
On-line Supervision and Control of an Aerobic SBR processF. Ciappelloni, D. Mazouni, L. Lardon, J. Harmand∗Laboratoire de Biotechnologie de l’Environnement, INRA-LBE, Avenue des étangs, 11100Narbonne, France. Telephone +33 468 425 161, Fax +33 468 425 160Abstract: This paper presents a new software developed in MATLAB for analyzing on-linedata of an aerobic SBR, detecting faults and, in this case, proposing the most probablecauses of fault. Process diagnosis is achieved using a statistical method divided in two mainphases: off-line model building and on-line data diagnosis. The off-line model identifies thecorrect working conditions of the system (standard operative conditions). It includes thecharacterization of the deviation of the system from these standard conditions in the case ofchanging in the biomass properties or carbon and nitrogen load characteristics. The on-linediagnosis aims at collecting and analyzing all the available data available through industrialsensors, and at classifying the behavior of each treatment cycle. The diagnosis performanceof the proposed method is tested using a data set of an aerobic SBR pilot plant.Keywords: monitoring, Sequencing Batch Reactor (SBR), Fault Detection and Isolation(FDI), Principal Component Analysis (PCA), Decision Support System (DSS).INTRODUCTIONSafety in industrial processes is becoming more and more an important requirement and the ability toearly detect and isolate possible causes of process faults is a primary need. In wastewater biologicaltreatment processes, and in particular when dealing with batch processes, the on-line diagnosis is avery important requirement because of the high sensitivity of the whole system to a wide variety ofexternal inputs and internal changing conditions. The operating efficiency can significantly vary overthe time and is not easy, even for operators or experts to understand the observed changes. It is provedthat the application of an efficient diagnosis system may help operators and engineers to manage inthe best way the treatment process to maintain it as close as possible to the optimal conditions beforethe integrity of the process is affected.A fault is any unexpected change in a system, due to malfunctions or variation of operatingconditions. The aim of an advanced diagnosis system is not only to detect and isolate a fault, but alsoto propose the operator, as soon as the problem is detected, the most probable causes of fault tointervene quickly and to solve the problem in the fastest way and restore the optimal conditions. Theneed for an efficient supervisory system able to control bioprocesses in real time is important.Maintaining the efficiency and the quality of the sludge in the reactor is the first requirement.However, it is highly influenced by external inputs. Furthermore, the settleability of the sludge can bedurably altered by changes in environment conditions. Too often, the only way to restore the processis to re-start up the process with fresh biomass leading to an important waste of time.In the present study, an aerobic SBR pilot plant has been chosen as an illustrative example ofbiological WWTP. In aerobic conditions a series of biological processes take place in presence ofoxygen provided by diffusers to the mix of organic matter and biomass. The first step in organicdegradation is the consumption of COD (Chemical Oxygen Demand), the second is the transformationof NH4 (ammonium produced by the ammonification of organic nitrogen present in the input) intoNO2, while the third and last step is the transformation of NO2 into NO3 that will be discharged atthe end of the settling phase. In this treatment process, the most critical phase is clearly the aerationperiod during which the most influent parameters are Kla (oxygen transfer coefficient in liquid
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phase), COD and TKN loading rates and the concentrations of biomasses (heterotrophic andautotrophic) in the reactor.The supervision system analyzes on-line data provided by the acquisition system of the plantcomparing each treatment cycle to the "ideal cycle" and to the others obtained by varying someoperating conditions; if the real cycle is near to the best cycle, it will be classified as a good cycle,else it will be considered similar to the nearest simulated cycles and so its operating conditions.The paper is organized as follows. First, the description of the aerobic SBR pilot plant and of itsinstrumentation is given. Then, the methodology used to analyze and classify on-line data as well asthe model implemented to generate the optimal condition and the possible causes of fault arepresented. Finally, the application of PCA to compare simulated and real cycles and so to suggest themost probable cause of fault is reported. Finally examples of experiments and results of theapplication are presented and discussed.MATERIAL AND METHODSThe SBR pilot PlantThe experiments were performed using an aerobic SBR pilot plant at the "Laboratoire deBiotechnologie de l'Environnement" of INRA in Narbonne, France.Activated sludgeThe sludge used in the SBR comes from the urban wastewater treatment plant (WWTP) of Coursan,France. This plant was chosen because both carbon and nitrogen are removed biologically. The 200liter tank was filled with about 100 liters of this sludge and operated under aerobic conditions for thefirst two months. A low organic loading rate (<0.7 kg COD/m3/day) was applied. Then, the anoxicphase was added and after a total start up period of three months, a good purification rate of 98% wasobtained while high sludge settleability was observed. The actual average sludge concentration is 12g/l.Influent wastewaterSemi-synthetic dairy wastewater is used as influent. This feed is prepared by dilution of concentratedwhey collected in a cheese dairy. The characteristics of the raw whey is as follows : 70 g/l COD and 2g/L TKN. To simulate possible changes in the C/N ratio of the whey, organic nitrogen as Urea(CH4N2O) is used. Regarding these characteristics and given that the process is operated under lowloading rate, in "standard conditions", the volume treated is 50 l/day. Its average properties are : 5 g/lCOD, 250 mg/l N-TKN, TSS>10 g/l and pH = 6.23.Pilot plantThe reactor tank is a 47 cm (diameter) times 130 cm (height) cylinder of a total volume of 255 liters.It is equipped with a variable input flow rate pump to fill in the reactor and a controlled valve towithdraw the effluent by gravitation and, when necessary, the sludge in excess. Air is used foraeration and mixing. Its flow is controlled by a gas flow meter. The plant is operated as follows.Filling period 1 (25 liters) : 5 mn, Anoxic period 1 : 2 h, Aerobic period 1 : 8 h 50, Filling period 2(25 liters) : 5 mn, Anoxic period 2 : 2 h, Aerobic period 2 : 8 h 50, Settling and draw period : 2 h 05.MeasurementsThe following sensors are installed : pH, Temperature, Dissolved Oxygen, Redox, CO2 and O2content of the output gas and sludge level. All sensors and actuators are connected to a PC and thefunctioning of the process is completely automatized. The on line measurements are acquired througha home made software called MSPC and automatically stored in a data base using a data formatdefined by PlantML, a language of management of information fluxes via XML for biologicalprocesses developed within the framework of the European Project TELEMAC (Cf. Neveu et al.,2003).



