Eigenvalue based techniques for the stability analysis and robust control of linear systems with time-delay

Wim Michiels
Department of Computer Science
K.U.Leuven

CESAME Seminar Series

Louvain-la-Neuve
Tuesday, February 22, 2011
Outline

- Motivating examples
- Basic properties of time-delay systems
- Computation of characteristic roots
- Fixed structure control design: an eigenvalue optimization approach
 - Stabilization via nonsmooth, nonconvex optimization
 - Computing and optimization robustness measures
- Case study: control of a heating system
- Concluding remarks
Motivating examples

- networks
 - biology (e.g. interactions between neurons)
 - car following models
 - time-based spacing of airplanes
 - distributed and cooperative control, sensor networks
 - congestion control in communication networks

- mechanical engineering
 - haptic interfaces
 - machine tool vibrations (cutting and milling machines)

- parallel computing (load balancing)

- population dynamics

- cell dynamics, virus dynamics

- laser physics (lasers with optical feedback)
Fluid flow model for a congested router in TCP/AQM controlled network

Hollot et al., IEEE TAC 2002

Model of collision-avoidance type:

\[\dot{W}(t) = \frac{1}{R(t)} - \frac{1}{2} \frac{W(t)W(t-R(t))}{R(t-R(t))} p(t-R(t)) \]

\[\dot{Q}(t) = \begin{cases} N(t) \frac{W(t)}{R(t)} - C & Q > 0 \\ \max \left(N(t) \frac{W(t)}{R(t)} - C, 0 \right), & Q = 0 \end{cases} \]

\[R(t) = \frac{Q(t)}{C} + T_p \]

AQM is a feedback control problem: \(p = f(Q) \)

- \(W \): window-size
- \(Q \): queue length
- \(N \): number of TCP sessions
- \(R \): round-trip-time
- \(C \): link capacity
- \(p \): probability of packet mark
- \(T_p \): propagation delay
Motivating examples

• networks
 - biology (e.g. interactions between neurons)
 - car following models
 - time-based spacing of airplanes
 - distributed and cooperative control, sensor networks
 - congestion control in communication networks

• mechanical engineering
 - haptic interfaces
 - machine tool vibrations (cutting and milling machines)

• parallel computing (load balancing)

• population dynamics

• cell dynamics, virus dynamics

• laser physics (lasers with optical feedback)
Rotating milling machines

Model:
\[\dot{x}(t) = F(x(t)) + B(\omega t) (x(t) - x(t - \tau(t))) \]

- Successive passages of teeth ⇒ delay
- Rotation of each tooth ⇒ periodic coefficients
- Delay inversely proportional to speed

Goal: increasing efficiency while avoiding undesired oscillations (chatter)
Motivating examples

- networks
 - biology (e.g. interactions between neurons)
 - car following models
 - time-based spacing of airplanes
 - distributed and cooperative control, sensor networks
 - congestion control in communication networks

- mechanical engineering
 - haptic interfaces
 - machine tool vibrations (cutting and milling machines)

- parallel computing (load balancing)

- population dynamics

- cell dynamics, virus dynamics

- laser physics (lasers with optical feedback)

Delays appear as intrinsic components of the system, or in approximations of (mostly PDE) models describing propagation and wave phenomena.
Heating system

Linear system of dimension 6, 5 delays
Model

\[
\begin{align*}
T_h \dot{x}_h(t) &= -x_h(t - \eta_h) + K_b x_a(t - \tau_b) + K_u x_{h,\text{set}}(t - \tau_u) \\
T_a \dot{x}_a(t) &= -x_a(t) + x_c(t - \tau_e) + K_a \left(x_h(t) - \frac{1+q}{2} x_a(t) - \frac{1-q}{2} x_c(t - \tau_e)\right) \\
T_d \dot{x}_d(t) &= -x_d(t) + K_d x_a(t - \tau_d) \\
T_c \dot{x}_c(t) &= -x_c(t - \eta_c) + K_c x_d(t - \tau_c) \\
\dot{x}_e(t) &= x_{c,\text{set}}(t) - x_c(t)
\end{align*}
\]

