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Abstract The degradation of toxic compounds poses inhibition problems when treated in Sequencing Batch 
Reactors (SBR). Time Optimal Control (TOC) methods may be used to avoid such inhibition and to exploit 
the maximum capabilities of this class of reactors. However, a good understanding, i.e. modeling, of the 
SBR is needed in order to implement TOC methods. Biomass and substrate online measurements are 
usually unavailable for wastewater applications, so TOC must use only related variables as dissolved 
oxygen and volume. Although the standard mathematical model to describe the reaction phase of such 
SBRs is good enough for explaining its general behavior in uncontrolled batch mode, better detail is needed 
to model its dynamics when the reactor operates near the maximum degradation rate zone, as when TOC 
is used. In this paper two improvements to the model are suggested: to include the sensor delay effects and 
to modify the classical Haldane curve in a piecewise manner. These modifications offer a good solution for 
a reasonable complexification tradeoff. Additionally a new way to look at the Haldane K-parameters (µo, KI, 
KS) is described, the S-parameters (µ*,S*,Sm). These parameters do have a clear physical meaning, 
independent of each other and, unlike the K-parameters, allow statistical treatment to find a single model for 
multiple experiments data.  
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Introduction 
The industrial wastewaters containing toxic compounds generated by several chemical and 
petrochemical facilities often cause operational problems in continuous flow systems. The 
discontinuous processes (controlled unsteady state processes) have been explored in order to 
increase the biotreatment efficiencies of wastewater (Wilderer et al., 2001). These processes, also 
called Sequencing Batch Reactors (SBR), are flexible in the control operation and can be 
automated. The SBR operates under five phases: fill, react, settle, draw, and idle. The way in which 
the duration of each one of these phases is determined can be denominated operation mode and has 
a fundamental impact in the SBR characteristics. Despite the inherent advantages of the 
discontinuous processes in relation to the biodegradation of toxic substances, the SBR operated 
under the conventional operation modes present several constraints when they are applied to the 
toxic wastewater degradation: inhibition of the microorganisms, problems with shock loads of toxic 
compounds, deacclimation and problems of starvation of the microorganisms and low efficiencies 
regarding the removal of toxic compounds (Buitrón and Moreno 2004; Buitrón et al, 2003). To 
avoid such problems and to exploit the maximum capabilities of the discontinuous reactors, Time 
Optimal Control (TOC) strategies can be applied (Betancur et al., 2004). However, a good 
understanding, i.e. modeling, of the SBR is needed in order to implement the TOC methods. The 
standard mathematical model used to describe the reaction phase in the SBR is good enough for 
explaining the general behavior in uncontrolled batch mode. On the other hand, better detail is 
needed to model its dynamics when the reactor operates near the maximum degradation rate zone. 
This is the case when an optimal control strategy is applied. In order to directly apply TOC 
strategies, substrate measurements might be necessary. But, in practice biomass and substrate online 
measurements are usually unavailable. To overcome this constraint it has been proposed the 
estimation of the substrate and biomass concentrations from the on line measurement of the 
dissolved oxygen (DO) (Vargas et al., 2000). 



The objective of the paper is to develop and validate an improved mathematical model for the 
filling and reaction phases of a discontinuous reactor. The findings are applied to explain the 
Sequencing Batch Reactor (SBR) behavior when a Time Optimal Control (TOC) law is applied, i.e. 
when the reactor is kept around its maximum degradation rate point most of the time. 
 