The diagnosis system : classification of reaction phasesThe developed system aims at computing a "distance" of a given cycle (one anoxic + one aerobicperiod) from a reference called "standard". In particular, the objective is to detect and isolate a CODor TKN overload, a problem in the oxygen transfer rate (Kla) or related to the heterotrophic orautotrophic bacteria. The fact that the detection is realized a posteriori (once the cycle is finished) isnot a problem because the consequences of an overloading or of a problem on the oxygen transfer oron the biomasses are rather long term consequences rather than short terms ones. For instance, a"durable" COD overload will lead in problems on sludge settleability several cycles after thisoverload has began. The most probable cause of the identified problem is then displayed to theoperator who can adjust the time of the subsequent reaction phases or take any other appropriatedecision (calibration, withdrawingt of the sludge, etc).Regarding the objectives of the study, the aerobic phase is the most important period to investigate theprocess performance. In fact, during this phase, significative information can be extracted from thedissolved oxygen, pH and Redox curves. In particular, using either the pH or the curve (as shown infigure 1), it is possible to detect when each substrate is completely degraded. The first pointcorresponds to the end of the COD consumption, the second corresponds to the end of the nitritationwhile the last one corresponds to the end of the nitratation. Based on this information, notice that aninteresting optimization strategy is to switch to the next phase (settle in this case) as soon as the CODand NH4 are degraded.

Figure 1 : pH and Dissolved oxygen curves (25/01/04)The detection of the critical points defined hereabove in figure 1 is very useful for classifying a givencycle. These points define three distinct periods : the first one comprised between the beginning of theaerobic period and T1, the ending time of the COD removal (between 2 and 3 hours in figure 1), thesecond comprised between T1 and T2 defining the end of the nitritation (between 3 and 5 hours infigure 1) and the third one comprised between T2 and T3 defined as the end of the nitration (between5 and 7 hours in figure 1). In particular, using the temperature to compute the oxygen saturation,notice that it is possible to determine the quantity of oxygen respectively needed in each of theseperiods (noted H1, H2 and H3). While the Ti parameters give us immediate information about thedegradation rates, the Hi parameters are proportional to pollutant quantity. Of course, these values arenot exact values since biological reactions evolve simultaneously (for instance both the COD removaland the nitrification begin when the dissolved oxygen differs from zero), however, the oxygen



consumption rates significantly differ between the different phases in order this uncertainty to beneglected.