Control law (PI+ state feedback)

\[
x_{h,\text{set}} = K \begin{bmatrix} x_h & x_a & x_d & x_c & x_e \end{bmatrix}^T
\]
Representation as a functional differential equation

\[C([-\tau, 0], \mathbb{R}^n) \]: Banach space of continuous function over \([-\tau, 0]\), equipped with the maximum norm, \(\| \cdot \|_s \)

functional \(f : C([-\tau, 0], \mathbb{R}^n) \rightarrow \mathbb{R}^n \)

Functional Differential Equation

\[
\begin{align*}
\dot{x}(t) &= f(x_t), \\
x(t) &\in \mathbb{R}^n, \quad x_t \equiv x(t + \theta), \quad \theta \in [-\tau, 0]
\end{align*}
\]

Linear Functional Differential Equations

\[
\dot{x}(t) = \int_{-\tau}^{0} d\theta [F(\theta)]x(t + \theta)
\]

F: bounded variation in \([-\tau, 0]\)

F(0)=0

⇒ unifying theory available

e.g., discrete delays \(\dot{x}(t) = Ax(t) + \sum_{i=1}^{m} A_i x(t - \tau) \)
The initial value problem

Ordinary differential equation

\[
\frac{dx}{dt}(t) = f(x(t))
\]

linear

\[
\frac{dx}{dt}(t) = Ax(t)
\]

Delay differential equation

\[
\frac{dx}{dt}(t) = f(x(t), x(t - \tau))
\]

linear

\[
\frac{dx}{dt}(t) = A_0 x(t) + A_1 x(t - \tau)
\]

initial data required = function segment → infinite-dimensional system
Dynamics become rich when introducing a delay

Analysis: complex behavior

scalar examples

\[\dot{x}(t) = -x(t - \pi/2) \quad \text{oscillatory solutions} \quad \dot{x}(t) = \sin t \]

\[\dot{x}(t) = -20x(t) + 40 \frac{x(t - 1)}{1 + x(t - 1)^{10}} \quad \text{chaotic attractor} \]

Controller synthesis

any control design problem involving the determininination of a finite number of controller parameters is a low-order controller design problem

→ *inherent limitations*
→ control design almost exclusively ends up in an optimization problem
Reformulation in a standard, first order form

\[\frac{dx}{dt}(t) = A_0 x(t) + A_1 x(t - \tau), \quad x(t) \in \mathbb{R}^n \]

\[z(t) \equiv x(t + \theta), \quad \theta \in [-\tau, 0] \]

\[\frac{dz}{dt}(t) = \mathcal{A} z(t), \quad z(t) \in X := C([-\tau, 0], \mathbb{R}^n) \]

where

\[\mathcal{D}(\mathcal{A}) = \{ \phi \in X : \phi' \in X, \quad \phi'(0) = A_0 \phi(0) + A_1 \phi(-\tau) \} \]

\[\mathcal{A} \phi = \phi' \]

\[\rightarrow \text{a time-delay system is a distributed parameter system with a special structure: distribution in time} \]

\[\rightarrow \text{“ambiguity”: infinite-dimensional system, but trajectories reside within a finite-dimensional space} \]
Ambiguity in the frequency domain

Linear(ized) time-delay systems: growth of solutions determined by spectrum

\[\frac{d}{dt} z(t) = Az(t) \quad \Leftrightarrow \quad \dot{x}(t) = A_0 x(t) + A_1 x(t - \tau) \]

\[(\lambda I - A) u = 0 \quad u \in C([-\tau, 0], \mathbb{C}^n) \quad \Leftrightarrow \quad (\lambda I - A_0 - A_1 e^{-\lambda \tau}) v = 0 \quad v \in \mathbb{C}^n \]

infinite-dimensional
linear eigenvalue problem

\Leftrightarrow

finite-dimensional
nonlinear eigenvalue problem

Important element in developing numerical schemes:
exploiting two viewpoints
Example: computing characteristic roots via a two-step approach

\[(\lambda I - A)u = 0 \iff (\lambda I - A_0 - A_1 e^{-\lambda \tau})v = 0\] \hspace{1cm} (2)