 
Methodology 
An aerobic automated Sequencing Batch Reactor (SBR) system with a capacity of 7L and an 
exchange volume of 57% was used (Figure 1). The airflow rate was 1.5 liters per minute and the 
temperature was maintained at 20 ºC inside the reactor. The reactor was inoculated with 
microorganisms coming from a municipal activated sludge treatment plant (2000 mgVSS/L). A 
synthetic wastewater containing 4-chorophenol (4CP) as a model of the toxic compounds was used 
as a sole source of carbon and energy. The reactor was acclimated to properly operate when an 
influent concentration of 350 mg 4CP/L was used in Fixed Time Control (FTC) batch mode. 
Nutrients such as nitrogen, phosphorus, and oligoelements were added following the techniques 
recommended by ANFOR (1985). The SBR was operated under the following strategy: preaeration 
time (15 min), filling and reaction time (variable depending on the necessary time to reach a 
removal efficiency of 4CP of 99%), settling time (30 min) and draw time (6 min).  
Dissolved Oxygen (DO) concentration was measured online using a COS4 Endress+Hauser sensor. 
The substrate concentration was measured taking samples and processing them offline using the 
colorimetric technique of the 4-aminoantipyrine method (Standard Methods, 1992). Total and 
volatile suspended solids (TSS and VSS) analyses were determined according to the Standard 
Methods (1992). Dissolved organic carbon was determined with a Shimadzu TOC-5050 and 
chemical oxygen demand according to Standard Methods (1992). Theses analyses were performed 
to evaluate the 4CP mineralization.  
Initially experiments where done in FTC batch mode. DO and 4CP data were obtained and used to 
identify the model parameters in its classical form and compare the simulation results with the 
observed behavior. A modification to the model was introduced and the same process for 
identifying the parameters was followed and simulation results compared to experimental data. 
Finally, simulations were done to compare model predictions to real data using a TOC strategy. 
 

 
Figure 1 Pilot reactor utilized for the toxic compounds degradation 



Results and discussion 
Modeling  
For finding a mathematical model that represents the reaction phase behavior of the SBR two 
general principles were followed: to keep the model simple, while adequately representing the 
desired behavior, and to separate, when possible, the identification of the yield (static) parameters 
from the identification of the kinetic (dynamic) parameters. Various methods for yield parameter 
identification were tested. The best results were obtained using direct measures from biomass 
growth and substrate consumption after a succession of reactions. Kinetic parameters were 
identified using MATLAB’s “lsqnonlin” tool. The classical model used is represented in space-state 
form by equation (1): 
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Where: X, Sc, So, Sc,in, So,in, Sos, V, qin, µ, KLa, b, k1 and k2 represent the biomass, toxic substrate, 
DO in the reactor, inlet toxic substrate, inlet DO and DO saturation concentrations, volume level, 
the inlet flow rate, the specific growth rate,  the oxygen transfer coefficient, the endogenous 
respiration kinetic constant and the yield coefficients, respectively. 
 
A set of different kinetics experiments was conducted. Each experiment was identified separately, 
i.e. a set of parameters was found, the one that better explained the individual results for a given 
fitting criteria. The chosen criteria weighted both DO and Substrate errors. After individual models 
were available, a single model was chosen by extracting the mean value of each parameter. 
Confidence intervals were calculated in order to asses the confidence of the mean model. Then 
infinite time horizon model simulations were compared to actual data.  
After analyzing the SBR behavior it is clear that a close relation between DO consumption and 
maximum microorganism activity exists. In batch mode, two minimum DO peaks are clearly visible 
for each batch, one early when filling the reactor and the other when the reaction is almost finishing 
(Figure 2). It was observed that the substrate kinetics match acceptably, i.e. inside the expected 
experimental measurement error, while DO did not, at least not in the zone of interest, i.e. while the 
minimum DO peaks do happen. After various exploratory explanations (Moreno et al. 2003) it was 
decided to add two additional state variables to the model, in order to include the effects of DO 
sensor delay. This was done because in all collected data, when compared to the model simulation, 
actual DO exhibited a delay in its response to get into the minimum peaks or to exit from them. As 
no biological reasons were suspected for this behavior the DO sensor was the remaining suspect. A 
step response test was done to the DO sensor and a second order model was obtained to explain it. 
Result showed that  time constants of the DO sensor are faster than those of the biological system, 
but are not fast enough to be ignored when the system transits near the maximum value of the 
Haldane curve, i.e. when DO minimum peaks are to be expected. Equation (2) describes the DO 
sensor’s dynamics: 
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Where: So, Sosen, Soa, τa and τb represent the actual DO concentration, sensed (measured) DO 
concentration, auxiliary intermediate DO concentration, and the sensor’s time constants, 
respectively. 
 
