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Abstract: This paper presents results that enable monitoring of an aerobic
sequencing batch wastewater treatment (WWT) process based on online dissolved
oxygen (DO) concentration measurement. First it introduces the sequential process
and reviews the DO dynamics discussing all its important components and how to
deal with sensor response delay. Subsequently it presents a formal discrete event
system (DES) model for the traditional SBR process as well as a modification that
introduces new states and enables our monitoring methodology. The presented
approach will allow the online identification of the oxygen transfer parameter KLa

in an aggregated state, enabling tendency monitoring, as well as apart from it, the
online monitoring of the respiration rate during the reaction phase. Finally a test
method for verifying the presence of substrate in the reactor is introduced. Parts
of the results have been validated with experimental data from the EOLI project.
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1. INTRODUCTION

Biotechnological processes are often character-
ized by a high level of uncertainty. This is es-
pecially evident in the case of wastewater treat-
ment (WWT), when residual waters vary consid-
erably in composition and flow. The Sequencing
Batch Reactor (SBR) and its traditional process
scheme is based on the fill-and-draw principle
(EPA, 1999), which consists of 5 process phases
(see Fig. 1):

(1) Idle: The reactor is not in use.
(2) Fill : The reactor is filled with residual wa-

ters.
(3) React : The microorganisms in suspension

(activated sludge) within the reactor uti-

1 This paper includes results of the EOLI project that
is supported by the INCO program of the European
Community (Contract number ICA4-CT-2002-10012).

lize organic and nitrogen compounds for
metabolic activity.

(4) Settle: The activated sludge sediments to the
bottom of the tank.

(5) Draw : The treated water is removed from the
reactor (effluent). Note that only a specific
part of the utilizable tank volume will be
interchanged in each cycle.

While this approach offers greater flexibility
for transitory flows, it still exposes weakness
in experiment reproducibility, non-stationarity
and -linearity, multi-variable aspects and suf-
fers from measurement uncertainties. In other
words, this processes represent unique systems,
where a mathematical model often cannot capture
all required information to describe the process
variables, its different phases, parameter drifts
and unexpected disturbances (e.g. concentration
shocks, inhibition). Given the characteristics of
the process and the fact that many of the pa-
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Figure 1. Sequential Process Scheme

rameters cannot be measured economically online,
control often fails or does not provide a sufficient
level of confidence, performance and reliability.
Following the terminology described by (Isermann
and Balle, 1997) we elaborated a scheme for mon-
itoring the aerobic sequential process using online
measurements of the DO concentration and aggre-
gated process phases. This approach can improve
the operation of the SBR process under abnormal
conditions and prevent economical and environ-
mental impact.
The paper is organized as follows: Section 2
presents a sound review of the generic DO dy-
namics for activated sludge processes. Section 3
introduces a formal discrete event system (DES)
model for the SBR process. Section 4 presents our
proposal for monitoring the sequential process, ex-
ploiting the separation of phases and an extension
of the formerly presented formal DES model of the
process. Finally some conclusions are drawn and
possible future work is outlined.

2. DISSOLVED OXYGEN DYNAMICS

The oxygen dynamics are included in all generic
activated sludge process models in form of a mass
balance equation. This balance can be described
in simple qualitative terms, revealing the rate
components it is composed of:

dO(t)

dt
= oxygen transfer − respiration

±dilution (1)

where O(t) is the dissolved oxygen concentration
in the bulk liquid.

2.1 Rate Components

Oxygen Transfer

The transfer of O2 molecules from the gas phase
to the liquid phase is limited by the movement
of the molecules through the boundary layer of
the air bubbles (difusion). In the boundary layer
the saturation concentration of oxygen is assumed
and the oxygen transfer term can be described as:

OTR = K̃La (Osat − O(t)) (2)

where K̃La = KLa when aeration is on, and
K̃La = 0 otherwise. The oxygen transfer coeffi-
cient KL and the interfacial area a between gas
and liquid phase per unit volume are usually uni-
fied into a single parameter KLa, as a is impossi-
ble to measure and very difficult to estimate.
The Osat is the maximum concentration in the
liquid phase, which is equal to the oxigen solu-
bility in aqueous solutions. It is function of the
temperature, partial oxygen pressure and salinity
of the solution. In WWT it is common practice to
assume it constant and obtain it only once from
tabular oxygen solubility data, although the tem-
perature influence has been studied and verified
(Vogelaar et al., 1996). However, convenient mod-
els for the oxygen solubility in aqueous solutions
exist (Tromans, 1999) and can be approximated
very well using:

• An approximation of the partial pressure at
a given sea level (x ) based on the partial
oxygen pressure at sea level.

