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Abstract: Optimization and control in spite of plant uncertainties is always a 
challenge, especially if additional constraints about measurements are present. Here, 
two different approaches to solve this problem are compared using simulation. They 
aim at reducing the operation time of bioreactors with inhibitory behavior where 
measuring the reaction rate is not feasible. The “Adaptive Extremum Seeking” 
proposed version relies on the structure information of the kinetic model and 
requires the measurements of the substrate and one other related variable. The 
“Event Driven Time Optimal Controller” strategy avoids the substrate measurement 
and, using an event software sensor, provides a nearly optimal solution without 
requiring a complete model. Copyright © 2004 IFAC 
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1. INTRODUCTION 

 
The performance of fed-batch fermentation processes 
could typically be increased by the use of model-
based optimization techniques. Using a fairly general 
model structure, many useful results have been 
derived in (Modak et al., 1986; Van Impe et al., 
1994). One key result is that, in many cases, the final 
product yield (ratio of the amount of product formed 
and the amount of substrate consumed) can be 
maximized simply by maximizing the instantaneous 
yield. This can be achieved by maintaining the 
substrate concentration at an optimal level called  S*.  
 
Over the past years, significant research effort has 
been done in the real time optimization for fed-batch 
bioreactors. The primary objective has been to 
overcome the performance limitations associated 
with the large uncertainty related to models of these 
processes (e.g. Bastin and Dochain, 1990). 

In this paper, two approaches that are aimed at 
handling the uncertainties on the process kinetics are 
comparatively investigated. The version of the 
Adaptive Extremum Seeking (AES) proposed here 
utilizes explicit structure information of the objective 
function that depends on system states and unknown 
plant parameters. A Lyapunov-based adaptive control 
technique is used to estimate the unknown kinetic 
parameters and to drive the system to its unknown 
extremum. The second approach, the Event Driven 
Time Optimal Control (ED-TOC) uses bang-bang 
techniques based on the optimal solution approach, 
solving the problem without measuring the substrate 
nor needing the exact structure of the model. 
 
The paper is organized as follows: in Section 2 the 
problem is stated. Sections 3 and 4, respectively, 
present the ED-TOC and the AES. A comparative 
simulation study is done in Section 5. Some 
conclusions and perspectives close the paper. 



     

2. PROBLEM FORMULATION 
 
In this work, we consider the optimization problem 
for a class of simple microbial growth processes with 
one gaseous product in a fed-batch bioreactor, 
described by the following dynamical model: 
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dt
dX −= µ  (1) 
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dt
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where states X (g/L) and S (g/L) hold for biomass and 
substrate concentrations, respectively, µ (h-1) is the 
specific growth rate, 

V
FD = (h-1) is the dilution rate,  

y (g/L/h) is the production rate of the reaction 
product, Si (g/L) denotes the concentration of the 
substrate in the feed, k1 and k2 are yield coefficients, 
F (L/h) is the inflow and V (L) is the volume of the 
liquid medium in the tank. 

 
A Haldane law approximates the specific growth rate: 
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Where 0µ  is a parameter related to the maximum 
value of the specific growth rate µ*, KS denotes the 
saturation constant and KI the inhibition constant. 
Such a model is typically used to describe the 
substrate inhibition effect in fed-batch bioreactors, as 
shown in Figure 1. 
 
The control objective is to produce the maximum 
amount of biomass in the minimum possible time. It 
is well known (Moreno, 1999) that this will be 
achieved if µ is kept at its maximum value, µ*, as 
shown in Figure 1. 
 
 
3. EVENT DRIVEN TIME OPTIMAL CONTROL 

 
The ED-TOC is based on the time optimal control 
solution to the problem (Moreno, J. 1999), which 
consists of bang-bang arcs and a singular arc. The 

singular arc maintains µ=µ* using a continuous 
control function, for which a good knowledge of the 
model would be required. The ED-TOC does the 
bang-bang arcs exactly but it approximates the 
singular arc by a switching strategy. This allows 
operating as near to the optimum as desired without 
the necessity of measuring many state variables and 
with a high degree of robustness against model and 
parameter uncertainties and changes. It considers also 
the physical restrictions of the actuator.  