Another difference was noted in DO behavior, especially at the end of the reaction. It was observed 
that the rate at which the experimental DO raised, after the last minimum peak, was always stepper 
that the one predicted by the model. Also, substrate samples at the end of the reaction presented a 
value higher than the one predicted by the model. This lead to suspect that the degradation rate, and 
the DO uptake, was less than predicted by the model just after the maximum degradation rate was 
experienced. A way to explain this behavior is to modify the Haldane curve in such a way that it 
retains its characteristics for the inhibitory and the maximum biomass growth rate zone, but 
diminishes its activity suddenly below a certain threshold, near zero substrate concentration. Our 
proposed model to represents such a behavior is the modification of the Haldane law in Equation 3. 
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Where: µo, KS, KI, µt and St represent the maximum growth rate, the saturation constant, the 
inhibitory constant and the threshold constants (slope and limit) for the first piece of the piecewise 
µ function, respectively. 
 
A problem encountered was that the typical representation of the nonlinear Haldane graph does not 
allow the K-parameters (µo, KI, KS) to be treated statistically, i.e. to directly extract their mean values 
and confidence intervals, as the results of mixing various experiments results do not correspond to 
averaging the µ graphs. A method for representing such same Haldane graphs, the S-parameters 
(µ*,S*,Sm) was used to avoid such a problem. Table 1 explains the physical meaning of the  
S-parameters. Equations 4 describe the parameter transformation. 
 
Table 1 S-parameters definition and concept 

S-Parameter names Definition Concept 
µ* µ* = max(µ (S)) Maximum of the biomass growth rate. (S>0) 
S* µ(S*)  = µ* Substrate at which the maximum µ* happens 
Sm µ(Sm)  = µ*/2 Substrate for medium (50%) inhibition. (for Sm>S*) 
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Once the two modifications to the model were implemented, the same process for identifying the 
parameters was followed and simulation results were compared to experimental data. Finally 
simulations were done to compare model predictions to real data using TOC strategy. 
 



The fitting criteria for identifying the model parameters consisted of two parts. One includes the 
differences in substrate (modeled minus measured), the other the difference in DO. The final 
combined criterion weights both of them. Equation 5 describes such fitting criteria: 
 

 Fck = Scksimulated-Sckmeasured          (k =1,…,n;   n=number of samples) 
 Fok = Soksimulated-Sokmeasured                                                 Eq. (5) 
 Fk = Wo*Fok; Fk+n=Ws*Fck   

MQE = Sum(Fi
2);   (i =1,…,2n)    

 
Where: MQE, Fck, Fok, Wo, Ws are the Mean Quadratic Error, the fitting criterion for kth substrate 
sample, the fitting criterion for the kth DO sample and the DO and substrate weight coefficients, 
respectively. 
 
Table 2 shows the Mean Quadratic Error (MQE) for the results obtained when identifying the 
parameters of both the individual experiments and the averaged model. It was observed, comparing 
the improved model with the classical one, an improvement of 66% for the averaged global MQE. 

 
Table 2 Validation fitting results for the classical model and the improved model candidates 

Averaged MQE Model 
candidate 

Experiment 
tag 

MQE against 
individual identified 

own model 

MQE against 
averaged Model by group Global 

ID1 220 231 
ID2 127 141 

186 
Classical 

VAL1  360 360 
244 

ID3 12 42 
ID4 27 60 

51 
Improved 

VAL2   141 141 
81 

 
The sum of the quadratic values of the fitting criterion gives the MQE. For reference, if substrate 
concentration is assumed to be in the range [0, 200]mg/L and Oxygen concentration in the range  
[0, 10]mg/L, an error of  error % (of maximum range) in all samples will yield a MQE as shown in 
Table 3. In practice not all samples do have the same error, so it must be kept in mind that errors 
contribute in a quadratic (not linear) way to the total error. 
 
