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SUMMARY 
Discontinuous bioreactors may be further optimized for processing inhibitory substrates using a 

convenient fed-batch mode. To do so the filling rate must be controlled in such a way as to push the 

reaction rate to its maximum value, by increasing the substrate concentration just up to the point 

where inhibition begins. However, an exact optimal controller requires measuring several variables 

(e.g. substrate concentrations in the feed and in the tank) and also good model knowledge (e.g. yield 

and kinetic parameters), requirements rarely satisfied in real applications. An environmentally impor-

tant case, that exemplifies all these handicaps, is toxicant wastewater treatment. There the lack of 

online practical pollutant sensors may allow unforeseen high shock loads to be fed to the bioreactor, 

causing biomass inhibition that slows down the treatment process and, in extreme cases, even renders 

the biological process useless. In this work an Event-Driven Time-Optimal Control (ED-TOC) is pro-

posed to circumvent these limitations. We show how to detect a “there is inhibition” event by using 

some computable function of the available measurements. This event drives the ED-TOC to stop the 

filling. Later, by detecting the symmetric event, “there is no inhibition”, the ED-TOC may restart the 

filling. A fill-react cycling then maintains the process safely hovering near its maximum possible re-

action rate, allowing a robust and practically time-optimal operation of the bioreactor. 

Two application study-cases are presented: one including experimental results, a wastewater 

treatment process where the dissolved oxygen concentration is used to detect the events; the second is 

a biomass production process simulation, where a gaseous product measurement is used instead. 

INTRODUCTION 
Many important industrial cyclical processes are carried out using discontinuous bioreactors e.g. anti-

biotics and enzymes production, biomass production (e.g. baker’s yeast), or even wastewater treat-

ment. When an inhibitory substrate is fed, using the simple batch strategy with an open-loop Fixed 

Time Control (FTC) will not be optimal for their operation. This is so mainly because the (fast) filling 

phase increases the substrate concentration, in the tank, to levels that cause biomass inhibition, lasting 
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during most of the reaction phase. There is experimental evidence that the inhibitory peak of sub-

strate, accumulated during the feeding, may be reduced just by increasing the filling time (Tomei et 

al., 2003). However, any feeding policy that allows a continuous substrate accumulation inside the 

reactor will produce inhibition, which in turn contributes to speed up such accumulation, which aug-

ments inhibition, and so on. This snowball effect was described by Chang (2003), along with a fed-

batch control proposal to avoid it by properly manipulating the feeding rate. One key result, obtained 

from studying the structure of the mathematical model of this class of processes, is that, in many 

cases, the final product yield can be maximized simply by maximizing the instantaneous yield (Mo-

dak et al., 1986). This result may be used also to design a Time Optimal Control (TOC), to manipu-

late the feed flow rate in order to maintain a substrate concentration that maximizes such an instanta-

neous yield (Moreno, 1999; Sarkar and Modak, 2003; Smets et al., 2002). But, to implement the TOC 

avoiding the snowball effect trap, it is usually required to know perfectly the mathematical model (i.e. 

both structure and parameters) of the process and to measure all important process variables i.e. all 

concentrations, liquid level and inflow. In many applications these two conditions are very restrictive: 

perfect model knowledge is very often unrealistic and, in biotechnology and wastewater treatment, it 

is either impossible or very expensive to measure all variables. In order to cope with the first problem 

different robust approaches have been proposed in the literature. Most often adaptive algorithms iden-

tify the parameters of the (otherwise assumed well known) model, and adapt accordingly the control 

strategy (Bastin and Dochain, 1990; Van Impe, 1998; Van Impe and Bastin, 1995). Adaptive Extre-

mum-Seeking strategies have been also proposed (Marcos et al., 2004; Titica et al., 2003), but they 

require substrate concentration measurements in order to asymptotically search for an optimal steady 

state. The measurement problem has been addressed mainly by using Software-Sensors e.g. Vargas et 

al. (2000) used the Dissolved Oxygen (DO) to estimate the substrate concentration for a WW case. 

In this work a different approach to deal with the lack of measurements and with model related 

uncertainties, while practically optimizing process operation time, will be proposed. The main idea is 
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based on the following observations. The exact TOC, when a realistic bounded inlet flow is consid-

ered, is composed of two bang-bang arcs (switching to maximum or to zero feed rate) and one, inter-

mediate, singular arc (regulated inflow). When this solution can be implemented via feedback the in-

formation required for the bang-bang part is very low, and its implementation is very robust to model 

related uncertainties. More problematic is the determination and implementation of the singular arc. 

As the time horizon in a batch process is finite, asymptotic approaches are not always convenient. An 

exact solution, on the other hand, requires a good knowledge of the model and parameters, resulting 

thus sensitive, i.e. non robust, to uncertainties. The strategy we propose, an Event-Driven TOC 

(ED-TOC), replaces the exact, sensitive, and smooth singular control arc by a bang-bang one that 

maintains the process trajectory hovering around the singular surface. The additional reaction time 

spent by such a hovering can (theoretically) be made as small as desired (Hermes and LaSalle, 1969; 

Moreno, 1999). The advantage of this replacement is that it is very robust against uncertainties and, 

for its implantation, only a reduced quantity of information is required (Moreno, 1999). The require-

ment of low quantity of information is related to the fact that not all information about the system is 

really required. It is only necessary to determine the precise instants in time, at which certain specific 

events do happen, to decide when to switch ON or OFF the feed, i.e. the manipulated control variable. 

Such events are associated to internal variables but, for the considered class of processes, they could 

be software-sensed using just the measurable ones. Then it is feasible to implement a practical con-

troller for the inlet flow, driven by such events, whose performance approximates the TOC one. 

To illustrate the proposal, two study-cases are presented: one including experimental results, a 

wastewater treatment case where the Oxygen Mass Uptake Rate (OMUR), computed via online dis-

solved oxygen concentration measurements, is used for the events detection; and the other is a bio-

mass production case, where the gaseous product production rate is used to detect the events. 

