Performance Limitations arising in the Control of Direct Fired Coal Power Plants

Vincent Wertz, Department of Mathematical Engineering (UCL)
E. Silva, G.C. Goodwin (CDSC, Newcastle)
B. Codrons (Suez-Laborelec)

December, 17 2008
work performed while Vincent Wertz was on leave at the Centre for Complex Dynamic Systems and Control (CDSC), The University of Newcastle, Australia
Outline

Motivation
- Context
- Direct fired coal power plants
- Main Problem

MIMO performance bounds
- Some classical results
- Multiobjective optimization
- Controller design
- Control cost
- Solution to main problem

Simulation results

Summary
Outline

Motivation

Context
- Direct fired coal power plants
- Main Problem

MIMO performance bounds
- Some classical results
- Multiobjective optimization
- Controller design
- Control cost
- Solution to main problem

Simulation results

Summary
Electricity Market becomes more competitive

- Privatization of former state monopolies
Electricity Market becomes more competitive

- Privatization of former state monopolies
- Distributed market: Many producers, many sources
Electricity Market becomes more competitive

- Privatization of former state monopolies
- Distributed market: Many producers, many sources
- Biggest value for highest flexibility
Two main control modes for power units

- Primary frequency control
 - instantaneous load adaptation (within a few percents) as a function of grid frequency variation
 - direct action on turbine valves
 - security mode (e.g. if steam pressure in boiler drops too much)
Two main control modes for power units

- **Primary frequency control**
 - instantaneous load adaptation (within a few percents) as a function of grid frequency variation
 - direct action on turbine valves
 - security mode (e.g., if steam pressure in boiler drops too much)

- **Secondary frequency control**
 - frequent load setpoint adaptation as determined by grid manager
 - large load gradients can be expected
 - only combined cycle gas turbines (Electrabel)
Motivation

Context

Direct fired coal power plants

Main Problem

MIMO performance bounds

Some classical results

Multiobjective optimization

Controller design

Control cost

Solution to main problem

Simulation results

Summary
Classical Decentralized Control Strategies

- Boiler following mode
 - turbine inlet valves control load (fast action)
 - boiler is a steam (energy) buffer
 - fuel flow adjusted to control steam pressure (slow action)

- Turbine following mode
 - steam pressure controlled by turbine valves (fast action)
 - fuel flow controls load (slow action on load)
 - control strategy for base load (and coal fired power plants)

- Sliding pressure mode
 - fuel flow controls load
 - turbine inlet valves remain constant, hence sliding pressure
 - safety mode if pressure outside given limits

- Improved unit efficiency
Classical Decentralized Control Strategies

- Boiler following mode
 - turbine inlet valves control load (fast action)
 - boiler is a steam (energy) buffer
 - fuel flow adjusted to control steam pressure (slow action)

- turbine following mode
 - steam pressure controlled by turbine valves (fast action)
 - fuel flow controls load (slow action on load)
 - control strategy for base load (and coal fired power plants)
Classical Decentralized Control Strategies

- **Boiler following mode**
 - turbine inlet valves control load (fast action)
 - boiler is a steam (energy) buffer
 - fuel flow adjusted to control steam pressure (slow action)

- **Turbine following mode**
 - steam pressure controlled by turbine valves (fast action)
 - fuel flow controls load (slow action on load)
 - control strategy for base load (and coal fired power plants)

- **Sliding pressure mode**
 - fuel flow controls load
 - turbine inlet valves remain constant, hence sliding pressure
 - safety mode if pressure outside given limits
 - improved unit efficiency
Outline

Motivation
 Context
 Direct fired coal power plants

Main Problem

MIMO performance bounds
 Some classical results
 Multiobjective optimization
 Controller design
 Control cost
 Solution to main problem

Simulation results

Summary
Best achievable performance using MIMO controller

Can a direct fired coal power plant participate in secondary grid frequency control, despite the large delay on fuel input due to coal grinding?