Table 3 MQE as function of error for ideal case of all errors being equal 

 error % MQE 
5 42 
7 82 
9 135 

12 240 
15 375 

 
Figure 2 shows the result of a typical FTC batch experiment and compares it to simulations. The 
dotted line simulation does not include the DO sensor delay while the asterisked lines do. Circular 
marks represent offline measured data for substrate and distinguish the online measurements for 
DO. Note the better matching at the beginning and at the end of the reaction between experimental 
data and continuous line simulation when including sensor delay effects. This may not seem 
important for FTC operation, but is important if DO is to be used for TOC purposes.  
Figure 3 shows the effect of including the Haldane modification in Eq. 3 to the model, for various St 
values. Note that at the end of the reaction the real substrate disappears at a slower rate than the 
simulated one if no Haldane discontinuity is used i.e. St=0. Such difference happens just after the 
system crosses the maximum biomass growth rate point. Increasing the St value allows to reproduce 
such phenomena.   



 
Figure 2 Experiment ID3 (FTC mode) model simulation comparisons. The dotted line represents the 
simulation of the classical model, without sensor delay effects. Note that dotted line is not visible in the 
substrate graph as it is the same as the continuous one (DO sensor has no effect on this variables) 
 

 
Figure 3 Effect in S-kinetics simulation (FTC mode) for different threshold values St=[0,7,13,17,20] 
 
An implementation of the time optimal control strategy, called Event Driven Time Optimal Control 
(EDTOC) (Betancur et al. 2004), was used to conduct TOC experiments. A typical EDTOC kinetics 
is shown in Figure 4 along with simulations. The representation obtained with the improved model 
showed to be satisfactory for the control purposes. 
 

 
Figure 4 Experiment ID6 (TOC mode) versus model simulation comparison. Circular marks represent offline 
measured data for substrate and distinguish the online measurements for DO. The dotted line represents the 
simulation of the classical model, without sensor effect, but includes the Haldane piecewise modification. 
Lines with asterisk marks represent the model simulation when both sensor effects and Haldane 
modifications are added. Note that dotted line is not visible in Substrate (DO model does not affect substrate) 



DO sensor model 
An experiment was conducted by quickly moving the DO sensor from one beaker containing water 
without DO to another one with saturated DO conditions, once and again. Equation (2) was used to 
identify the time constants. Results are: τa=0.01h and τb=0.02h. Figure 5 shows the experiment 
results compared to the identified second order model simulation. 

τa= 0.01h;  τb= 0.02h
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Figure 5 Experiment for identifying DO sensor. The dashed straight line is the real oxygen to which the 
probe was exposed (by quickly changing it from one beaker to another with opposite DO conditions). The 
continuous line is the sensed signal. The dotted one is the model simulation 
 
Haldane parameters 
Table 2 and Figure 6 show two different Haldane graphs and the averaging results. One of them is 
obtained by averaging the S-parameters, the other one by averaging the K-parameters. In this 
example it is clear that the mean of K-parameters is not related to the mean of the Haldane graphs. 
Using the S-parameters instead reduces the averaging error and gives results with logical physical 
meaning.   
 
Table 2 Different Averaging methods of two Haldane graphs 

S-parameters K-parameters Graph 
µ* S* Sm µ0 KI KS 

Experiment 1 0.200 10.000 60.000 0.385 21.667 4.615 
Experiment 2 0.140 18.000 72.000 1.260 4.500 72.000 
S-Average 0.170 14.000 66.000  - - -  
K-Average  - - -  0.822 13.083 38.308 
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Figure 6 The dotted lines are two different Haldane identification results to be averaged. The continuous line 
is obtained by averaging each S-parameter (µ*, S*, Sm). The dashed one is obtained by averaging each 
traditional K-parameter (µ0, KI, KS). 



 
Conclusions 
The fill and reaction phase model for the SBR in fed-batch mode was improved, without loosing 
simplicity, in such a way that the DO concentration behavior near the maximum biomass specific 
growth rate (µ∗) is better explained. This allows understanding and designing time optimal control 
strategies using DO as a control variable, instead of attempt using the, unavailable, substrate 
concentration measurement. In particular, the model was improved by including the DO sensor 
delay effects as a second order system, and the addition of a discontinuity in the Haldane model for 
the specific biomass growth rate.  
S-parameters (µ*, S*, and Sm) are introduced to represent the Haldane behavior. These allow an 
easy way to average the result of multiple experiments identification. 
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