MATERIALS AND METHODS 
Toxic Wastewater (WW) Treatment case 
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For the lab experiments an automated aerobic discontinuous reactor with a capacity of 7L, with a 

57% exchange volume, was used. The airflow rate was 1.5 L/min and the temperature was maintained 

at 20±1ºC inside the tank. Synthetic WW containing 4-chlorophenol (4CP) was used as the sole 

source of carbon and energy. Nutrients were added as recommended by AFNOR (1985). Volatile 

suspended solids (VSS) analyses were done according to Standard Methods (APHA, 1992), and then 

used to calculate the biomass concentration (X). The reactor was inoculated, and acclimated, with mi-

croorganisms from a municipal activated sludge WW treatment plant (B0 =14 gVSS) using the 

method described by Moreno-Andrade and Buitrón (2004). The substrate concentration (S) was re-

ported offline, from manually taken samples, using a modification of the colorimetric technique of the 

4-aminoantipyrine method (APHA, 1992). As a standard condition the reactor was operated cyclically 

using an influent concentration (Si) of Sstd  (0.35 g4CP/L) and the next phase sequence: fill and react 

(204 min for the FTC and self-controlled for the ED-TOC), settle (30 min) and draw (6 min).  

The ED-TOC was coded in LabView, from National Instruments (NI). NI hardware PCI6025E 

was used to interface the PC to the reactor. The DO was measured with a COS4 Endress+Hauser sen-

sor, and the feed rate (Q) was controlled with a Cole-Palmer 7523 Masterflex pump. Only Volume 

level (V) and DO concentration (O) were used for online control purposes. In addition to the standard 

condition the ED-TOC was used to treat shock loads of increasing magnitude: Si =(2, 8, 14, 20) Sstd. 

Biomass Production (BP) case 
Simulations were performed, using a MATLAB environment, for a single BP case. Model parame-

ters were chosen, the same as in Titica et al. (2003), to represent a realistic, inhibitory, Haldane law:  

LgSkkLgKLgKh iIS /20,0.1,4.0,/22.0,/2.1,53.0 21
1

0 ====== −µ  

LVLVLgXLgSLgS foofo 40,0.1,/2.7,/01.0,/0.2 =====   

For the TOC simulation all variables are supposed to be perfectly measurable and all model pa-

rameters perfectly known. For the ED-TOC, instead, all parameter values are assumed unknown (i.e. 

they are unavailable for the controller) and only the gaseous production rate and V are measured. 

5 



THEORETICAL ASPECTS 
In this section the mathematical model and the typical FTC operating strategy for the microbial 

growth process in a discontinuous reactor will be explained first. Then the time optimization problem 

will be considered, introducing the theoretical (exact) TOC law. Finally, the newly proposed 

ED-TOC strategy will be presented as a practical and robust alternative to implement the TOC. 

Process Model for the Class of Bioreactors to be Time-Optimized  
A Sequencing Batch Reactor (SBR) process consists of phases: fill, react, settle, draw, and idle 

(Wilderer et al., 2001). These may be independent (as in batch mode) or concurrent (as in fed-batch). 

They may even repeat. Such is the case in our proposal (…fill-react-fill-react…), which is somewhere 

in between batch and fed-batch. The following dynamical model (Smets et al., 2002) explains the 

concurrence of the fill and react phases (for biomass and substrate concentrations, and volume level): 

Equation (1)  X
V
QX

dt
dX −= µ   

Equation (2)  )(1 SS
V
QXk

dt
dS

i −+−= µ   

Equation (3)  Q
dt
dV =     

Let us call the model nominal when it represents the real plant, i.e. every parameter and variable 

are perfectly known, and practical when it represents the available information the controller has 

about the real plant, i.e. uncertainty is included in parameter, measurement and estimation values.  

The difficulties for treating inhibitory substrates are related to the non monotonic behavior of the 

Biomass Specific Growth Rate (µ), which is proportionally related to the substrate reaction rate in 

Equation (2). Note, from Fig. 1, that if the substrate concentration S is kept well below S* (the S value 

at which µ reaches its maximum value µ*) there is no inhibition but the reaction is slow. If S is raised 

near S* then the reaction is fast and yet safe i.e. the biomass is not affected by inhibition. If S sur-

passes S*, then the reaction gets slow again, because of biomass inhibition. Now, if S is accidentally 

pushed much further up, inhibition effect builds up dangerously and the SBR may even get disabled. 
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Once the SBR is full, the reacting phase could be ended, practically, when the substrate concen-

tration left in the tank decreases below some acceptable threshold Sf. For control purposes such a fin-

ishing criterion is useful even for different SBR applications. For example, in a single BP process this 

criterion means that the amount of substrate left to be converted into biomass is negligible i.e. the 

biomass already produced is acceptably close to the maximum possible one (obtainable only if an in-

finite reaction time is allowed). For a WW application the same criterion means that the toxic left in-

side the SBR is negligible, e.g. complies with the limits imposed by law, and settling may start. 

Fixed Time Control (FTC) 
This typical control mode uses no instrumentation to asses the terminal status, so there is no way 

to automatically finish the reacting phase. That is why a fixed reaction allowance time, large enough 

to tolerate perturbations, e.g. influent substrate concentration deviations from the standard condition, 

is usually set. The SBR gets filled from its residual volume level V0, until full at Vf, using the maxi-

mum pump capacity Qx. Hence S is typically quickly raised into the inhibition zone (Fig. 2A) to some 

Sbatch value that depends on Si. If it is too high there exists the risk to enter the stress zone (Fig. 1). 

That is why with FTC the biomass starts processing the substrate slowly and keeps doing so most of 

the reacting time, with no regard for time optimality. In applications such as WW treatment the ad-

vantage is that there is no need for costly and/or delicate instrumentation. But, because there is no 

feedback, there is always the risk that when a shock load (i.e. an unusually high substrate concentra-

tion) is fed to the SBR then the biomass gets too inhibited, and a yet polluted effluent will be drawn 

because the reaction will not have enough time to complete. Usually then the expert sets the reaction 

time larger than needed in order to prevent for such disturbances. But even then, if the perturbing 

shock is too high, the biomass may loose viability permanently (Buitrón et al., 2003). As a result the 

FTC mode, although apparently easy and economical to setup and to operate, provides neither opti-

mization nor robustness for the process. 
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Time-Optimal Control (TOC) 
In order to profit the most from a SBR it is desirable to increase the amount of batches that can be 

safely processed per time-unit i.e. to reduce each individual batch processing time. Let us call TOC 

any control strategy that manipulates the inlet flow in order to process a single batch in the minimum 

possible time. Note that, as settling and drawing phase’s duration do not depend on the filling policy 

used, they cannot contribute to such an optimization. That is why only filling and reacting phases are 

to be considered, from now on, for studying the TOC. 