Figure 2 : Definition of parameters Ti and HiThe Ti and Hi parameters are then used as descriptors in the framework of a Principal ComponentAnalysis (PCA) approach. In the proposed software, two different approaches are proposed. The firstone is a model-based approach where the projection basis for the PCA procedure is calculated usingdata generated by a mathematical model of the SBR plant. This approach is particularly interestingbecause it allows to simulate - in an acceptable time - a large number of simulations corresponding toa large spectrum of environmental conditions (different C/N ratios, different oxygen transfer rates,heterotrophic and autotrophic biomass concentrations, etc). However, it also means that a validatedmodel of the plant is available : such a model is usually difficult to obtain and its validation is timeconsuming. The other available approach makes use of a limited number of real cycles for which thefunctioning conditions are well known provided that the available data have been obtained in a largerange of functioning conditions. This approach has the advantage of being rather more robust than themodel based approach because it does not use any model of the process but only the available on linemeasurements.MODEL BASED APPROACHThe model used for the simulations is a modified ASM1 in which the nitritation step has been added.The data to be used in the PCA procedure are generated using this model. A large number ofsimulations are then run around a standard cycle defined by the following operating parameters : Klain aerobic and in anoxic conditions, concentrations of COD and NH4 in the input, concentrations ofbiomass (XH and XA) in the tank, volume of the input and initial volume of the tank, duration ofanoxic and aerobic periods, duration and frequency of air pulses during the anoxic phase, parametersTi imposed as "optimal", parameters successively used to vary the conditions of the simulations (Kla,CODin, NH4in, XH, XA), ranges of parameters variation.In order to be as open and as generic as possible, the software leaves the possibility to automaticallyadapt the values of the maximum growth rates model parameters. To do so, it is assumed that theoperator is able to enter into the software the theoretical values (defined as "optimal") of the durationof each cycle for the standard conditions. In the previous list, the first seven parameters are used toidentify the µmaxH, µmaxNS, µmaxNB (maximum growth rates for heterotrophic, nitrifiant and nitratantbiomasses). The last two parameters are needed to compute the operating parameters for eachsimulation. Usually the most important process faults to detect are related to the Kla, the CODinand/or the NH4in. The operator can define the range of variations of these parameters from theirstandard value. The possible variations of a parameter are:- << : very low (e.g. -50% of nominal value);- < : low (e.g. -25% of nominal value);- > : high  (e.g. +25% of nominal value);- >> : very high  (e.g. +50% of nominal value).



After the compilation and the execution of all the simulations, a database is created and will be usedfor the next step : the application of a PCA to reduce the space of analysis from six parameters to less.PCA STUDYFrom now, the procedure is the same for the model-based approach and for the data-based approach.The Principal Component Analysis (PCA) is one of the most popular methods for extractinginformation from data, and has found application in a wide range of disciplines : data rectification inchemical process operation and control (Kramer and Mah, 1994), disturbance detection and isolation(Ku et al., 1995), statistical process monitoring (Kresta et al., 1991; Wise et al., 1990), and faultdiagnosis (MacGregor et al., 1994; Dunia et al., 1996). PCA transforms the data matrix in astatistically optimal manner by diagonalizing the covariance matrix and by extracting the crosscorrelation or relationship between the variables in the data matrix. If the measured variables arelinearly related and are contaminated by errors, the first few components capture the relationshipbetween the variables, and the remaining components are comprised only of the errors. Thus,eliminating the less important components reduces the contribution of errors in the measured data andrepresents it in a compact manner. The popularity of PCA relies on its high ability to reduce thedimension of any data matrix while capturing the underlying variations and relationships between therelated variables.