1. discretize linear-infinite-dimensional operator; compute eigenvalues of the matrix
2. correct the individual characteristic root approximations using the nonlinear equation (2)
Large-scale problems: Krylov methods directly based on the infinite-dimensional representation

\[
(\lambda I - A_0 - A_1 e^{-\lambda \tau}) v = 0 \\
\Downarrow \\
(\lambda I - A) \phi = 0
\]

\(v\): vector

\(\phi\): function belonging to \(X := C([-\tau, 0], \mathbb{R}^n)\)

\[
\begin{align*}
\mathcal{D}(A) &= \{ \phi \in X \mid \phi' \in X, \phi'(0) = A_0 \phi(0) + A_1 \phi(-\tau) \} \\
A \phi &= \phi'
\end{align*}
\]

\(A\) derivative operator \(\Rightarrow A^{-1}\) integral operator

\[
\begin{align*}
\mathcal{D}(A^{-1}) &= X \\
A^{-1} \phi &= \int_0^t \phi(s) ds + C(\phi)
\end{align*}
\]

where

\[
C(\phi) = (A_0 + A_1)^{-1} \left(\phi(0) - A_1 \int_0^{\tau} \phi(s) ds \right)
\]
Outline

◆ Motivating examples
◆ Basic properties of time-delay systems
◆ **Fixed structure control design: an optimization approach**
 ↗ Stabilization via nonsmooth, nonconvex optimization
 ↗ Computing and optimization robustness measures
◆ Case studies
 ↗ Control of a heating system
 ↗ Beneficial use of delays: prediction based feedback
Fixed structure control design

1. (infinite-dimensional) time-delay system

\[\dot{x}(t) = \sum A_i x(t - \tau_i) + \sum B_i u(t - r_i) \]
\[y_i(t) = \sum C_i x(t - s_i) \]

2. any type of controller characterized by finite number of parameters, \(p = (p_1, \ldots, p_m) \)

static

\[u(t) = K y(t) \Rightarrow p = K \]

dynamic

\[\begin{cases} \dot{z}(t) = F z(t) + G y(t) \Rightarrow p = (F, G, H) \\ u(t) = H z(t) \end{cases} \]

\[u(t) = \sum K_i y(t - r_i) \Rightarrow p = (K_1, K_2, \ldots) / p = (K_1, r_1, K_2, r_2, \ldots) \]

⇒ closed loop system of the form

\[\dot{z}(t) = \sum_{i=1}^{m} \tilde{A}_i(p) \ z(t - \tau_i) \]

⇒ control design = parameter tuning

= optimization of design specifications over the parameters
Fixed structure control design

1. (infinite-dimensional) time-delay system
 \[\dot{x}(t) = \sum A_i x(t - \tau_i) + \sum B_i u(t - r_i) \]
 \[y_i(t) = \sum C_i x(t - s_i) \]

2. any type of controller characterized by finite number of parameters, \(p=(p_1, \ldots, p_m) \)

\[\Rightarrow \] closed loop system of the form
 \[\dot{z}(t) = \sum_{i=1}^{m} \tilde{A}_i(p) \ z(t - \tau_i) \]

\[\Rightarrow \] control design = parameter tuning
 = optimization of design specifications over the parameters

Motivation

- in applications the structure of the controller is mostly fixed or restricted
- a low order controller often perform well compared to full order controllers (a full order controller is infinite-dimensional)
- easy to implement
Objective function

Stabilization / response time

spectral abscissa function:

\[c(p) = \max_{\lambda \in \mathbb{C}} \left\{ \Re(\lambda) : \text{det} \left(\lambda I - \sum_{i=0}^{m} A_i(p)e^{-\lambda \tau_i} \right) = 0 \right\} \]

characterizes the exponential decay of solutions. The system is stabilizable if and only if \(\min_p c(p) < 0 \)
neutral equation: \(\max(c(p), \bar{C}_D(p)) \)

\[
\dot{x}(t) = -x(t) + \frac{3}{4} x(t-1) + \frac{3}{4} \dot{x}(t-1) - \frac{1}{2} \ddot{x}(t-2)
\]
neutral equation: \(\max(c(p), \tilde{C}_D(p)) \)