Assumption 1: this study considers inhibitory models such that µ(S) ≥ 0 does have a unique maxi-

mum µ*
 = (S*) for S ≥ 0 i.e. it should grow monotonically from S = 0 to S = S*> 0 and 

then decrease, also monotonically, for S > S* (e.g. Fig. 1). Note that non inhibitory 

models may also be covered as the limit case when S*→∞ 

The TOC combines the filling and reaction phases in a fed-batch mode. It fills the SBR gradually, not 

all at once, using the model knowledge to compute the best filling policy. If S0< S* then the controller 

starts to fill at the highest possible rate (see long fat arrow in Fig. 2B and the resulting trajectory, pro-

jected in the Substrate-Volume (SV) plane, in Fig. 3A) but then, once S* is reached, the first bang-

bang arc ends and the control slows down the filling to an exact inflow rate Q = Qopt, that provides just 

the exact amount of substrate needed to replace the consumed one, so that S = S* (see fed-batch point 

in Fig. 2B and fed-batch trajectory in Fig. 3A). Optimality requires completing exactly such a singu-

lar arc until the reactor gets full (Moreno, 1999) and then turning off the feed to perform the last 

bang-bang arc. Other initial case may arise if S0 > S*. Then the filling should not start until the biomass 

naturally consumes the substrate down to the critical S* value (see dotted trajectory in Fig. 3B).  

Practical Optimality and Robustness 
Let us define a practically optimal, or robust, zone (Fig. 4 and Fig. 5) by µ ≥ pµ* with 0 < p ≤ 1. Any 

controller that produces the bang-bang arcs exactly, and the singular one as an approximation living 

in such a zone, is said to be practically optimal. Practical optimality means that the time it takes the 
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reaction to finish (tf), is close to the optimum one (tf.opt) bounded by tf ≤  tf.opt+Tp where Tp(p)≥0 is a 

continuous function of p such that Tp(1)=0. If a controller remains being practically optimal in the 

presence of bounded errors, uncertainties, perturbations, or noise, it is said to be also robust. 

TOC Practical Implementation Limitations 
Implementations of the TOC strategy confront practical limitations, e.g. to calculate Qopt accurately, 

that prevent them from being reasonably robust. For example, in the WW case, the key limitation is 

the unavailability of substrate sensors. Solutions have been proposed to estimate its concentration by 

using DO based software-sensors (Vargas et al., 2000). The main problem with such an approach is 

that the SBR model that links the DO to the substrate concentration is full of parameters that are ei-

ther difficult to measure or uncertain (Buitrón et al., 2005). Even more, parameters S* and Si need to 

be precisely known. This renders that type of solution non robust and difficult to apply industrially. 

Event-Driven Time-Optimal Control (ED-TOC) 
The ED-TOC may be considered as an approximation of the exact TOC, with the advantage that 

its realization avoids most implementation problems. The concept of events, their definition in terms 

of model parameters and of direct measurements of S and V, and how to use them for driving a robust 

near-optimal control will be explained in this subsection. The next one will explain how to use an 

Events-Software-Sensor (ESS) in order to avoid measuring S and to eliminate parameter dependency.  

Assumption 2: the SBR is optimizable i.e. although the inlet flow is bounded by 0 ≤ Q ≤ Qmax, mak-

ing Q=Qmax always pushes S to increase, and allows it to overshot the robust zone 

(S > Smax) for some Volume level value in V0 < V < Vf.

The ideal objective of the ED-TOC, for an optimizable SBR (Assumption 2),  may be redefined as to 

use ON/OFF inlet flow pulses to maintain µ value above some threshold Pµ*, where  is a 

user defined parameter that allows to choose a near-optimal zone S

]1,( pP ∈

low ≤ S≤ Shigh (Fig. 4) inside the ro-

bust zone. This definition leads the ED-TOC to naturally perform the initial and final bang-bang arcs 

of the TOC exactly, and to approximate the singular arc by a zigzag arc, also bang-bang, inside the 
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near-optimal zone. If we choose P →1 then Slow, Shigh →S* (Fig. 5) and the zigzag arc (Fig. 4) will re-

semble TOC’s singular arc (vertical line, Fig. 3A). The drawback is that inlet pump switching fre-

quency augments when P does, so its value must be chosen considering such a practical constraint. 

Events and Logical States for the ED-TOC 
In this study an event (e), to drive the ED-TOC, is defined as a time dependant variable of the Boo-

lean type (i.e. it is binary: 1 = true = the event is happening; 0 = false = the event is not happening). 

Events are the cues for transitions i.e. for changing from one logical state (σ) to another one in the fi-

nite states machine representation of the ED-TOC in Fig. 6. There, each circle represents a given state 

that the ED-TOC may take, one and only one, at any given time. Table I describes the meanings and 

control actions of all possible ED-TOC states during the filling and reacting phases. For example state 

σ1, tagged as “fill”, is described as the state when the inflow pump is ON and the ED-TOC is waiting 

for inhibition to be detected (e1) or for the tank to get full (e3). The occurrence of a given event, repre-

sented by arrows in Fig. 6, triggers a transition to a different state, the one pointed out by the respec-

tive event arrow. Table I presents a list of logical states and the events that force transitions between 

them. As example, σ1 will be left only when events e1 or e3 occur. If e1 occurs first the ED-TOC will 

jump to state σ2 or, respectively, if e3 to σ3. Table II describes the relevant process events, the ones 

whose physical meaning is related to the process crossing of some switching surface.  