Figure 2. ED-TOC scheme 
 
The ED-TOC estimates if µ lies inside a P-optimal 
zone, depicted in Figure 1, and acts accordingly to 
keep it inside. Figure 2 shows the ED-TOC scheme 
(a formal description is available in Betancur et al. 
2004). The main action applied to the manipulated 
variable F is on/off. This bang-bang action is 
determined using the estimated events e’. Basically 
the “Events Software Sensor” (ESS) generates two 
types of e events estimation. A parameter P∈(0,1)  
in Figure 1 tunes the points in µ where real e are 
located. Event e=a means that S is definitely above 
S* and that µ is in the right-handed vicinity of point 
A, i.e; moving away of the P-optimal zone. If the F 
pump is ON it must be turned OFF as shown in 
Figure 3. Similarly, e=b signals the moment in which 
the system is leaving the left border of the P-optimal 
zone, near point B. If F pump is OFF then it must be 
switched ON as shown in Figure 3. The final 
reaction’s time tf will be close to the optimal tfopt as 
the established on/off cycle will keep the system as 
close as desired to µ* at all possible times, by 
properly choosing P→1 (Table 1).  
 
The ESS is called this way because, without 
measuring the variables µ or S nor knowing the 
parameters (S*,µ*), it estimates e’≈ e, using a real-
time software algorithm. For doing so a γ variable 
must be available, such that its shape is related to the 
shape of µ, i.e. that as function of S its unique 
maximum coincides with S*, regardless of other 
dependences it might have. For the case at hand γ is 
straightforwardly found in the gaseous product  y: 
 

From (3):        XSkXSy )(),( 2µγ ==
∆

              (6) 
 
It is evident from (6) that for a given unknown X>0 
and any unknown k2>0 the shape of γ is the same as µ 
in Figure 1. That is, they grow monotonically from 
S=0 to S=S*, and then they decrease, also 
monotonically, from S=S* and beyond as S→∞  
 
But γ from (6) is useless as, except the fact they are 
positive, there is no available data for neither S, X nor 
k2. That is why the ESS uses the time format of γ in 
(3) as it can be measured online and its maximum is 
easily found at some special times. Let’s define tk* as 
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the time when S just touches S* for the kth time. Then 
γk*=γ(tk*) is a detectable maximum. Later an kth 
estimated event ek’ will be provided at time tek when 
γ(tek)=Pγk* indicating that the system is about to 
leave the P-optimal zone. Note that this algorithm 
works independently of the structure or form of µ in 
(5), as long as it has a unique global maximum.  
 
It should be noted in (3) that, as X(t) may change 
with time, a slight difference in the tek is expected 
compared to the situation if µ were used directly 
instead of γ. This estimation inaccuracy decreases 
when X(t) varies slower than µ(t). Three cases of 
interest might arise. In the first, the influent pump is 
OFF and S decreases. It might happen that γ is 
increasing which means that the system is inhibited 
and above or in the vicinity of S* (see left-side of 
Figure 3). Instead, if γ decreases, this means that the 
system is below S*. The second case takes place 
when the pump is ON and sufficient substrate is 
being added to the tank as to increase S at some rate. 
Here, if γ is increasing, it means the system is 
“below” or in the vicinity of S*. On the opposite, if γ 
decreases, this means that there is substrate 
inhibition, above S*. The third case should be 
avoided. It is the limit case where Si in F is not 
sufficient to guarantee that the increase in S will 
produce a µ with a dynamics faster than that of X. 
This condition is easily avoidable, even if Si changes 
over time, if the inflow provides significantly more 
substrate than would Fopt, the inflow needed for the 
optimal case (Moreno, 1999). 
 