• A linear interpolation of Henry’s constant at
a given temperature HT .

• And Henry’s law.

Respiration

The consumption of the oxygen by microorgan-
isms is described by the respiration rate r(t).
Organisms use the O2 molecules as an electron
receptor in the catabolic metabolism to produce
energy (usually stored in chemical form) that is
subsequently used for:

(1) Processes that sythesize complex organic
substances from other more simple ones (an-
bolic metabolism).

(2) Processes and phenomena of auto-regulation
that intent to maintain the composition and
properties of the organism in equilibrium
(Homeostasis).

(3) And Activities like for example cell move-
ment.

The models for the respiration are usually based
on two elements (Henze et al., 1987; Henze et
al., 1995; Gujer et al., 1995):

(1) A relationship between the consumption of
substrate and the growth rate.

(2) And the Respiration under absence of sub-
strate.

We will focus on recuperation of the respiration
rate r(t) without establishing a specific micro-
scopic model for oxygen usage, other than a qual-
itative description of the behaviour in absence of
substrates that can be described as r(t) is constant
(Marsili-Libelli, 1990; Henze et al., 1987; Henze et
al., 1995; Gujer et al., 1995).
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Dilution

The dilution rate term describes the concentration
change caused by mixing liquids with different DO
concentration, where an inflow at rate Qin and
with the concentration Oin dilutes the liquid in
the tank of volume V (t) with a concentration of
O(t) and therefore can be described by:

Dilution =
Qin

V (t)
(Oin − O(t)) (3)

2.2 Generic Activated Sludge Model

The mass balance presented as eqn. (1) has been
formally described by (Spanjers et al., 1996) for
aerobic activated sludge treatment processes, giv-
ing

dV (t)O(t)

dt
= QinOin − QoutO(t) + V (t)

KLa (Osat − O(t)) − V (t) r(t) (4)

where Qout corresponds to an outflow rate from

the tank. Given also that dV (t)
dt

= Qin−Qout, eqn.
(4) can be reduced to

dO(t)

dt
= KLa(Osat − O(t)) − r(t) +

Qin

V (t)
(Oin − O(t)) (5)

The key for monitoring the process from a practi-
cal point of view, is the DO measurement in the
bulk liquid phase.

Dissolved Oxygen Measurement

Economic sensors for the measurement of the DO
concentration O(t) are available on the market
today. However, an important factor in utilizing
the measurement can be the dynamics of the
sensor itself. If it is comparable to the process
dynamics that one wants to observe, it is required
to deal with the delay in the sensor response
(Lindberg and Carlson, 1996). In our particular
case (DO probe COS4 from Endress + Hauser), to
reduce the response delay, we have implemented
a filter based on the design procedure proposed
by (Lindberg and Carlson, 1996) that is based
on (Ahlén and M.Sternad, 1989) and compared it
with a stable inverse of the DO sensor model (see
Fig. 2). Since the stable inverse filter (SIF) could
be obtained and provides better recuperation for
a noise filtered DO signal, the data in our case is
filtered with the SIF.
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Figure 2. Impulse Responses of Sensor and Filters
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Figure 3. SBR Process State Automaton

3. FORMAL MODEL OF THE SEQUENTIAL
PROCESS

To introduce a monitoring system, a formal model
of the whole process needs to be established. The
formerly presented sequence of process phases
(Fig. 1) can be directly translated into a simple
discrete event system (DES) model, a modified
state automaton as described by (Cassandras,
1993, p. 82).
The resulting state automaton (see Fig. 3) can be
defined as the five-tuple (E, X, Γ, f, x0):

E = {e1, e2, e3, e4, e5}

X = {q0, q1, q2, q3, q4}

Γ = Γ(q0) = {e1} , Γ(q1) = {e2} , Γ(q2) = {e3} ,

Γ(q3) = {e4} , Γ(q4) = {e5}

f = f(q0, e1) = q1, f(q1, e2) = q2, f(q2, e3) = q3,

f(q3, e4) = q4, f(q4, e5) = q0,

x0 = q0 (6)

where E is the set of events, X the set of states,
Γ the active events for each state, f the set
of transition functions and x0 the initial state
respectively. The set X is given by a state for
each traditional SBR process phase from Fig. 1:
q0 = Idle, q1 = Fill, q2 = React, q3 = Settle,
q4 = Draw.