The initial state σ0, the one with an extra ring in Fig. 6, starts the filling (Q = Qmax) assuming the 

system is not inhibited. If such assumption is corroborated, by e0 occurrence, then the ED-TOC jumps 

to σ1 in order to finish performing the first arc of the TOC i.e. to initially fill the reactor as quickly as 

possible. But if e5 occurs instead of e0 this means the assumption is false and the initial conditions are 

not as expected. In that case the system jumps to σ2 turning OFF the influent pump and waiting for 

the inhibition to disappear before continuing the filling i.e. until e2 occurs. Whatever the initial condi-

tion was, once the system reaches either σ1 or σ2, a cycle begins in which both states alternate recur-

sively, generating the zigzag i.e. the bang-bang approximation of the singular arc. Such a cycle is in-
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terrupted when e3 occurs i.e. the tank is full. At this point the last arc is performed by σ3. The reaction 

ends when e4, the finalization criterion, is met. Then the settling phase should follow (not shown).     

Note that, if µ(S) is known and if S is measurable, implementing the ED-TOC is easy: by choos-

ing P the thresholds Slow and Shigh may be straightforwardly obtained from µ(S). Then comparators 

would use the available S measurement to detect the events in Table II needed to drive the ED-TOC. 

Event Errors and Practical Optimality 
It should be noticed that for the ED-TOC the important feature in an event is its occurrence, i.e. the 

moment in time when the false to true transition takes place, as such is the instant when a state transi-

tion may be commanded. Hence an event error is defined as the time difference between the event 

occurrence in the nominal model and the practical one. Errors are expected in practical situations as it 

is normal to have uncertainty in practical model parameters and perturbations and/or noise in meas-

urements. Now let us study the possible error types. Some remarks and definitions, related to Fig. 4, 

are in order before proceeding. Let us define a segment as a piece of the ED-TOC trajectory that is 

produced between state transitions, and let us call zigzag to the concatenation of at least two segments 

due to the cycling between states σ1 and σ2. Note that the zigzag is the only part of the trajectory sus-

ceptible of being significantly altered by errors. A trajectory is said to hover if all zigzag segments 

touch the near-optimal zone, and to be practically-optimal or near-optimal if all zigzag segments end 

inside the robust or near-optimal zone, respectively. A controller is said to be hovering if it produces 

trajectories that hover. Let us define TE as the escape time, i.e. the minimum time it will take some 

segment originating in the near-optimal frontier to escape the robust zone, and TR as the returning 

time i.e. the maximum time it will take some approaching segment, originated in the robust zone, to 

enter the near-optimal one. Let tk be the time at which the kth state transition should be produced in 

the nominal model and tk the practical one. Then, the time it should take the kth segment to be com-

pleted is Tk=tk –tk-1. But if an event error happens during the kth transition such a lapse will vary. Let 

us denote such a variation Ek=tk –tk as the error value. An error is said to be of the delaying type if 
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positive (bounded if Ek < TE) and of the anticipatory type if negative (bounded if Ek >TR –Tk). It is iso-

lated if Ek-1=Ek+1=0, and consecutive or concatenated otherwise. 

Robustness in the presence of Event Errors 
Let us now use the ideal ED-TOC trajectory in Fig. 4 to analyze errors impact. Such a nominal trajec-

tory is near-optimal and error-free. Now assume an isolated delaying error occurs when a zigzag seg-

ment is ending i.e. just when touching the near-optimal frontier. Then, such a nominal segment will 

definitely be enlarged and it will grow out of the near-optimal zone. A sufficient condition to guaran-

tee that the considered segment will not escape also the robust zone is that the perturbing error is 

bounded. On the contrary, if the error is anticipative, the segment will be shortened and it will stay in 

the near-optimal zone. If another zigzag segment follows, error isolation guarantees that it will not be 

subjected to an additional error, so it will necessarily search to touch the near-optimal zone frontier. 

In fact such a touching will be guaranteed even if there is a new (concatenated) error, as long as such 

an error is of the delaying type. But if the new error is of the anticipative type, and the previous seg-

ment ended outside the near-optimal zone, there is no guarantee that the new approaching segment 

will hover, unless it originates still inside the robust zone and lasts more than the returning time i.e. if 

the error is bounded. Using the previous analysis, it follows that the ED-TOC guarantees to be: 

• Hovering for isolated errors of any type or for concatenated errors of the same type. 

• Hovering for concatenations where every anticipatory error following a delaying one is bounded. 

• Practically Optimal and Robust against (not necessarily bounded) anticipatory concatenated errors. 

• Practically Optimal and Robust against any sequence of concatenated bounded errors. 

Summarizing, the basic ED-TOC is near-optimal. It is also robust against most errors that might be 

produced by perturbations or uncertainties in model structure and parameters. Little information is 

needed about the inhibitory function or about most of the model parameters as long as Assumption 1 

and Assumption 2 are satisfied. Another advantage is that a simpler, and less expensive, ON/OFF 

inlet pump may be used instead of a regulated one, as would be required to implement an exact TOC.  
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Let us consider an example illustrating uncertainty effects. Suppose, in Fig. 4, that the identified 

Slow is underestimated but still lies in Smin<Slow<Slow. If everything else is perfect then the ED-TOC 

will produce a zigzag that is enlarged to the left and into the robust zone i.e. the errors are of the 

bounded delaying type and the trajectory is no longer near-optimal, but robustness holds. If Slow<Smin 

then error bounding disappears and robustness with it, although hovering still holds. 

Events-Software-Sensor (ESS) based ED-TOC 
If S is not measurable, or if µ is an uncertain function, then the basic ED-TOC explained earlier is 

not usable as it is. Let us now explain how to perform events estimation, indirectly, using an ESS. To 

estimate an event is to use related variables and indirect software-based methods to detect the instant 

in time at which the real event is supposed to be happening. To simplify the explanation in this sec-

tion it will be assumed that µt(t)= µ(S(t)) is measurable and serves as the γ(t) input to the ESS module 

(Fig. 7A). Later we will remove such an assumption. In Table II there is a column labeled ESS func-

tion. Such a function is used to estimate the events occurrence. This means that instead of measuring 

directly the (unavailable) S variable needed to evaluate some events occurrences, an indirect variable 

is used to estimate such transition instants. In the case at hand such a variable is chosen as γ  = µt.  