\[
\dot{x}(t) = -x(t) + \frac{3}{4} x(t - 1)) + \frac{3}{4} \dot{x}(t - 0.99) - \frac{1}{2} \dot{x}(t - 2)
\]
neutral equation: \(\max(c(p), \tilde{C}_D(p)) \)

\[
\dot{x}(t) = -x(t) + \frac{3}{4} x(t - 1)) + \frac{3}{4} \dot{x}(t - (1-)) - \frac{1}{2} \dot{x}(t - 2)
\]
Robustness and performance

stable system:

\[\dot{x}(t) = \sum A_i(p)x(t - \tau_i) + B(p)u(t) \]
\[y(t) = C(p)x(t) + D(p)u(t) \]

transfer function:

\[G(j\omega; \ p) := C(p) \left(j\omega I - \sum_{i=0}^{m} A_i(p)e^{-j\omega \tau_i} \right)^{-1} B(p) + D(p) \]

\(\mathcal{H}_\infty \) criterion

\[\beta(p) := \|G(j\omega; \ p)\|_{\mathcal{H}_\infty} \]
\[= \sup_{\omega \geq 0} \sigma_1(G(j\omega; \ p)) \]
H_2 criterion

$\dot{x}(t) = \sum A_i x(t - \tau_i) + Bu(t), \quad y(t) = Cx(t)$

$G(j\omega) := C \left(j\omega I - \sum A_i e^{-j\omega \tau_i} \right)^{-1} B$

$||G(j\omega)||_{H_2} = \left(\int_0^\infty \text{Tr} \ h(t)^* h(t) \ dt \right)^{1/2}$

$= \left(\frac{1}{2\pi} \int_0^\infty \text{Tr} \ G(j\omega)^* G(j\omega) d\omega \right)^{1/2}$

$h(t)$: impulse response

time domain

frequency domain
Outline

◆ Motivating examples
◆ Basic properties of time-delay systems
◆ Fixed structure control design: an optimization approach
 ➣ Objective function
 ➣ Stabilization via nonsmooth, nonconvex optimization
 ➣ Computing and optimization robustness measures
◆ Case studies: control of a heating system
◆ Concluding remarks
Stabilization via nonsmooth, nonconvex optimization

Properties of the spectral abscissa function

\[c(p) = \max_{\lambda \in \mathbb{C}} \left\{ \Re(\lambda) : \det \left(\lambda I - A_0 - \sum_{i=1}^{m} A_i(p) e^{-\lambda \tau_i} \right) = 0 \right\} \]

- not everywhere differentiable

- not locally Lipschitz continuous
• but ... smooth almost everywhere
Generalization of the steepest descent method
takes steps along the **nonsmooth steepest descent direction**:

\[-\arg \min_{z \in \delta_c \phi(p)} \|z\|, \quad \partial_c \phi(p) = \text{conv} \left\{ \lim_{q \to p} \tilde{\nabla} c(q) \right\}, \]

> generalized gradient (Clarke subdifferential) at \(p \)
The gradient sampling algorithm (Burke et al, SIOPT 2005)

- approximates the nonsmooth steepest descent direction by randomly sampling gradients in a neighborhood of the current iterate
The gradient sampling algorithm (Burke et al, SIOPT 2005)

- approximates the nonsmooth steepest descent direction by randomly sampling gradients in a neighborhood of the current iterate
- leads to a monotone decrease of the objective function towards a Clarke stationary point: $\tilde{0} \in \partial_c \phi(p)$

The algorithm relies on routines to compute the objective function and its gradient, whenever it exists.