The events in set E will be generated by a control
system, using for example a simple scheme with
fixed times. The temporally separated process
phases demand that the following elements can
be controlled:
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• Inflow
• Outflow
• Aeration

This property of the sequential process has an
influence on the structure of the generic DO
balance given as eqn. (5). As a consequence of
switching on or off the above mentioned items in
specific process phases, certain terms of eqn. (5)
will dissappear, a fact that can be exploited for
implementing a monitoring scheme and presents
the main contribution of this paper.

4. MONITORING OF THE SEQUENTIAL
PROCESS

We propose to implement a monitoring scheme
that operates with three main tasks:

(1) Online Identification of the Oxygen Mass
Transfer Parameter KLa

(2) Observation of the respiration rate r(t) dur-
ing the reaction phase

(3) Test of substrate presence

The first two tasks allow the identification of the
KLa apart from the observation of the respiration
rate, as compared to formerly presented concur-
rent methods for continous AS processes (Marsili-
Libelli, 1990; Lindberg and Carlson, 1996). This
separation is based on the fact that the parameter
KLa changes only slowly when the air flow rate is
constant (Lindberg and Carlson, 1996).
The test of the substrate presence allows us to
verify if the biomass has successfully degraded the
substrates during the reaction phase, which might
be of special interest when treating organic toxic
substances.
To accomplish these tasks, we have aggregated
two special phases to the traditional process
scheme and as a consequence the formerly pre-
sented DES model (see Fig. 4) is extended to

Ee = E ∪ {e6, e7, e8, e9, e10}

Xe = X ∪ {q5, q6}

Γe = Γ ∪ Γ(q0) = {e6} , Γ(q5) = {e7} ,

Γ(q2) = {e8} , Γ(q6) = {e9, e10}

fe = f ∪ f(q0, e6) = q5, f(q5, e7) = q1,

f(q2, e8) = q6, f(q6, e9) = q2,

f(q6, e10) = q3 (7)

where q5 =Re-Aerate and q6 =Test-Respiration.

The aggregation of the special process phases
enables us to exploit the structure of the DO mass
balance equation (5), exactly for the purpose of
identifying the oxygen transfer parameter when
the process is in state q5 and testing substrate
presence when it is in state q6.

q 0 q 5e 1 q 1 q 2e 2e 7
q 3q 4 e 3e 4 q 6e 8e 5 e 1 0e 9e 6

Figure 4. Extended State Automaton

In all phases except Fill and Draw, there is no
inflow or outflow from the reactor. Thus, dV

dt
=

0 and we can obtain a simple discrete model
from eqn. (5) using a Zero-Order-Hold (ZOH) as
described by (Åström and Wittenmark, 1984):

O(k + 1) = e−KLa h O(k) +
(1 − e−KLa h)

KLa

(−r(k) + KLa Osat(k)) (8)

when the aeration is on, and

O(k + 1) = O(k) − h r(k) (9)

otherwise, where h represents the sampling time
and k the normalized step.

4.1 Online Identification of KLa

The state q6 represents a phase of the process
where the bulk liquid remaining in the reactor
is re-aerated until dO

dt
∼= 0. During this phase,

following assumptions hold:

(1) dV
dt

= 0
(2) Osat = const.

(3) r(t) = const.

Therefore the discrete model from eqn. (8) can be
reduced to

∆O(k) = θ ∆O(k − 1) (10)

which represents the difference between two sub-
sequent samples (i.e. at time k and k − 1) and
describes the behaviour of the DO curve, where
∆O(k − i) = O(k − i) − O(k − (i + 1)) and
θ = e−KLa h. Note that eqn. (10) does no longer
depend on the Osat and the respiration rate r(t).

Based on eqn. (10) we have implemented two
identification algorithms for the parameter KLa.

(1) A Linear Regression (Least Squares Esti-
mate), using all samples obtained during the
Re-Aeration period, a standard offline pa-
rameter identification method as described in
(Söderström and Stoica, 1989, Sec. 4.1).

(2) A Kalman Filter for Parameter Identifi-
cation, an online parameter identification
method as described in (Söderström and Sto-
ica, 1989, p. 325) 2 .

2 The advantage of the Kalman algorithm over a Recursive
Least Squares algorithm is the fact that literature suggests
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Figure 5. Parameter Identification in state q5

Both implementations have been successfully ver-
ified in simulation and with data from EOLI
model identification experiments. Fig. 5 presents
an example identification using online measure-
ment data. K̂La = 0.0046083[s−1] is the result
of the Kalman filter algorithm when started from
the point in time when aeration is switched on (A;
with initial covariance P (0) = 100 and θ(0) = 0),
K̂La = 0.0046389[s−1] is the result when the algo-
rithm starts after we can assume that the aeration
system has achieved steady state (B). The latter
is slightly better, as the starting point and the
first part of the re-aeration curve is the most
critical part for the identification and is influenced
by the delay of the aeration mechanism in aerat-
ing the reactor. These results are comparable to
K̂La∗ = 0.0046667[s−1] reported by (Betancour
et al., 2004) for the same data.
The implementation of the online identification
of the oxygen transfer parameter KLa over con-
secutive cycles principally allows to enhance the
result using the estimated K̂La as initial value
θ(0) for the algorithm in the subsequent cycle.
However, it also enables monitoring of the oxygen
transfer, through the detection of deviations from
acceptable/usual/standard condition.