Estimation of the unknown maximum µ*

Note, in Table II, that for estimating e1 and e2 it is now necessary to use the unknown maximum 

γ*= µt
*= µ* (please remember to use γ = µt). Thus it is necessary to estimate also such a maximum value 

by using only the available measurements. We propose to use Equation (4) to perform the estimation 

(the underlined variable includes the estimation error while converging to the nominal value). 

Equation (4)  )(max ],0[
* τµµ τ tt∈=  

It may be implemented by memorizing, in real-time, the maximum encountered value of µt. 

Note that the estimated value will converge to the true value as soon as µt reaches its maximum.  

Estimation of the events 
Let us analyze the procedure to estimate all of the events in Table II:  
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• Events e0 and e5: the filling phase begins when σ0 is activated.  Up to this point there is yet no 

trustable estimation available about µ*, but this lack of information poses no problem as only 

events e0 or e5 are required to jump out of σ0 (Fig. 6) and neither of them use it. As σ0 commands 

the inlet pump ON (full flow) then S will increase because of Assumption 2. From Assumption 1 it 

follows that if increasing S causes µt to increase then S<S* (there is no inhibition) and e0 is true. On 

the contrary, if µt happens to decrease, this means that there is inhibition and e5 should be triggered 

instead of e0. If there is no change in µt then σ0 just holds until there is. 

• Event e1: this event is required only by σ1 and such a state activates the inlet pump, making S in-

crease. Initially S<S* so µt will keep increasing until it reaches µ* and, meanwhile, e1 will not trig-

ger because (dµt /dt>0). So far there is no need to know µ* value. But once µt begins to decrease µ* 

true value must be known in order to evaluate the inequality (µt ≤ µ*). However by that time µt de-

rivative sign has changed meaning its maximum has been already reached, and so it was possible 

for Equation (4) to converge to a valid µ* estimation and so the inequality value is sound.  

• Event e2: explanation is similar as for e1 

• Event e3: this event detects when the SBR tank is full. No software-sensor is used. The volume 

level measurement V is directly compared to the desired final volume level Vf. 

• Event e4: A user defined parameter sets the µf =Rµ* value at which the substrate that still remains 

inside the reactor is considered to be negligible. 

Extended ED-TOC 
In this subsection we show how it may be possible to implement the ED-TOC using just practi-

cally available measurements. Note that the ESS defined in Table II  (Fig. 7A) uses only derivative 

signs and relations of γ to its own maximum. Then if a function that keeps the same derivative signs 

and relations as µt is used, the events are still going to be detected with no error at all. As example 

consider γ =aµt. Even if the positive constant a is unknown, the ESS estimations will still be exact. 

This means that the ESS is robust against such a parameter, because it only needs for it to be positive, 
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not its actual value. In general robustness, for any given Q, will hold, for some P, for any uncertain 

but well behaved γ = f(µt ) i.e. any monotonic, continuous, positive and time-invariant function. But in 

practical applications, e.g. the ones considered in the study-cases, the easier and cheaper functions to 

measure and to compute are time-varying function of the type f(µt,t)=aµtB(t), where a is a positive 

constant, but the multiplicative perturbation B=XV (the total biomass) is not a constant but a positive 

increasing time-function. Let us analyze conceptually its practical effects and find sufficient condi-

tions for keeping robustness when such a function type is used. From Equation (1) it is clear that 

biomass growth behavior is exponentially bounded by µ*. Then Equation (5) represents an upper 

bound that can be used into the ESS as the worst case perturbation scenario. 

Equation (5)   t
t eBa

*

0
µµϕ =

Zigzag perturbations due to the ESS may be linked only to e1 and e2 being the terminal events of seg-

ments produced by σ2 and σ1 respectively. So the Q equality in Table II is always satisfied for both 

events, and their respective γ dependant inequalities are identical. Then the kind of error that might 

arise for both cases is the same, and may be studied by using the inequalities ϕ ≤ Pϕ* and dϕ/dt ≤ 0, 

where ϕ* is the previous local maximum of ϕ. Note that for using ϕ successfully  in the ESS it must 

mimic µt behavior i.e. during any given zigzag segment ϕ should first grow to reach some maximum 

ϕ*, and then decrease to match Pϕ*. Otherwise the generated delaying error is infinite, thus not 

bounded i.e. the ED-TOC will not be robust. This suggests that the changes due to B should be small 

compared to changes in µt. Let us assume for now that this is the case and analyze any given kth seg-

ment of the zigzag. It began at tk-1 and should end at tk. Meanwhile µ* was reached, in between, at 

some tk-1 < tµ
*< tk. However, at this point, ϕ derivative in Equation (6) is positive i.e. ϕ is still growing, 

so its maximum ϕ*=ϕ(tϕ
*) > ϕ(tµ

*) will be reached only later, at tϕ
* > tµ

*.  

Equation (6)  )( *
0

*

µµµϕ µ
t

tt

dt
d

eaB
dt
d +=  

Now let us choose P =1 i.e. to define the near-optimal zone as a line. Under such settings the mistaken 
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event is going to occur just when ϕ reaches its maximum, i.e. after µt has reached its own, so the pro-

duced error is necessarily of the delaying type (always). This condition is defined by Equation (7).  

Equation (7)  *0 µµµϕ
t

t

dt
d

dt
d =−↔=  

If it is not satisfied then Ek →∞ , but such an error could be made bounded if we choose TE ≥  tϕ
* - tµ

*. 

This happens if the detection occurs before the segment leaves the robust zone. The inequality in 

Equation (8) results from expressing such a bounding in Equation (7) and represents a sufficient de-

sign criterion to guarantee robustness. Let us use Equation (2) to obtain Equation (9) and compare it 

to the robustness condition in Equation (8).  

