Mawet et al. 2014).

A two sample t-test is used to test whether the intensity of a given resolution element is statistically different from background ones.

This imposes a penalty factor on detection threshold (10 at $1\lambda/D$, 2 at $2\lambda/D$ for a 5σ CL).

SNR =

Problematic metric. Best we have.

Summary in one image

Differential imaging

Reference star Differential Imaging (RDI)

PROS:

- simple idea, we can use archival data
- access to small angles (~ λ /D)

CONS:

- hard execution: no perfect reference star (image)
- atmospheric conditions change
- telescope/instrument aberrations change with time
- PSF and speckle pattern changes

Differential imaging

Angular Differential Imaging (ADI)

Credits: Christian Thalmann

PROS:

observations of the same target (any star)

CONS:

- speckle patter evolves with time
- limited inner working angle (at least 1 λ/D rotation)

Differential imaging

Spectral Differential Imaging (SDI)

McCaughrean et al. 2003

Credits: Olivier Absil

PROS:

- access to small angles (~ λ /D) CONS:
- need of strong molecular absorption
- differential aberrations between the 3 optical paths

 $(\lambda_1 - \lambda_2) - k(\lambda_1 - \lambda_3)$

Differential imaging

Spectral Differential Imaging (SDI) - multiple spectral channels

Diffraction and speckle pattern scale as a function of the wavelength. Exoplanet remains fixed

Integral Field Spectrograph (IFS)

PROS:

- we get the spectrum of the planet (detection+characterization) CONS:
- speckles not constant over λ
- limited inner an outer working angles (depending on λ range)

VIDEO CLIP

Image processing

Example images

Raw image

Post-processed (ADI+PCA)

Absil et al. 2013

- β Pictoris b imaged with the AGPM on VLT/NACO
- Dataset used later for modelling and synthetic data generation

)RTEX

Example images

/ RTEX

4 pillars of HiCl at small angles

ADI Post-processing

Image sequence of *n* calibrated images

n x **p** x **p** 612 x 161 x 161

ADI Post-processing

Single frame

Off-axis Point Spread Function (PSF)

LOCI

Locally Optimized Combination of Images

- Works on small patches
- Computationally intensive
- Large number of free parameters

ADI-PCA

A. Amara and S. Quanz 2012

Let's consider a rectangular matrix of vectorized images: $M \in \mathbb{R}^{m \times n}$

Principal components can be computed via the eigenvectors of the covariance (MM^T) or singular value decomposition of M

The reconstruction of the images using the first PCs gives a good model of the PSF +speckles

ADI-PCA

RDI-PCA

TARGET

٥

REF 2

0

RTEX

24

RDI-PCA

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

0.16

0.12

0.08

0.04

0.00

-0.04

-0.08

-0.12

7.5

6.0

4.5

3.0

1.5

0.0

-1.5

-3.0

corr(median(TARGET), SUPEREF_i)

ADI-PCA

SDI-PCA (IFS)

w × **p** × **p w** - # λ **n** x **w** x **p** x **p n** - # frames **w** - # λ

Properly rescaling the **w** images, we'll have the planet moving radially. With ADI+IFS data we need to perform a two-stages PCA.

PCA

Implementations for high-contrast imaging: KLIP (Soummer et al. 2012), Pynpoint (Amara & Quanz 2012), VIP (Gomez Gonzalez et al. in prep). Some CONS:

- Self-subtraction reduced, but still present
- Fake companions injection still needed to retrieve astrometry and photometry

Connection with low-rank approximations:

M = L + E,

where *L* has low-rank and can be estimated by the best low-rank approximation of *M* in the least-scare sense:

$$\min_{L} \|M - L\|_{F}^{2}, \text{ subject to } \operatorname{rank}(L) \leq k,$$

where **k** is the rank of the low-rank approximation **L**

PCA

According to the matrix approximation lemma (Eckart & Young 1936), the previous problem can be solver through SVD:

$$M = U\Sigma V^T = \sum_{i=1}^k \sigma_i u_i v_i^T,$$

where the vectors u_i and v_i are the left and right singular vectors and σ_i the singular values of M. Choosing the first k left singular vectors forms an orthonormal basis that captures most of the variance of M. This corresponds to PCA.

- PCA was used before in computer vision for background subtraction (Oliver et al 2000)
- Indeed this are very similar problems
- For background subtraction other subspace projection algorithms have been proposed recently

)RTEX

Robust PCA

RPCA algorithms models the data as the superposition of low-rank and sparse components. One of the first approaches, PCP (Candès et al. 2009):

```
\min_{L,S} \|L\|_* + \lambda \|S\|_1, \text{ subject to } L + S = M,
```

where *L* is low-rank and *S* contains sparse signal of arbitrarily large magnitude.

This doesn't work as well for ADI image sequences. They can be decomposed exactly in low-rank and sparse components. The quasi-static speckles still pollute **S** and the planet signal is spatially correlated.

We opt for a three-term decomposition, including a noise term.

L+S+G

GoDec/SSGoDec (Zhou 2011, Zhou & Tao 2013). Fast implementation of a low rank plus sparse decomposition. Different formulation:

M = L + S + G, rank $(L) \le k$, card $(S) \le c$,

where **G** is a dense noise term. In terms of the decomposition error: $\min_{L,S} ||M - L - S||_F^2$, subject to $\operatorname{rank}(L) \le k$, $\operatorname{card}(S) \le c$.

 L_t can be updated via the Bilateral Random Projections (Zhou & Tao 2013) of $M-S_{t-1}$ and S_t via entry-wise soft-thresholding of $M-L_t$.

$$S_{\gamma}X = \operatorname{sgn}(X_{ij}) \max(|X_{ij}| - \gamma, 0).$$

LLSG

Local Low-rank plus Sparse plus Gaussian noise decomposition

Local three-term decomposition of ADI cubes (Gomez Gonzalez et al., in press). The goal is to boost the detection of point-like sources. Steps:

- images are broken into patches,
- each quadrant is decomposed separately alternating BRP and softthresholding for a fixed number of iterations,
- for each patch, **S** is kept,
- all frames are rotated to a common north and median combined.

Application to real data

32

Synthetic companions

33

ROC performance

https://github.com/vortex-exoplanet/VIP

Gomez Gonzalez et al. (in prep)

10

60

20

ø

÷.

÷

2

дР 47

ð

2

35

Takeaway points

- Direct imaging of exoplanets is a very difficult enterprise (future)
- Post-processing plays a critical role
- PCA works well, LLSG can boost SNR, especially at small angles.
- LLSG has a computational cost comparable to the one of PCA.
 Parallelism can be exploited
- Astrophysicist need to work together with machine learning/image processing community

Thank you!