Figure 3 : Reduction of the data matrix by a PCAIn our particular case, the data matrix includes the Ti and Hi of all the available experiments (for thedata based approach) or simulations (for the model based approach). Once the projection basis hasbeen computed, the original matrix (six parameters for each considered cycle) is transformed intoanother matrix in which the columns are the principal components. In our case (in both the modelbased approach and in the data based approach), it was noticed that more than 90 % of the data can beexplained in only looking at what happens in the first two principal components. In other words, mostof the time, it will be possible to discriminate two different cycles in projecting its six associateddescriptors Ti and Hi into on a plan.THE DECISION TABLE FOR THE DIAGNOSISOnce the characteristics of a cycle have been projected onto the discriminating plan P via the PCA,the next step is to identify a possible fault affecting the process. It is clear that if two cycles are very



similar (similar Ti, Hi), then their parameters projected onto P will be very close one from each other.Then, once projected, the underlying idea is to search for the closest points. Since this plan hasprecisely been designed in order to discriminate different data, it is expected that two points that areclose reflect the same process behavior. Assuming experiments or simulations used for computing thePrincipal Components (coordinates that are used to project any new parameters extracted from a givencycle) have covered a range sufficiently large of functioning conditions, it becomes possible toassociate the state of a specific point to the state of the closest point.At this step, a number of decision algorithms can be used. One of the most popular procedure is the k-closest neighbors that consists in associating the actual point to the majority class of its k-closestneighbors. If this algorithm is particularly attracting in a supervised context (all points have beenassociated to a fixed number of predefined known number of classes), its use is less obvious in thepresent case. Indeed, only the point corresponding to standard conditions can be classified in a"normal class". The other points correspond to specific conditions that differ from the standardconditions by several parameters. The way we have proceeded is as follows. A parameter x is firstdefined. If there is a point defined as "normal" (corresponding to the standard conditions) in thevicinity x of the point p, then the point p is assigned to be itself in this set. If it is not the case, adecision table (such as the one pictured in figure 4) is built. In each column, the sum of the inverse ofthe squared distances to all classified points of the plan are specified. The explanation correspondingto the point p corresponds to the case of the table with the greatest value. This procedure is a kind ofweighted explanation table.It should be noticed here that the developed tool is very generic and not only valid for decisions in aplan. It seems that when the process faults the user is interested in is sufficiently small – as in our casewhere we are only interested in identifying overloads and problems in the oxygen transfer rate - twodimensions in the discriminating space are sufficient. However, the number of PCs to be finallyretained remains under the responsibility of the user : providing that a large number of experimentscovering a large range of functioning conditions (including possible simultaneous combination ofexplanation variables) are available (or a large number of simulations can be run in the model basedapproach), it would be possible to identify any problem as long as its "signature" in the discriminatingplan is known.Table 1 : Table for fault causes definitionKla CODin NH4in XH XA<< 0 0 0 0 0< 0 0 0 0 0> 0 0 0 0 0>> 0 0 0 0 0RESULTS AND DISCUSSIONSTo validate the approach, it was decided to proceed to a number of experiments. The differentconditions tested are reported in the table 2. Both approaches (model based and data based) wereinvestigated. For the model based approach, in order to be as close as possible from experiments, thesimulation corresponding to the standard conditions were realized using the average values of theparameters obtained experimentally.Table 2 : Experiments time tableDATE TEST T1[min] T2[min] T3[min] H1[mg/l*h] H2[mg/l*h] H3[mg/l*h] PC1sim. PC2sim. problems found PC1real PC2realsimul. standard 75 121 130 11.6 11.9 7.4 0.38 -0.1615/01/04 standard 82 120 162 12.8 12.2 6.7 0.05 -0.40 OK or COD< 1.03 -0.1016/01/04 CODin +30% 130 56 96 19.5 7.8 6.4 1.21 2.16 NH4< or COD> 0.66 1.7617/01/04 standard 78 96 148 11.9 8.3 4.6 1.05 -0.08 OK or COD> 0.92 -0.4320/01/04 standard 58 158 130 9.3 12.9 6.3 0.20 -0.88 OK or COD< 0.52 -1.0221/01/04 standard 76 144 126 12.0 14.2 6.9 0.01 -0.29 OK or COD> 0.48 -0.26