Figure 3 compares the behavior of the ED-TOC for 
two different values of P: P=P1=0.92 corresponds to 
the Figure 1. The second case P=P2=0.998 provides a 
much better efficiency at the detriment of the 
switching cycle for F.  Table 1 summarizes the 
results for different values of P. There it can be seen 
that the switching time is reasonable for this 
application and that it can be enlarged, if necessary, 
accepting a small loss in optimality. 
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Figure 3. ED-TOC’s Substrate kinetics for  P1=0,92 
         and P2=0,998 shown together for comparison 

 
Table 1 : ED-TOC optimality  for different P 

P Optimality.index
tfopt /tf  [%] 

F pump 
cycles 

Switching 
time [h] 

0,998 99,9 448 0,14 
0,98 99,8 151 0,41 
0,96 99,2 106 0,59 
0,90 96,0 62 1,0 

4. ADAPTIVE EXTREMUM SEEKING 
 
4.1. Principle and assumptions 
 
The extremum-seeking scheme investigated here 
utilizes explicit structure information of the specific 
growth rate µ. In the case of Haldane kinetics (5) µ is 
maximum when the substrate concentrations equal to 

IS KKS ⋅=* . Then, the control objective is to 
keep the substrate concentration inside the reactor at 
the level S*. Since the exact values of Haldane 
parameters are usually unknown (or at least poorly 
known), the adaptive extremum-seeking controller is 
developed to search this unknown set point such that 
the biomass production at the end of the reactor is 
maximized.  
 
The adaptive extremum-seeking control scheme 
provides an adaptive control law of the dilution rate 
D to control the substrate S at the desired set point 
S*, coupled with parameter learning laws for the 
Haldane model parameters. This algorithm requires 
the on-line knowledge of the substrate S and the 
gaseous outflow rate y (e.g. CO2), as well as the 
related yield coefficients.  
 
Parameter definition. Let’s define: 

SK
0µθ µ = , 

S
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1=θ , 
IS

I KK ⋅
= 1θ       (7) 

 

[ ]TS I    θθθθ µ= represents the new set of kinetic 
parameters to be estimated on-line. The optimum for 

S can be re-expressed as follows:
I

S
θ
1* = . 

By this transformation, the optimum value is function 
of only one unknown parameter that has to be 
estimated on-line. 
 
4.2. Estimation and Controller Design 
 
The controller design proceeds in different steps. 
First, the estimation equation for S is derived from 
the balance model equation, then the control law and 
the estimation of the unknown kinetic parameters are 
included in a Lyapunov based derivation framework.  
 
Estimation equation for the gaseous outflow rate y  

By considering Eq. 1-3 and the kinetic parameter 
definition, the predicted state y is generated by: 
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with 0>yk  and 
^
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the yield coefficients, assumed to be known.  

 



     

Design of the adaptive extremum-seeking controller 
 
Since the parameter Iθ  is unknown, the desired set 

point (x) can be re-expressed as follows:
^

1*

I

S
θ

= . 

The controller is designed in order to drive the 
substrate concentration S to the estimated value of S* 
(x). An excitation signal d(t) is designed and injected 
into the adaptive system such that the estimated 

parameter 
^

Iθ converges to its true value. The 
extremum seeking control objective can be achieved 
when the substrate concentration S is stabilized at the 
optimal operating set point S*. 
 
Define the error control variable Sz  as follows: 
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Consider the Lyapunov candidate function as 
follows: 
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where µµµ θθθ
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I and , γγγ µ s are positive tuning parameters.  
 

The adaptive extremum seeking controller algorithm is 
derived from the expression of the Lyapunov candidate 
function V , in such a way that  

•
V  is negative. 