Find performance limits of ANY MIMO controller when load set point is a step change and there is a bound on the norm of steam pressure deviation.
Outline

Motivation
Context
Direct fired coal power plants
Main Problem

MIMO performance bounds
Some classical results
Multiobjective optimization
Controller design
Control cost
Solution to main problem

Simulation results

Summary
Define the cost functional

\[J = \sum_{k=0}^{\infty} e^T(k)e(k) \]

where \(e(k) \) denotes the tracking error of a one D.O.F. control loop, for a step reference signal, \(r(k) = v\mu(k) \).
Chen et al.
Let $G(z) = \Lambda(z) G_{nd}(z)$, where $G_{nd}(z)$ contains no delay and

$$\Lambda(z) = \begin{bmatrix} z^{-d_1} & \cdots & \cdots & z^{-d_p} \end{bmatrix}$$

Then

$$J_{opt} = \sum_{i=1}^{p} d_i v_i^2 + J_{nd}$$
Some classical results

Performance bounds for NMP MIMO systems with delays

Salgado, Silva (more general result):

\[
\tilde{G}(z) = \hat{\xi}_g U(z) G(z)
\]

(1)

where \(\hat{\xi}_g U(z)\) is the unit. interactor with unity DC-gain for \(G(z)\). (i.e. \(\tilde{G}(z)\) is biproper).

\[
J_{opt} = \sum_{i=1}^{m} |\eta_i^H v|^2 + J_{NMP}
\]

where \(m\) is relative degree of plant,
\(\eta_i\) appears in construction of left unitary interactor matrix.
Cost is measure of deviation from perfect inversion
Comments

- Cost is measure of deviation from perfect inversion
- Dependence on direction of step reference
Comments

- Cost is measure of deviation from perfect inversion
- Dependence on direction of step reference
- Chen result no good for us
Comments

- Cost is measure of deviation from perfect inversion
- Dependence on direction of step reference
- Chen result no good for us
- Unitary interactor is key
Cost is measure of deviation from perfect inversion
Dependence on direction of step reference
Chen result no good for us
Unitary interactor is key
NMP zeros have also a specific effect
Comments

- Cost is measure of deviation from perfect inversion
- Dependence on direction of step reference
- Chen result no good for us
- Unitary interactor is key
- NMP zeros have also a specific effect
- We have a more specific cost in mind
MIMO performance bounds

Motivation
Context
Direct fired coal power plants
Main Problem

Outline

MIMO performance bounds
Some classical results

Multiobjective optimization
Controller design
Control cost
Solution to main problem

Simulation results

Summary
Our problem: Multiobjective optimization

Consider MIMO (2 X 2) model of plant

\[G(z) = \begin{bmatrix}
\frac{0.327z-0.3376}{z^2-1.695z+0.7011} & \frac{10^{-4}(3.897z+3.714)}{z^{20}(z^2-1.862z+0.8651)} \\
-\frac{0.007282z-0.006811}{z^2-1.814z+0.8182} & \frac{10^{-4}(3.974z+3.822)}{z^{20}(z^2-1.887z+0.8898)}
\end{bmatrix} \]

Minimize simultaneously load tracking error norm \((J)\) and steam pressure deviation norm \((R)\).

\[
J = \sum_{k=0}^{\infty} e_1(k)^2, \quad R = \sum_{k=0}^{\infty} e_2(k)^2,
\]

where \(e_i\) is the \(i\)-th component of the tracking error when the reference is given by \(r = \epsilon_1 \mu\).
Characterization of achievable specifications - Pareto optimality

Use Youla parametrization of all stabilizing controllers
Define set of achievable objectives:

\[A = \{ (\alpha_J, \alpha_R) \in \mathbb{R}^2 : \alpha_J \geq J(Q(z)), \]
\[\alpha_R \geq R(Q(z)), \text{ for some } Q(z) \in \mathcal{RH}_\infty \} \]

\[L_\lambda(Q(z)) = J(Q(z)) + \lambda R(Q(z)), \]
\[Q_\lambda(z) = \arg\min_{Q(z)\in\mathcal{RH}_\infty} L_\lambda(Q(z)). \]