Equation (8)  
2***

*

)( µµµµ
ϕ

ϕ p
dt

d
pt

t

t
t ≤−→≥  

Equation (9)  ⎟
⎠
⎞

⎜
⎝
⎛ −−== XkSS

V
Q

dS
d

dt
dS

dS
d

dt
d

i
t µµµµ

1)(  

If the segment under consideration is produced by σ2 then Q = 0. As µ and k1 are given by the bio-

mass-substrate combination they may not be modified by the designer, but X may. So, for any chosen 

Q there is always a set of X0 choices that will guarantee local robustness for σ2. Now, if the segment 

is produced by σ1 then Q = Qmax. Applying the same reasoning as before, and remembering that this is 

a finite-time horizon problem with bounded variables (e.g. V0≤ V≤ Vf ) it follows that there is a choice 

set for Qmax that will guarantee local robustness for σ1.

As a conclusion the Extended ED-TOC is always hovering and, for any given robust zone, it is 

always possible to choose some X0 and some Qmax for making it also robust. 

As example, a BP process generates a Gaseous Product (GP) modeled by Equation (10) (Dochain 

and Vanrolleghem, 2001; Titica et al., 2003). It may replace y, in Fig. 7B, as y=yGP, in order to multi-

ply it by the volume level before feeding the ESS. Note that the ESS does not need to know the value 

of any model parameter i.e. the ED-TOC is completely robust to model uncertainties. 

Equation (10)  XkyGP µ2=  
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For an aerobic WW process the DO is measurable and may be modeled by the mass balance in 

Equation (11) (Dochain and Vanrolleghem, 2001). For this case y=O in Fig. 7B. After manipulating 

Equation (11) it is possible to calculate the Oxygen Mass Uptake Rate in Equation (12) in order to use 

it as input for the ESS, with the additional advantage that, for the toxicant WW case, biomass growth 

is extremely slow compared to the biotechnological BP case.  

Equation (11)  ( ) ( ) ( )
V
QOOOOakXbk

dt
dO

isatL −−−++−= µ3  

Equation (12)  ( ) ( ) ( ) V
dt
dO

V
QOOOOakBbkOMUR isatL ⎟

⎠
⎞

⎜
⎝
⎛ −−−−=+= )3µ  

Note that it is not necessary to know k3, b nor B. In this case it is necessary to use only 3 parameters 

of the model (kLa, Oi and Osat) to compute the right hand side of Equation (12), and all of them are 

easy to obtain with precision. The only concern may be the computation of the derivative. However, 

as the dissolved oxygen is a low frequency signal, by using finite differences numerical methods, in-

cluding noise rejection filters, it is possible to obtain a good practical approximation. 

Practical ED-TOC 
In the prior subsection it was explained how minor errors in estimating the events, caused by a 

perturbation (e.g. the biomass growth) in the measured signal, would not significantly degrade the 

ED-TOC performance. However there are other possible sources of perturbation that might also cause 

estimation errors. This subsection is devoted to proposing practical solutions to such inconveniences: 

• pH, Temperature, DO limitation, and similar perturbations. Over the duration of one reaction, µ is 

affected by changes in Temperature, pH, DO (for aerobic reactions) and many other factors. Such 

variations may be modeled as γ  = µt(t) µpH(t) µT(t) µDO(t), a format similar to the one studied for the 

extended ED-TOC in the previous subsection. ED-TOC robustness is kept if such perturbation effects 

are small i.e. if the errors are bounded. If that is not the case then a different independent control loop 

must be applied to reject the perturbation, or a redesign could be needed. For example, in the toxicant 

WW case, DO dropping near zero becomes a limiting factor for the reaction and µt is masked by µDO 
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effects, thus rendering γ useless for the ESS. In that case aeration must be increased (maybe by an in-

dependent control loop augmenting kLa) or biomass concentration reduced (a redesign). 

• Sensor inaccuracy. So far it has been assumed that measured signals were exact and noise free. 

The fact is that in practical applications this is far from true. However inaccuracy poses no problem 

because, as it was shown, the ESS works with relations rather than with absolute values. 

• Noise. In case noise is expected filtering is required. But even then some noise effect remains any-

way. If its effect is not negligible a possible course of action is tuning P. Note that by making P closer 

to one, the ED-TOC becomes more sensitive to small signal changes, i.e. sensitive also to noise af-

fecting such a signal. Then it is possible to reduce noise sensitivity by reducing P, i.e. a compromise 

for the width of the near-optimal zone must be met. 

• Time Delays. The simplified model in Equations (1-3) assumes that when the input bounces be-

tween its bang-bang limits, i.e. Q is switched ON/OFF or OFF/ON, the S derivative (and the tendency 

of related variables) changes sign immediately i.e. the fast dynamics for tank equalization and the 

sensor delays are not considered. The ESS relies on such an assumption to work properly. Table III 

presents two ways to solve the delay problem as an integral part of the ED-TOC implementation: Op-

tion 1 idea is that once the kth state change is produced, at time tk, the ESS will wait some Ts stabiliz-

ing time before taking any other new decision, i.e. before generating a new event, thus giving enough 

time for the fast non modeled dynamics to disappear after each state transition; Option 2 requires that 

a condition to trigger an event holds at least for some Ts lapse before accepting it as valid. Both op-

tions establish a minimum switching time for the bang-bang cycle, e.g. Ts, thus limiting the minimum 

width selectable for the near-optimal zone. But such a compromise may not be really a concern as a 

minimum switching time is also desirable in order to protect actuators from chattering effects. 

• Non inhibitory substrates. In such a case the SBR is non optimizable (Assumption 2). However, 

the ED-TOC will still behave in the best possible way by filling the SBR in a single bang (FTC like). 
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• Shock loads. High input concentrations are no problem for the ED-TOC as long as the generated 

dynamics could be followed by the sensors. Such a case is especially important for the toxicant WW 

treatment, where the unknown and unmeasurable toxicant concentration is expected to be in a certain 

range but, in some cases and without warning, it might increase to shock peak values. 

APPLICATIONS 
In order to avoid actuator wearing, the ON/OFF cycling was chosen to be less than 3 cycles per 

hour. This leaded to tune P=0.86 in the WW case and P=0.99 in the BP one. 

Toxic Wastewater (WW) Treatment Case 
In order to study performance differences between ED-TOC and FTC, different inflow concentra-

tions were comparatively treated. The standard influent toxic concentration was Sstd = 0.35 g4CP/L. 