 

After mathematical manipulations, we obtain the 
control law and the parameter learning laws as 
follows: 
 
Control law: 
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Note that the resulting control law consists of two 
terms: the first one includes the specific rates of the 
biomass growth, while the second is a correcting term 
proportional to the error output and to the dither 
signal, d(t) defined as: 
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where )(ta  acts as a dither signal on the closed-loop 
process and dk  is a strictly positive constant. 
 
Parameter learning laws 
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and with the initial condition 01)0(
max,
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The update laws are projection algorithms that 

ensures that 0
^

>≥ SS εθ  and 0
^

>≥ ii εθ . 
 
By using appropriate mathematical arguments (that 
invoke in particular LaSalle invariance principle and 
Barbalat's lemma), it has been shown that if the dither 
signal fulfils some excitation persistence condition 
then the parameter estimates converges to their true 
values and the control error zS converges to zero 
(Titica et al., 2003; Marcos et al., 2004). 
 
 

5. SIMULATION RESULTS 
 
The ED-TOC and the AES where tested using Matlab 
simulations, under different scenarios, for the same 
discontinuous reactor model. Each scenario in Table 
2 provides a different challenge to the controllers.  
The default kinetic model parameters and yield 
coefficients used to simulate the plant are: 

0.1,4.0
/22.0,/2.1,53.0
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The initial states, unless otherwise explicitly said, 
used during numerical simulations are: 

LVLgXLgS ooo 0.1,/2.7,/0.2 ===  
 

and the substrate concentration in the inflow is 
LgSi /20= . 

 

The optimality parameter for the ED-TOC controller 
was set to P=0.98 to calculate results in Table 3. 
 
The design parameters for the AES controller were 
set to: 

,1,5.0,20,200,200,10 0, ====== dzyIS kkkγγγ µ

2.0=ε . The dither signal a(t) is chosen as: 
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where iA1  and iA2 are normally distributed random 
numbers in the interval [-0.1, 0.1]. For details about 
the selection of the dither signal, the reader is 
referred to (Titica, et al., 2003). 
 
The control objective is to fill the tank and obtain an 
amount of biomass, equal to that produced by the 
optimal trajectory, in the smallest possible time. The 
final reaction time tf has been defined as the instant 
when V(tf)=Vmax=40L and Sf=S(tf)<0.01 g/L, where 
this last value has been arbitrarily assigned. 
 
An optimality index is defined as tfopt /tf, where tfopt is 
the optimal, theoretical minimal, finishing time. 
Table 2 presents the optimality index for each case. It 
shows that the performance of both controllers is 
good and close to 100%, except in Scenarios 2 and 6. 
In Scenario 2 bad initial conditions for the kinetic 
parameters are given and, additionally, in Scenario 6 
a sudden change in plant’s kinetics is produced. In 
both cases the AES performs in a less optimal way 
because it requires some convergence time to adapt 
the estimated values of the true parameters of the 
plant, and meanwhile the AES uses a non-optimal set 
point. As long as the total change in S* is not big 
enough to cause big efficiency loses, the performance 
will not be greatly affected. This is the case if some 
history about the plant’s behavior exists, so the initial 
conditions for every new batch can be given in a 
trustable fashion. By comparison, the performance 
effect in the ED-TOC is almost negligible, if any. 
This is so because its operational principle is of the 
bang-bang type, meaning that at every instant in time 
it will do the best possible action to get the system in 
the P-optimal zone, without the need for allowing 

any parameter to converge. So the time the system 
spends away of the defined P-optimal zone depends 
only on the actuator limits and the plant dynamics. 
No equilibrium or set points are searched for. Its only 
aim is to keep the controlled variable inside the  
P-optimal zone during the singular arc. These are the 
main philosophical differences in both approaches. 
Table 3 shows another characteristics that define the 
main practical differences of the two controllers. 
 