4.2 Respiration Monitoring in the Reaction Phase

Since the transfer parameter KLa is identified
during the state q5 of every cycle of the au-
tomaton, one can use its estimation K̂La as a
known fix value in the subsequent state q2 and
the respiration rate r(t) can be monitored during
this state using eqn. (8). Considering that O(t)
changes faster than the r(t), one can propose for
its model

r(k + t) = r(k) + n(k) for 0 < t < 1 (11)

with n(k) a white noise. Now from eqns. (8) and
(11) one obtains the observable augmented model
[

O(k + 1)
r(k + 1)

]

= A

[

O(k)
r(k)

]

+ BOsat(k) +

[

0
1

]

n(k)

values for the initial values of the parameter θ̂(0) and the
filter parameter P (0) and R1
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Figure 6. Respiration rate in state q2

where

A =





a −
1 − a

K̂La
0 1



 , B =

[

1 − a

0

]

with constant a = e−K̂La h and output y(k) =
O(k). This model can be used to monitor r(k)
using a full or reduced order observer. For this
task, we use the structure

x̂(k\k) = (I − KC)(Ax̂(k − 1\k − 1) +

BOsat(k − 1)) + Ky(k) (12)

with C = [1 0] and K chosen such that the
eqn. (12) is asymptotically stable (Åström and
Wittenmark, 1984).
Fig. 6 shows the recuperated r(t) from an EOLI
model identification experiment. The location and
interpretation of patterns in the respiration rate
for process fault diagnosis is subject of future
work.

4.3 Test of Substrate Presence

Additionally we can exploit the qualitative be-
haviour of respiration under absence of substrate
(r(t) is constant), applying simple model based
fault detection. During a short respiration test
phase (state q6) without aeration but with mixing,
the model describing the DO behaviour is eqn. (9)
and one can derive the following parity equation:

2 O(k − 1) − O(k) − O(k − 2) = 0 (13)

A deviation from this parity equation exceeding
a certain permissible error is a symptom for the
undesired presence of respirable substrates in the
reactor. Its detection allows to take appropiate
actions (e.g. prolonged reaction phase; e9 causing
a transition back to state q2; see Fig. 4). The time
required to perform this test has to be selected
by the operator, taking into account the sampling
time, the expected respiration rate and the total
cycle time (the test phase should be very small
in comparison to the cycle time). It is possible
and anticipated, that the test is only performed
when the respiration rate r(t) exhibits abnormal
patterns during the reaction phase.
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5. CONCLUSIONS

This paper presented the development of a moni-
toring scheme for the aerobic SBR process utiliz-
ing the DO measurement and two special aggre-
gated process phases. It introduces a formal model
for the process and extends it with the aggregated
phases, to accomplish three main monitoring tasks

(1) The online identification of the the oxygen
transfer parameter KLa that allows to mon-
itor its tendencies in continous reactor op-
eration and can be exploited to simplify the
second task.

(2) The observation of the respiration rate r(t)
during the reaction phase, which is a key
indicator for biomass activity.

(3) And a test for verifying substrate presence,
that can be specially useful when treating
organic toxic compounds to prevent environ-
mental and human impact.

The developed and presented corresponding algo-
rithms have been verified with simulations and
experimental data from the EOLI project. As
an online monitoring approach, the results can
improve the operation of the SBR process under
abnormal conditions and prevent economical and
environmental impact, despite the uncertain char-
acter of the biological WWT process. Nonetheless,
the location, recognition and interpretation of res-
piration patterns during the reaction phase could
further enhance this approach, a fact our current
investigation is concerned with.

6. ACKNOWLEDGEMENTS

We would like to thank the EOLI Workpackage
(WP) 1 for conducting the identification experi-
ments, and WP 2 for the modeling and identifica-
tion effort.

REFERENCES

Ahlén, A. and M.Sternad (1989). Optimal decon-
volution based on polynomial methods. IEEE
Transactions on Acoustics, Speech and Signal
Processing 37(2), 217–226.
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