Using the FTC, twice such a value would greatly inhibit the biomass thus preventing the treatment to 

be completed, and higher shock loads might even stress and/or disable the biomass permanently 

(Buitrón et al., 2003). As a consequence it was necessary (for the FTC case only) to pre-dilute the in-

fluent in order to obtain the standard concentration for the inflow, thus a series of standard reactions 

was required to treat the shock loads. Results in Table IV show that the ED-TOC, able to treat the in-

fluent without neither diluting nor measuring it, increases significantly the daily applicable load: 

85%, compared to the FTC in standard conditions, and in excess of 63% for the perturbing increasing 

shock loads.  Removal efficiencies for 4CP were always superior to 99% and COD varied between 96 

and 98%. As the time spent for treatment was less than for FTC, more than 25% energy savings in 

stirring and aeration were always observed for the ED-TOC. 

Fig. 8 shows one experimental kinetic for a shock load case of Si = 2Sstd, using Equation (12) for 

implementing the ED-TOC. Toxic concentration S was registered offline (see 4CP in Fig. 8, square 

marks) from manually taken samples, and was not used for control purposes. Fig. 8 shows that S was 

kept oscillating in an acceptably low concentration range, by properly turning ON or OFF the inlet 

flow (Fig. 8, continuous thick gray line). Some perturbation came from the online sensor used to 
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measure DO (Fig. 8, dotted line). It introduced second order delay effects, and some noise, reflected 

when calculating the OMUR for using it in the ED-TOC. But thanks to the ESS robustness (using op-

tion 1 in Table III with Ts =5min), the ED-TOC did cope smoothly with that perturbation. 

Biomass Production (BP) Case 
In this case the ED-TOC objective is to obtain the maximum amount of biomass, equal to that 

produced by using the nominal TOC, but spending less than 2% extra time. Each scenario in Table V 

provides a different challenge to the ED-TOC. The first one was defined as the nominal case, with no 

perturbations. In the second one the gaseous production sensor is badly calibrated. Its readings are 

20% higher than the nominal value. Fig. 9 shows the simulation results for the last one, where a 100% 

shift in S* happens during part of the reaction. Even then the optimality index (tf.opt /tf ) was greater 

than 99% (Table V) i.e. the necessary time to complete the reaction objective was just slightly greater 

than the one needed by the exact TOC in ideal conditions. Results are as good as the ones for the 

Adaptive Extremum Seeking controller (Titica et al., 2003). However ED-TOC robustness was bet-

ter: it does not need the substrate to be measured neither in the influent nor in the tank; and it behaved 

practically optimally although no information about any process parameter was given to it, and while 

subjected to sensor inaccuracy and to process changes. This suggests the possibility of using the 

ED-TOC for optimizing any generic BP process conforming to Assumption 1 and Assumption 2. 

CONCLUSIONS 
An Event-Driven Time-Optimal Control (ED-TOC) strategy was proposed for minimizing the fill-

ing and reaction time in discontinuous bioreactors performing a single biomass growth process. Time 

minimization allows energy savings and also performing more batches per time unit. The main ad-

vantage of this strategy is that substrate and biomass concentrations measurements are not needed. It 

uses a variable, practically measurable, indirectly associated to the reaction rate e.g. a gaseous prod-

uct production rate, or, for aerobic processes, the DO concentration. If some natural conditions for the 

problem are assumed, few parameters from the process model, if any, are required.  
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It was shown how to tune the ED-TOC and how to design the process, in order to robustly make it 

time-optimal, for any given bounded perturbation effect. 

Another advantage of the ED-TOC is that a simple ON/OFF pump will do, because the filling 

proceeds as if mini fill-react batches were successively performed, i.e. inflow is pumped in until the 

event “there is inhibition” is detected, and then stops. When the biomass consumes the newly added 

substrate to the point where “there is no inhibition”, a new pumping mini cycle begins. Such a bang-

bang cycling continues until the reactor gets full.  

An experimental application, treating toxicant wastewater modeled with 4-chlorophenol, was per-

formed in a lab-scale reactor. Only DO and Volume level were used by the ED-TOC. Results show 

energy savings in excess of 25% and a daily applied load increase of 85%, in standard conditions, 

compared to the Fixed Time Control batch strategy, and more than 63% for perturbing shock loads, 

up to 20 times the standard conditions. 

Another case, a biomass production process, was studied in simulation. The only variables meas-

ured were a gaseous product production rate and the Volume level. Not a single parameter of the 

process was needed by the ED-TOC to robustly obtain a practically minimum processing time. 
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NOMENCLATURE 
b (h-1) Specific endogenous respiration rate 

B     (gVSS) Total Biomass. Restricted by B > 0 

Ek  (h) Error estimation of the event causing the kth state transition 
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em   m type event, m = 0, …, 5  

kn  yield coefficients, n=1, … 

kLa (h-1) Oxygen mass transfer coefficient 

O  (mg/L) Dissolved Oxygen concentration inside the reactor. Restricted by 0 ≤ O ≤  Osat

Q  (L) Inlet rate, the manipulated control variable. Restricted by 0 ≤ Q ≤ Qmax

S (g/L) Substrate concentration inside the reactor. Restricted by S ≥ 0 

S*
  (g/L)  Concentration of the substrate at which µ is maximum 

TE  (h) Escaping Time (from near-optimal into outside the robust zone)

tk  (h) time at which the kth state change is produced

Tk  (h) time duration of the kth segment of the space-state trajectory 

TR  (h) Returning Time (from the robust frontier into the near-optimal zone)

Ts  (h) time allowance for signals to stabilize

V  (L) Volume level of the liquid medium in the tank. Restricted by 0 ≤ V0 ≤ V ≤ Vf

X    (gVSS/L) Biomass concentration. Restricted by X > 0 
 

Greek Symbols 

µ, µt (h-1) Specific biomass growth rate. S dependant and time dependant, respectively 

µ* (h-1)  Maximum specific growth rate 

σn  n type logical state for the ED-TOC during fill and react phases: n = 0, …, 4 

ϕ  Time-varying upper bound for γ 

γ  Measurable or computable function of µ 
 

Subscripts and Underlining 
 0, i, f, opt, sat and std are used for t=0 (initial), inflow, final, optimal, saturation and standard. 