Some complementary differences between the two 
methods suggest some work should be done to 
combine them. In the AES, information about the 
plant is generated, as the values of the kinetic 
parameters are estimated in time. More sensors are 
used thus generating more data, specially S data. 
Other than the dither signal, it does not produce 
cycling of the input. On the other hand the ED-TOC 
is immune to tuning problems and model 
uncertainties (Table 3). It performs the bang-bang 
arcs in an exact way, same as the theoretical optimal 
solution. While doing the arcs it may know the tk* 
instants when S=S* but does not know S(tk*). 
 
Figures 4 and 5 show the simulation results for 
Scenario 6. In Figure 4 it is clear that the dither in F, 
produced by the ED-TOC, is only plant-dependent, 
and that its convergence to new operation conditions 
is not governed by any controller’s dynamics. The 
amplitude and time cycle of the bang-bang control 
signal depends only on the plant, and during the 
bang-bang arcs it operates perfectly. On the other 
hand, the AES graciously adjust its estimated value 
for the set-point of the manipulated variable (see 
dotted line in Figure 5), using an adaptive algorithm 
that requires a convergence time and that depends not 
only on the plants behavior in the new operational 
zone but also on the careful selection of the tuning 
parameters.

 
 

Table 2 : Optimality results for different scenarios for both controllers 
Optimality index: tfopt /tf [%] 

Test Scenario for simulation comparison 
ED-TOC AES 

1. Default: µo=0.53 Ki=0,22 Ks=1,2 (S*=0,5138), True initial conditions given. 99.8 99.7 
2. Bad initial kinetics given: µo=0.108 Ki=1,645 Ks=0,01 (S* decreased 50%) 99.8 89.5 
3. Bad So given (increased 50% respect to the real value) 99.8 99.7 
4. Measurement error of +20% for y in t=(20,30) 99.8 99.8 
5. Measurement error of +20% for S in t= (20,30) 99.8 99.8 
6. So=S*, bad initial conditions given (S* increased 100%), and S* changed for 

t=(20,50): µo=0.53 Ki=0,44 Ks=2,4 (S* increased 100%) 
99.1 96.5 

 
 

Table 3 : Characteristic differentiation of both control philosophies
Characteristics ED-TOC AES 

Measured variables: y (used as γ) S, y 
Controlled variables: µ  S 
Manipulated variables: F D 
Tuning parameters: - akkk dyziS ,,,,,, 0,, εγγγ µ  

Optimality parameters: P - 
Initial conditions required: - )0(),0(),0(,),0(),0( iSfSyS θθθ µ  

Convergence speed depends on: Plant and actuator limitations only Plant and control tuning parameters 
Control type: Hybrid (Bang-bang + continuous) Continuous  



     

Figure 4: ED-TOC behavior using P=0.98 for 
Scenario 6 in Table 2.  In the substrate plot S* is 
drawn with a step-like line. 

Figure 5: AES behavior for Scenario 6 in Table 2. 
In the substrate plot a step-like line shows S*. 
Estimations are drawn with dashed lines. 

 
 

6. CONCLUSIONS 
 
Two control approaches of different philosophical 
nature have been compared, to understand their 
differences and complementarities, in a bioreactor 
example. The ED-TOC aims at keeping the system 
inside a predefined P-optimal zone. The AES aims at 
stabilizing the system in an optimal set point that is 
adapted on line. Both of them performed in a near 
optimal way for different test scenarios.  
 
Advantages and disadvantages of the two 
philosophically different approaches were discussed, 
suggesting the possibility to combine them to obtain 
the better of each one of them. The idea is that while 
the system starts a batch, ED-TOC will performs in 
the best possible way for the singular arc. At the 
same time, if a S measure is available, during this 
bang-bang cycle a clear estimation of the P-optimal 
zone will be made in terms of S, including a measure 
for S* at t1*. This value will be used to initialize the 
AES and, from then on, control could be made using 
AES policies. From time to time a bang-bang cycle 
could be run to test for optimality. This will reduce 
the on/off switching and at the same time bring 
valuable information about the plant model, and 
allow reacting to unforeseen perturbations or faults. 
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