- objective function: via computation of characteristic roots
- gradient: analytically or numerically (finite differences)

$$\frac{\partial \lambda(p)}{\partial p} = \frac{u^* \left(\sum \frac{\partial A_i(p)}{\partial p_i} e^{-\lambda \tau_i} \right) v}{u^* (I + \sum A_i(p) \tau_i e^{-\lambda \tau_i}) v}$$

- acceleration by BFGS
Coupled PDE-DDE model for a semiconductor laser

spatial discretization: DDE with dimension $n=123$
Coupled PDE-DDE model for a semiconductor laser

spatial discretization: DDE with dimension $n=123$

Invariant characteristic root at zero: due to symmetry
Computation of \mathcal{H}_∞ norms

$$G(j\omega) := C \left(j\omega I - \sum_{i=1}^{m} A_i e^{-j\omega \tau_i} \right)^{-1} B + D e^{-j\omega \tau_0}$$

Principle criss-cross search

![Graph showing $\sigma_i(G(j\omega))$ vs ω]
Main property

For $\omega \geq 0$, the matrix $G(j\omega)$ has a singular value equal to ξ if and only if $\lambda = j\omega$ is an eigenvalue of the infinite-dimensional linear operator \mathcal{L}_ξ

\[\sigma_i(G(j\omega))\]

ξ

$j\omega_i$: eigenvalues of \mathcal{L}_ξ

$\mathcal{D}(\mathcal{L}_\xi) = \left\{ \phi \in C^1([-\tau_m, \tau_m]), \quad \phi'(0) = M_0(\xi)\phi(0) + \sum_{i=1}^m (M_i \phi(-\tau_i) + M_{-i} \phi(\tau_i)) + N_1(\xi)\phi(-\tau_0) + N_{-1}(\xi)\phi(\tau_0) \right\}$

$\mathcal{L}_\xi \phi = \phi'$, $\phi \in \mathcal{D}(\mathcal{L}_\xi)$.

Note: $\lambda \in \sigma(\mathcal{L}_\xi) \iff \det \left(\lambda I - M_0 - \sum_{i=1}^m M_i e^{-\lambda \tau_i} - \sum_{i=0}^m M_{-i} e^{\lambda \tau_i} - N_1 e^{-\lambda \tau_0} - N_{-1} e^{\lambda \tau_0} \right) = 0$
Predictor – corrector algorithm

\mathcal{L}_ξ : infinite-dimensional operator

\Rightarrow 2-step approach

1. criss-cross search using a finite-dimensional approximation (matrix) of \mathcal{L}_ξ

2. Newton like correction to peak value
Predictor – corrector algorithm

\(\mathcal{L}_\xi \): infinite-dimensional operator

\(\Rightarrow \) 2-step approach

1. criss-cross search using a finite-dimensional approximation (matrix) of \(\mathcal{L}_\xi \)

2. Newton like correction to peak value

Exploitation of duality eigenvalue problem of \(\mathcal{L}_\xi \)
- infinite-dimensional linear
- finite-dimensional nonlinear
Minimization of \mathcal{H}_∞ norms

The function has the same properties as the spectral abscissa function, accelerated by BFGS. A stabilizing starting value can be generated by minimizing spectra abscissa.

$$G(j\omega; p) := C(p) \left(j\omega I - \sum A_i(p) e^{-j\omega \tau_i} \right)^{-1} B(p) + D(p)$$

- The function
 $$p \mapsto \|G(j\omega; p)\|_{\mathcal{H}_\infty}$$

 has the same properties as the spectral abscissa function

 → gradient sampling algorithm, accelerated by BFGS

- A stabilizing starting value can be generated by minimizing spectra abscissa
Computing of \mathcal{H}_2 norms

Finite-dimensional system

\[G(j\omega) = C (j\omega I - A)^{-1} B \]

\[
\|G\|_{\mathcal{H}_2}^2 = \text{Tr} \left(B^T U B \right) = \text{Tr} \left(C V C^T \right)
\]

where

\[-C^T C = UA + A^T U \quad \text{(primal) Lyapunov equation}\]

and

\[-BB^T = VA^T + AV \quad \text{(dual) Lyapunov equation}\]

\[
\gamma(A, B, C) = \|G(j\omega; A, B, C)\|_{\mathcal{H}_2} \Rightarrow
\begin{cases}
\frac{\partial \gamma^2}{\partial A} = 2UV \\
\frac{\partial \gamma^2}{\partial B} = 2UB \\
\frac{\partial \gamma^2}{\partial C} = 2CV
\end{cases}
\]
Generalization to time-delay systems of retarded type

\[G(j\omega) = C \left(j\omega I - A_0 - \sum_{k=1}^{m} A_k e^{-j\omega \tau_k} \right)^{-1} B \]