22/01/04 CODin +50% 154 92 132 23.0 11.8 9.5 -0.48 1.87 COD> or Kla< 1.00 2.8223/01/04 standard 96 90 126 14.5 10.4 7.9 0.59 0.64 OK or COD> 1.06 0.5524/01/04 standard 82 102 130 12.5 11.0 7.8 0.55 0.16 OK or COD> 1.06 0.0225/01/04 standard 64 110 138 9.9 11.1 8.1 0.57 -0.42 OK or COD< 1.25 -0.6326/01/04 Kla +50% 38 110 172 5.2 6.7 5.4 1.24 -1.49 COD< or Kla> 1.58 -2.0027/01/04 NH4 +50% 110 382 16 16.8 33.1 0.7 -2.87 -0.41 NH4> or Kla< -4.30 0.3028/01/04 COD -50% 34 318 38 5.5 21.0 1.4 -0.54 -1.77 NH4> or COD< -2.43 -2.4329/01/04 Kla -30% 134 274 46 20.3 26.7 2.4 -1.9 0.78 Kla< or COD> -2.86 1.4330/01/04 standard 76 136 138 12.2 13.5 7.0 0.03 -0.36 OK or COD< 0.69 -0.2531/01/04 standard 81 154 126 13.7 17.9 7.9 -0.59 -0.23 OK or NH4> 0.31 0.1201/02/04 standard 89 110 114 14.7 14.7 8.2 0.15 0.51 OK or COD> 0.63 0.49Up to this date, only a few cycles are available for validation. Thus, the presented results may ratherbe considered as a demonstration instead of a the validation of an operational tool. Nevertheless, bothfor the model based and for the data based approaches, the results are given in Figure 4. In both of thefigures, the x axis is PC1 and the y axis is PC2. The red triangles indicate the direction of each of thesix parameters (the descriptors) in the space : for example if a cycle has a large T1, its projection willbe near the corresponding triangle and so on. It is clear that highly correlated parameters, as T1 andH1, give the same direction. In the left figure, the stars represent all the simulations realized withdifferent conditions automatically generated by the software. The green zone defines the class of"standard cycles". The blue diamonds correspond to the experiments reported in Table 2 used todemonstrate the capabilities of the system to detect and isolate process faults. All 10 standard cycleswere correctly classified in the green zone. For the six remaining ones, three were correctly identifiedwhile the problems corresponding to the three others were given as the second possible explanationinstead of the first one :- cycle 16/01 : the most probable problem detected is NH4< instead of COD> because T1 is largebut T2 is very small ;- cycle 26/01 : the most probable problem detected is COD< instead of Kla> because T1 is smallbut T2 and T3 are similar to values of standard cycles ;- cycle 28/01 : the most probable problem detected is NH4> instead of COD< because T1 is smallbut T2 is very large.The most probable explanation of this phenomenon is the particular composition used to artificiallyincrease the nitrogen content of the input : while the input COD is only due to the raw whey, instandard conditions half of the nitrogen content comes from the whey and half of it comes from addedUrea. The difference between these two forms of nitrogen is that nitrogen in the whey is probablyeasily degradable while urea need to be ammonified before the nitrification can take place.In the right graph, only the real cycles reported in the previous table are represented. To illustrate thedata based approach approach, only seven of the standard cycles were used in the learning phasewhile three were kept for the validation. The colored circles near the origin are the first sevenstandard cycles while the colored stars are the tests corresponding to functioning conditions differingfrom the standard ones. The black stars are the last three standard cycles. Their projections onto theplan are all located very close to the origin. In other words, they were correctly identified as standardcycles.CONCLUSIONSIn this paper a new software for analyzing the state of aerobic SBR has been presented. Theclassification of on-line data acquired from the plant is realized using a standard PCA proceduretogether with a decision algorithm. Depending on the available knowledge and data, two distinctapproaches (a model based and a data based) were proposed. Using a set of real experiments, bothapproaches have been validated. Both were able to detect and isolate overload problems. It is alsoshown that the application of this method of analysis can support in an determinant way the decisionsof the operator in the case a process fault occurs in the treatment cycle. In this case, the most probable



causes are provided to the user in order for him to rapidly take adequate preventing or correctingactions to restore standard conditions.
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