The set of Pareto optimal points associated with \(A \) is given by

\[\mathcal{P} = \{ (\alpha_J, \alpha_R) \in \mathbb{R}^2 : \alpha_J = J(Q_\lambda(z)), \]
\[\alpha_R = R(Q_\lambda(z)), \text{ for some } \lambda \geq 0 \}. \]
Achievable performance

Region of achievable performance

achievable trade-offs

best trade-offs

R

J

0 2 4 6 8 10 12 14 16

0 2 4 6 8 10 12 14 16

0 2 4 6 8 10 12 14 16

0 2 4 6 8 10 12 14 16

Vincent Wertz, INMA ()

Control of Power Plants

Cesame, 17-12-08 20 / 34
Outline

Motivation
 Context
 Direct fired coal power plants
Main Problem

MIMO performance bounds
 Some classical results
 Multiobjective optimization

Controller design
 Control cost
 Solution to main problem

Simulation results

Summary
Characterization of $Q_\lambda(z)$

> If $\lambda > 0$, then

$$Q_\lambda(z)\epsilon_1 = (\xi_\Lambda(z)G_\Lambda(z))^{-1}\Lambda\epsilon_1,$$

where

$$\Lambda = \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{\lambda} \end{pmatrix}, \quad G_\Lambda(z) = \Lambda G(z)$$

and $\xi_\Lambda(z)$ is a left unitary interactor for $G_\Lambda(z)$ having unit DC-gain

> similar expressions for the cases $\lambda = 0$ and $\lambda \to \infty$

> notice only first column of $Q_\lambda(z)$ is prescribed.
Outline

Motivation
 Context
 Direct fired coal power plants
Main Problem

MIMO performance bounds
 Some classical results
 Multiobjective optimization
Controller design

Control cost
 Solution to main problem

Simulation results

Summary
Tracking error as a function of λ

Let m denote the relative degree of $G(z)$, i.e., the number of zeros at infinity, and m_{ij} denote the relative degree of $G_{ij}(z)$.

If $m > m_{21}$, $m_{22} > m_{21}$ and $G_{21}(z)$ is MP, then:

1. If $\lambda > 0$, then

$$J(Q_{\lambda}(z)) = \| \epsilon_1^T \frac{I - \Lambda^{-1} \xi(z)^{-1} \Lambda}{z - 1} \epsilon_1 \|_2^2$$

2. If $\lambda = 0$, then

$$J(Q_0(z)) = m_{11}$$

3. When $\lambda \to \infty$, then

$$J(Q_{\infty}(z)) = m - m_{21}$$
Tracking error as a function of λ

In our case where the plant has large relative degree (i.e., large delays) concentrated in the second column, by means of varying λ one can attain a load tracking error norm that ranges from the relative degree of $G_{11}(z)$ (when $\lambda \to 0$) to the difference between the relative degree of the MIMO model and that of $G_{21}(z)$ (when $\lambda \to \infty$). Hence it may be possible to achieve good tracking performance by means of choosing a small λ. Of course, this comes at the expense of large error norm on the second output.
Outline

Motivation
- Context
 - Direct fired coal power plants
- Main Problem

MIMO performance bounds
- Some classical results
- Multiobjective optimization
- Controller design
- Control cost
- Solution to main problem

Simulation results

Summary
Main result

Define

\[J_{\text{opt}} = \min_{Q(z) \in \mathcal{RH}_\infty, R(Q(z)) \leq M} J(Q(z)), \]
\[R_0 = \min_{X_1(z) \in \mathcal{RH}_\infty} R(Q_0(z)), \]
\[R_\infty = R(Q_\infty(z)) \]
Main result (cont’d)

Then:

1. If $M \in (R_{\infty}, R_0)$, then the optimal Youla parameter $Q_{opt}(z)$ is given by

$$Q_{opt}(z) = (\xi_{\Lambda_o}(z)G_{\Lambda_o}(z))^{-1}\Lambda_o,$$

with λ_0 s.t. $\|\epsilon_2^T \frac{I - \Lambda_o^{-1}\xi_{\Lambda_o}(z)^{-1}\Lambda_o}{z - 1} \epsilon_1\|^2 = M$.

