Introduction: An average consensus problem

- Agents move in discrete time
- They average their neighbours’ positions
- They converge to average consensus
A rogue agent takes power

- One agent changes its connections
- End position: far from average
- Conditions for perturbation to preserve (close to) average?
- Enough to stay connected?
Opinion dynamics and dictators

- Political opinion: number in [-1,1]
- People talk with friends and change their opinion
- Same dynamics as consensus
- How can someone impose his opinion to everybody else?
- How to preserve democracy?
Consensus = opinion dynamics = Markov chains

Consensus: $x_{t+1} = Ax_t$, A stochastic

Opinion dynamics: $x_{t+1} = Ax_t$, A stochastic

Typically: A sparse = small outdegree

Markov chains: $\pi_{t+1} = \pi_tA$

Entries of $\pi = \text{influence of agents in final decision}$
Democracy in Markov chains and its preservation under local perturbations

Fabio Fagnani (Politecnico di Torino)
Jean-Charles Delvenne (University of Louvain)
This is not classical perturbation theory

- Matrix A is
 - stochastic
 - sparse (few entries per row)
 - large
- Left dominant eigenvector π
- Classical perturbation theory:
 If we change all entries by a small ε, what happens to π?
This is ‘combinatorial perturbation’ theory

- Matrix A is
 - stochastic
 - sparse (few entries per row)
 - large
- Left dominant eigenvector π
- Combinatorial perturbation theory:
 If we change a few entries by any amount, what happens to π?
Or rather: ‘asymptotic’ combinatorial perturbation theory

- We wish we had a bound on $\|\pi - \pi'\|$ depending on number of entries changed, dimension of A, etc.
- Hard!
- Simpler:
 - Large \rightarrow Larger and larger
 - Few \rightarrow bounded
 - What happens to $\|\pi\|, \|\pi'\|, \|\pi - \pi'\|$?
Sequences of chains and democracy

- Set of nodes $V_1 \subset V_2 \subset V_3 \ldots \subset V_\infty$
- Mixing Markov chain G_n on V_n
- G_n stabilises when $n \to 1$
 For all nodes x,y: $G_n(x,y)$ eventually constant
- $\pi_n = $ stationary distribution of G_n
- $\|\pi_n\|_\infty = $ largest entry of π_n
Democracy in Markov chains

- **Democratic** iff $\|\pi_n\|_\infty \rightarrow 0$

- Democracy for opinion/consensus
 - = no dictator
 - = no agent has a dominant influence on the final opinion/consensus

- Similar to ‘wisdom of crowds’ (M.O. Jackson)
The ring is democratic

G_n:

G_1:
Reversible random walks

- G_n: random walk on a connected undirected graph
- π_n: normalised degrees
- If bounded degree, then democratic

- The infinite graph can be weighted
 - If weights bounded from above and below, and bounded degree, then democratic

- All those examples are reversible
- In fact, general for reversible chains
Finite perturbation

- Finite set of nodes S
- In all G_n, rewire all edges from S arbitrarily (independently of n)
- We assume the rewired G'_n is still mixing

- Is democracy preserved? Not always.
Example: biased ring

\[G_n : \]

\[1 \quad 0.2 \quad 0.2 \quad 0.8 \quad 0.8 \quad 0.2 \]

\[2 \quad 0.2 \quad 0.8 \quad 0.8 \quad 0.2 \]

\[3 \quad 0.8 \quad 0.2 \quad 0.8 \quad 0.2 \]

\[4 \quad 0.2 \quad 0.8 \quad 0.8 \quad 0.2 \]

\[5 \quad 0.8 \quad 0.2 \quad 0.8 \quad 0.2 \]

\[\ldots \]
The perturbed biased ring

G'_n:

$\pi_n(1)$ converges to a non zero value

) Not democratic
The perturbed biased ring

Limit chain: not connected!

Is it enough to ask for a irreducible limit?
Theorem:
A sequence of random walks on undirected, bounded-degree graphs with weights from a finite set
- is democratic
- remains so under finite perturbations which preserve irreducibility of the limit chain.

The perturbed chains are not necessarily reversible anymore.
Tools

- $\pi^{-1}(x) =$ first return time of node x

 democracy $=$ smallest first return time grows to infinity

- We can permute the nodes and converge to a different limit chain.

Look at all limit chains: do they have a stationary distribution?
Conclusions

- ‘Combinatorial perturbation’ of Markov chains/consensus
- Democracy = every agent has negligible influence
- Robust to local irreducibility-preserving perturbations for reversible, bounded-degree random walks
- Open problems:
 - Lift assumptions
 - Slowly growing set of rogue agents
 - Finitary versions
 - Different norms
- Thanks: S. Zampieri, J. Hendrickx, F. Garin, G. Como