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Abstract. Process fault diagnosis allows a control system to maintain the operation of a process under presence
of faults. This is undoubtedly a critical feature for an aerobic SBR activated sludge waste water treatment (WWT)
process treating waste water contaminated with organic toxic compounds, as in the case of the presented study. A
commonly employed methodology for diagnosis based on feature extraction from process signals and their clas-
sification is demonstrated on the basis of the respiration rate signal, a known indicator for biological activity in
aerobic activated sludge WWT processes. Given the absence of sufficient historical data and diagnostic informa-
tion, an uncertain mathematical model was used for generation, which represents a transformation of the model
that has been selected, identified from laboratory experiments and reported in the EOLI project. The usefulness
of the signal for the detection and classification of a set of defined abnormal conditions was verified through sen-
sibility analysis. Results from the analysis not only show the effects of parameter deviations, but also indicated
the features to be extracted from the respiration signal for a successful classification. Consequently a feature
extraction and classification procedure was designed, to diagnose the formerly defined process faults. Results
obtained with the procedure indicate that the methodology can successfully cope with uncertainties. These are
very common in this type of bioprocesses and prevent the straightforward application of well studied quantitative
PFD approaches.

1. Introduction

Sequencing Batch Reactors (SBR) for waste water treatment (WWT) based on the fill-and-draw principle [7] are
commonly employed to deal with variations in flow and composition of residual waters [11]. For autonomous
operation, these batch processes require a control system that maintains the operation even under presence of
faults. To achieve this goal, the process has to be permanently monitored to detect the presence of faults, diagnose
their type and size [9] and take corresponding actions.

Different authors [17, 18, 19, 5, 12] have presented a large variety of methods for process fault diagnosis (PFD)
with examples from different areas. Nonetheless, given the uncertainties of the quantitative models used to de-
scribe WWT processes, recent publications [14, 13, 2, 15] indicate a tendency towards application of methods
from the area of Artificial Intelligence (AI) and statistics for the detection and diagnosis of process faults. Many
of these data based PFD methods make use of feature extraction and classification, where the diagnosis is obtained
from a classification model that is created from knowledge extracted from historical process data and diagnostic
information. The difference between the various methods is marked by the difference in type and obtainment of
features, classification models and algorithms.

Generally the procedures involve two parts. The first one is carried out offline and aims at producing a classifi-
cation model, that can either be constructed by experts, based on statistics, or obtained using machine learning
techniques. The second part is the online application of the classifier for the diagnosis of the process behaviour
and possible faults. A visualization of this methodology is presented in Figure 1.

The main requirement of data based PFD is that data is available and accompanied by diagnostic information.
While in many cases historical data from operations is the main source, it is also possible to generate data and
diagnostic information using an uncertain mathematical model. An example of this approach is presented in this
paper, that is concerned with data based PFD of an aerobic SBR WWT process treating 4-Chlorophenol (4-CP, an
inhibitory organic toxic compound) contaminated waste water. Given the absence of sufficient historical data, a
process model that has been selected and identified from laboratory experiments and reported in the EOLI project
[3] is introduced and transformed so that a continuous online estimate of the respiration rate during the SBR
reaction phase with feeding can be obtained. This process signal has been widely recognized as an indicator for
biological activity and employed for monitoring and control purposes [16].
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Figure 1: Data Based PFD Methodology

The usefulness of the signal for the detection and classification of a set of defined abnormal conditions (eg. process
faults) is verified through sensibility analysis [8]. Results from this analysis not only show the effects of parameter
deviations, but also indicate the features that should be extracted from the respiration signal for a successful clas-
sification. Consequently a feature extraction and classification procedure is proposed, that is designed to diagnose
the formerly defined process faults. The paper concludes with results for diagnosis under conditions affected by
uncertainties that are very common in bioprocesses and usually do prevent the straightforward application of well
studied quantitative PFD approaches.

2. Methodology

Model and Transformation The EOLI project provided a validated model named EM1 [4], that is based on
concentrations and describes the dynamics of a 4-CP contaminated water treatment process through the following
set of equations:

dX

dt
= µX − qin

V
X (1)

dSC

dt
= −k1µX +

qin

V
(SC,in − SC)

dSO

dt
= −k2µX − bX +

qin

V
(SO,in − SO) + KLa (SO,sat − SO)

dV

dt
= qin

where X, SC , SO, µ, qin, V, k1, k2, b, SC,in, SO,in, KLa and SO,sat represent the concentrations of biomass, or-
ganic matter and dissolved oxygen, the specific growth rate, the inlet flow rate, the volume, the yield coefficients,
the endogenous respiration kinetic constant, the inlet organic matter and dissolved oxygen concentrations, the
transfer coefficient and the oxygen saturation concentration, respectively.