2. If $M \geq R_0$, then $Q_{opt}(z) = Q_0(z)$

3. If $M = R_{\infty}$, then $Q_{opt} = Q_{\infty}(z)$

4. If $M < R_{\infty}$, then Problem 1 is infeasible.
Main result (cont’d)

Then:

1. If \(M \in (R_\infty, R_0) \), then the optimal Youla parameter \(Q_{opt}(z) \) is given by

\[
Q_{opt}(z) = (\xi \Lambda_o(z) G \Lambda_o(z))^{-1} \Lambda_o,
\]

with \(\lambda_0 \) s.t.
\[
\| \epsilon^T \left(I - \frac{\Lambda_o^{-1} \xi \Lambda_o(z)^{-1} \Lambda_o}{z-1} \right) \epsilon_1 \|_2^2 = M.
\]

2. If \(M \geq R_0 \), then \(J_{opt} = m_{11} \) and \(Q_{opt}(z) = Q_0(z) \)
Main result (cont’d)

Then:

1. If $M \in (R_\infty, R_0)$, then the optimal Youla parameter $Q_{opt}(z)$ is given by

$$Q_{opt}(z) = (\xi_{\Lambda_o}(z)G_{\Lambda_o}(z))^{-1} \Lambda_o,$$

with λ_0 s.t. $\|\epsilon_2^T \frac{I - \Lambda_o^{-1} \xi_{\Lambda_o}(z)^{-1} \Lambda_o}{z - 1} \epsilon_1\|_2^2 = M$.

2. If $M \geq R_0$, then $J_{opt} = m_{11}$ and $Q_{opt}(z) = Q_0(z)$.

3. If $M = R_\infty$, then $J_{opt} = m - m_{21}$ and $Q_{opt} = Q_\infty(z)$.

4. If $M < R_\infty$, then Problem 1 is infeasible.
Main result (cont’d)

Then:

1. If \(M \in (R_\infty, R_0) \), then the optimal Youla parameter \(Q_{opt}(z) \) is given by

\[
Q_{opt}(z) = (\xi \Lambda_o(z) G \Lambda_o(z))^{-1} \Lambda_o,
\]

with \(\lambda_0 \) s.t.

\[
\| \epsilon_T \frac{I - \Lambda^{-1}_o \xi \Lambda_o(z)^{-1} \Lambda_o}{z - 1} \epsilon_1 \|_2^2 = M.
\]

2. If \(M \geq R_0 \), then \(J_{opt} = m_{11} \) and \(Q_{opt}(z) = Q_0(z) \)

3. If \(M = R_\infty \), then \(J_{opt} = m - m_{21} \) and \(Q_{opt} = Q_\infty(z) \)

4. If \(M < R_\infty \), then Problem 1 is infeasible.
Outline

Motivation
- Context
- Direct fired coal power plants
- Main Problem

MIMO performance bounds
- Some classical results
- Multiobjective optimization
- Controller design
- Control cost
- Solution to main problem

Simulation results

Summary
Different cost terms as a function of λ
Simulation results

Load and vapour pressure responses

- Load response to a reference step change at $t = 10$
- Vapour pressure response to a reference step change in load at $t = 10$

$M = 4$
$M = 3$
$M = 2$
$M = 1$
$M = 0.45$
$M = 4$
$M = 3$
$M = 2$
$M = 1$
$M = 0.45$

[Graphs showing load and vapour pressure responses for different values of M.]
Outline

Motivation
 Context
 Direct fired coal power plants
 Main Problem

MIMO performance bounds
 Some classical results
 Multiobjective optimization
 Controller design
 Control cost
 Solution to main problem

Simulation results

Summary
Take Home Messages

- Theoretical "benchmark": no constraints on control effort
Take Home Messages

- Theoretical "benchmark": no constraints on control effort
- Controller design with more constraints using other techniques (LMI, MPC)
Take Home Messages

- Theoretical "benchmark" : no constraints on control effort
- Controller design with more constraints using other techniques (LMI, MPC)
- MIMO controller could replace multiple decentralized control strategies with complex switching logic