Approach 1: exploit nonlinearity of the characteristic matrix / representation as a functional differential equation
Generalization to time-delay systems of retarded type

\[G(j\omega) = C \left(j\omega I - A_0 - \sum_{k=1}^{m} A_k e^{-j\omega \tau_k} \right)^{-1} B \]

\[\|G\|^2_{\mathcal{H}_2} = \text{Tr} \left(B^T U(0) B \right) \]
\[= \text{Tr} \left(C V(0) C^T \right) \]

where \(U \) and \(V \) are Lyapunov matrices, satisfying

\[
\begin{align*}
U'(t) &= U(t)A_0 + \sum_{k=1}^{m} U(t-\tau_k)A_k, \quad t \in [0, \tau_{\text{max}}] \\
U(-t) &= U^T(t) \\
-C^T C &= U(0)A_0 + A_0^T U(0) + \sum_{k=1}^{m} \left(U^T(\tau_k)A_k + A_k^T U(\tau_k) \right)
\end{align*}
\]

and

\[
\begin{align*}
V'(t) &= V(t)A_0^T + \sum_{k=1}^{m} V(t-\tau_k)A_k^T, \quad t \in [0, \tau_{\text{max}}] \\
V(-t) &= V^T(t) \\
-BB^T &= V(0)A_0^T + A_0 V(0) + \sum_{k=1}^{m} \left(V^T(\tau_k)A_k^T + A_k V(\tau_k) \right)
\end{align*}
\]

Lyapunov equation → boundary value problem

- explicit solution for commensurate delays
- general case: computation via discretization of boundary value problem based on spectral collocation
Computation of \mathcal{H}_2 norms

Finite-dimensional system

$$G(j\omega) = C (j\omega I - A)^{-1} B$$

$$\|G\|_{\mathcal{H}_2}^2 = \text{Tr} \left(B^T U B \right) = \text{Tr} \left(C V C^T \right)$$

where

$$-C^T C = U A + A^T U$$ \hspace{0.5cm} \text{(primal) Lyapunov equation}$$

and

$$-B B^T = V A^T + AV$$ \hspace{0.5cm} \text{(dual) Lyapunov equation}$$

$$\gamma(A, B, C) = \|G(j\omega; A, B, C)\|_{\mathcal{H}_2} \Rightarrow \begin{cases} \frac{\partial \gamma^2}{\partial A} = 2UV \\ \frac{\partial \gamma^2}{\partial B} = 2UB \\ \frac{\partial \gamma^2}{\partial C} = 2CV \end{cases}$$
Approach 2: exploit representation as a linear infinite-dimensional system

\[G(j\omega) = C \left(j\omega I - A_0 - \sum_{k=1}^{m} A_k e^{-j\omega \tau_k} \right)^{-1} B \]

\[= C(\lambda I - A)^{-1} B \rightarrow \text{Padé-via-Krylov model order reduction} \]

\[\Rightarrow \|G(\lambda)\|_{H_2} - \|G_k(\lambda)\|_{H_2} = \mathcal{O} \left(k^{-3} \right) \]

complexity:
\[\mathcal{O}(kn^3) + \mathcal{O}(k^3n) : \text{projection} \]
\[\mathcal{O}(k^3) : H_2 \text{ norm reduced system} \]
Optimization of \mathcal{H}_2 norms

\[G(j\omega) = C(p) \left(j\omega I - A_0(p) - \sum_{k=1}^{m} A_k(p)e^{-j\omega \tau_k} \right)^{-1} B(p) \]

• in contrast to the \mathcal{H}_∞ norm, the \mathcal{H}_2 norm of G smoothly depends on p, provided that the system matrices do so

• expressions for derivatives available

→ embedding in a derivative based optimization framework
→ second order methods applicable