Underlined names identify uncertain values. These differ from nominal ones by an unknown 

bounded quantity, possibly because they have been identified, estimated, measured and/or perturbed.
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Table I. Finite States for the ED-TOC (for all implementation versions) 

State Tag em/σn (if em go to σn)    Description Control Action 

 σ0 test   e0/σ1, e3/σ3, e5/σ2 find out what are the initial conditions  Q=Qmax

 σ1 fill  e1/σ2, e3/σ3 fill until inhibition appears Q=Qmax

 σ2 wait  e2/σ1  wait until inhibition disappears Q=0   

 σ3 full  e4/σ4  wait until the reaction ends Q=0   

 σ4  end    may go to next phase i.e. settling Q=0  



Table II. Relevant Events for the ED-TOC implementation 

Event Meaning Description Event estimator function 

 e0   S < S* there is no inhibition Q > 0  and dγ /dt > 0 

 e1   S ≥ Shigh  there is inhibition and reaction rate is below near-optimal limit Q > 0  and γ ≤ Pγ∗ and dγ /dt ≤ 0 

 e2   S ≤ Slow  there is no inhibition but reaction rate is below near-optimal limit Q = 0  and γ ≤ Pγ∗ and dγ /dt ≤ 0  

 e3   V ≥ Vf  the tank is full V ≥ Vf

 e4    S ≤ Sf  terminal substrate concentration reached i.e. it is in the finishing zone Q = 0  and  γ < Rγ∗

 e5   S > S*  there is inhibition Q > 0  and  dγ /dt < 0 

 



Table III. Event estimator functions robust against non modeled fast dynamics 

Event Meaning Event estimator function (option 1)      Event estimator function (option 2) 

 e0   S < S* Q > 0 and dγ/dt > 0  and t ≥ tk-1+Ts (Q > 0 and  dγ/dt > 0)  for at least Ts seconds 

 e1   S ≥ Shigh Q > 0 and γ ≤  Pγ*  and  t ≥ tk-1+Ts (Q > 0  and  γ ≤ Pγ*)  for at least Ts seconds 

 e2   S ≤ Slow Q = 0 and γ ≤  Pγ*  and  t ≥ tk-1+Ts (Q = 0  and  γ ≤  Pγ*)  for at least Ts seconds 

 e3   V ≥ Vf V ≥ Vf V ≥ Vf

 e4    S ≤ Sf Q = 0 and γ < Rγ*  and  t ≥ tk-1+Ts (Q = 0  and  γ < Rγ*)  for at least Ts seconds 

 e5   S > S* Q > 0 and dγ/dt < 0 and t ≥ tk-1+Ts (Q > 0  and  dγ/dt < 0) for at least Ts seconds 



 
Table IV. Comparison of applicable load for the ED-TOC versus FTC 

Daily Load (kg COD/m3/d) 

Si  

(Sstd=0.35g4CP/L) 

FTC 

Undiluted  

(Si as it is) 

FTC 

Pre-diluted 

to standard 

ED-TOC 

Unknown  

and undiluted 

Applied Load increment 

(%) 

ED-TOC vs.  

pre-diluted FTC 

Sstd 2.52 2.52 4.65 85  

2 Sstd Not Possible+ 2.52  4.58 81 

8 Sstd Not Possible* 2.52 4.11 63 

14 Sstd Not Possible* 2.52 4.80 90 

20 Sstd Not Possible* 2.52 4.77 89 

+The standard FTC time is not enough for achieving total mineralization (Buitrón et al., 2003). 

*The SBR gets disabled if Si > 1.05 g4CP/L in FTC mode (Buitrón et al., 2003). 
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Table V. ED-TOC Optimality results for different scenarios in the Biomass Production case 

 
Scenario Description of the test conditions for ED-TOC simulation 

Optimality index
tf.opt /tf  (%) 

1 Nominal case with Haldane law defined as in Titica et al. (2003) 

µo=0.53 KI=0.22 KS=1.2 (S*=0.5138) 

99.8 

2 Measurement error of the gaseous product production rate of 

+20% in t=(20, 30) 

99.8 

3 Perturbation of µ i.e. S* not constant.  

It increases 100% during t=(20, 50) 

99.1 
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Fig. 1. Inhibitory Biomass Specific Growth Rate 
 
 
 
 
 
 
 
 

 
 
Fig. 2. µ(S) evolution as S varies during the filling and reacting:  
 

A) Fixed Time Control (FTC) batch; B) Time Optimal Control (TOC) fed-batch 
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Fig. 3. SV projection of the TOC trajectory:  
 

A) S0 < S*; B) S0 > S*
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Fig. 4. SV projection of the ED-TOC Trajectory (for 0 < S0 < S*) 
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Fig. 5. S evolution in ED-TOC mode (for S0 = 0) 
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Fig. 6. Finite states transitions diagram of the ED-TOC 
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Fig. 7. ED-TOC layout:  
 

A) using the non measurable µt(t); B) using a computable γ(t) = f(µt(t) )  
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Fig. 8. Experimental kinetics using the ED-TOC to control a lab-SBR. 
 

A 4CP shock load, twice the standard value (Si =2Sstd), is treated using B0 =14 gVSS.  

Note that γ [i.e. the OMUR, computed online using the DO (dotted line) measurement] was scaled 

by a constant (α) just to fit the graph (and to remove units). Its shape (thin continuous line), however, 

remains the same. Offline substrate samples (square marks) were taken every time the ED-TOC 

switched the pump. Note that always, soon after Q switches (thick gray line), γ begins to increase. 

That is just what the ED-TOC looks for, to try to maximize γ. The cue for switching the pump, again, 

is to wait for γ to reach a peak (γ*) and then to decrease to the predefined Pγ* threshold. At that point 

the ED-TOC knows that γ tendency is not good (biomass activity is decreasing) and so it switches Q 

to change such a tendency. 
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Fig. 9. ED-TOC simulation results for the Biomass Production case  
 
using settings from scenario 3 in Table I 
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