<table>
<thead>
<tr>
<th>spectral abscissa, \mathcal{H}_∞ norm</th>
<th>nonsmooth function of parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>\mathcal{H}_2 norm</td>
<td>smooth function of parameters</td>
</tr>
</tbody>
</table>
Optimization of \mathcal{H}_2 norms

\[
G(j\omega) = C(p) \left(j\omega I - A_0(p) - \sum_{k=1}^{m} A_k(p)e^{-j\omega\tau_k} \right)^{-1} B(p)
\]

- in contrast to the \mathcal{H}_∞ norm, the \mathcal{H}_2 norm of G *smoothly* depends on p, provided that the system matrices do so
- expressions for derivatives available

→ embedding in a derivative based optimization framework
→ second order methods applicable

spectral abscissa, \mathcal{H}_∞ norm	nonsmooth function of parameters
smoothed spectral abscissa	(SIOPT 2009)
\mathcal{H}_2 norm	smooth function of parameters
Outline

◆ Motivating examples
◆ Basic properties of time-delay systems
◆ Fixed structure control design: an eigenvalue optimization approach
 ↪ Objective function
 ↪ Stabilization via nonsmooth, nonconvex optimization
 ↪ Computing and optimization robustness measures
◆ Case studies: control of a heating system
◆ Concluding remarks
Case study: control of a heating system

Model Vyhlídal, et al. (2009)

System
linear system, dimension 10, 7 delays

Extended state vector
\[\bar{x}(t) = [x(t)^T \ I(t)]^T \]

\[I(t) = \int_0^t (y_{SET}(\eta) - y(\eta))d\eta \]

\[y, \ y_{SET} \]
- controlled variable and its setpoint

Controller
\[u_c(t) = -K^T \bar{x}(t) \]

\[u_c \] - control input

→ 11 free parameters
Objective of the control

• acceleration of the set-point response
• achieving a proper damping of the step and disturbance response

Approach

• minimizing the spectral abscissa
• subject to: pole location constraints

\[
\dot{x}(t) = \sum_{i=1}^{m} A_i(p) \ x(t - \tau_i)
\]

assigning a real pole \(c \):

\[
\det \left(cI - \sum A_i(p)e^{-c\tau_i} \right) = 0
\]

assigning a pair of complex conjugate poles \(c \pm dj \):

\[
\det \left((c \pm dj)I - \sum A_i(p)e^{-(c \pm dj)\tau_i} \right) = 0
\]

Matrices \(A_i \) linear in \(p \)

→ polynomial constraints on parameters \(p \)

In addition: 1 control input

→ linear constraints, that can be eliminated
Stability optimization

spectrum of the open loop system

result of minimizing the spectral abscissa
Assigned poles:

\[\lambda_1 = -0.025 \]
\[\lambda_2 = -0.035 \]
\[\lambda_{3,4} = -0.03 \pm 0.03i \]

Evolution of the objective function, and the gain values:
Set-point and disturbance responses
Concluding remarks

Introduction time-delay systems

Direct optimization approach for solving controller synthesis

• very suitable for designing reduced-order controllers
• generally applicable
• less restrictive than the existing time-domain methods

Combining different viewpoints

• time-domain versus frequency domain interpretations

• finite-dimensional nonlinear versus infinite-dimensional linear EVP: key towards new methods for generic nonlinear eigenvalue problems
Towards generic methods for nonlinear eigenvalue problems

“Linearization” of the eigenvalue problem:

\[(\lambda I - A_0 - A_1 e^{-\lambda \tau}) v = 0 \iff (\lambda I - A) z = 0\]

\[
\begin{align*}
\mathcal{D}(A) &= \{ \phi : \phi'(0) - A_0 \phi(0) - A_1 \phi(-\tau) = 0 \} \\
A \phi &= \phi', \quad \phi \in \mathcal{D}(A)
\end{align*}
\]

Generalization:

\[B(\lambda) v = 0 \iff (\lambda I - B) z = 0\]

\[
\begin{align*}
\mathcal{D}(B) &= \{ \phi : \left(B \left(\frac{d}{dt} \right) \phi \right)(0) = 0 \} \\
B \phi &= \phi', \quad \phi \in \mathcal{D}(B)
\end{align*}
\]