The specific growth rate for the modelled single aerobic growth reaction is represented by the following Andrews
model [1]:

µ =
µ0SC

KS + SC + S2
C

KI

(2)

However, when the volume is not assumed constant, the nonlinear dynamics of the dilution term qin

V presents
difficulties which prevent a straightforward application of a linear solution. Nonetheless, the complete model can
be transformed into a mass balance model using the facts that Concentration = Mass

V olume and that a measurement
is available that allows to derive the actual volume in the reactor tank V(t):
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dmx

dt
= µ(V, ms) mx (3)

dms

dt
= −k1µ(V, ms) mx + qincs,in

dmo

dt
= −k2µ(V, ms) mx − bmx + qinco,in + Kla(mo,sat(V ) − mo)

dV

dt
= qin

where mx, ms, mo, V, µ(V, ms), k1, qin, cs,in, k2, b, co,in, Kla, mo,sat(v) are the biomass, the substrate mass, the
dissolved oxygen mass, the liquid phase volume, the growth rate, the substrate to biomass conversion coefficient,
the inflow rate, the concentration of substrate in the inflow , the oxygen to biomass conversion coefficient, the
endogenous respiration coefficient, the dissolved oxygen concentration in the inflow, the oxygen mass transfer
parameter and the dissolved oxygen mass at saturation, respectively. The growth rate is described by a volume
dependent form of Eqn. 2.

: µ(V ) =
µ0(V ) ms

Ks(V ) + ms + m2
s

Ki(V )

(4)

where µ0, Ks, Ki are the specific growth rate, the half saturation coefficient and the inhibition coefficient respec-
tively. The respiration rate is function of µ and mx and consists of a metabolic and an endogenous part:

rm(t) = −k2µ(V.ms) mx − bmx (5)

The parameters and coefficients from original model can be used without change, assuming that V (t) is available
at any time through a measurement. Based on the mass balance model, an estimate of the respiration rate can be
obtained with a simple extension of the observer presented in [20].

Definition of Faults An essential part in the formerly presented process model is the metabolic respiration, that is
governed by the growth rate model for inhibitory substrates (Eq 2). Deviations in the half saturation parameter K s

and the inhibition parameter Ki have a strong and direct impact on the growth rate and as a consequence on the
process dynamics. For this reason, deviations from their nominal values ±ε% (to take into account uncertainties
in the identification) are defined as process faults.

Fault detection and/or diagnosis will be represented using the following sets of classes:

1. {normal, abnormal}, representing detection only

2. {Ki, Ks, normal} representing detection and diagnosis of the parameter that changed.

3. {Ki,low, Ki,high, Ks,low, Ks,high, normal} representing detection and diagnosis of parameter that changed
as well as the direction of the change.

where normal stands for normal behavior, abnormal for a change in one of the parameters, K s|i for a change in
the corresponding parameter and Ks|i,low|high for a change in the respective parameter and the direction of change.

Respiration Rate Signal Features and Extraction In the presented model (Eq. 3), changes in most of the
parameters have a direct influence on the respiration rate signal. For the half saturation parameter K s and the
inhibition parameter Ki this is visualized in Figure 2.

The uncertainties in the model considered as most important are the initial biomass m x(0) and the substrate
concentration in the inflow cs,in, both of which cannot be measured very exact or online. In this context, sensibility
analysis as presented by [8] can be used to study the qualitative effect of small deviations in parameters and initial
conditions. The time dependent sensibility function of a variable y for a parameter deviation is defined as follows

σ(t, α0) � ∂y(t, α)
∂α

|α=α0 (6)
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Figure 2: Respiration Rate Signals

where α is the parameter and α0 is the nominal value of the parameter.

Analogically one can obtain the sensibility function of a variable for an initial condition. Figure 3 presents results
of a numerical sensibility analysis performed with [10, 6], that represent the normalized sensibility functions σ of
deviations of mx(0), cs,in, Ks and Ki with respect to the respiration rate rm:

σ =
σ(t, α0)
y(t, α)

(7)

These functions indicate not only that the effects of variations in these parameters are be distinguishable, but also
the features that should be extracted from the respiration signal.
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Figure 3: Normalized Sensibility Functions of rm

Based on the indications from Figures 2 and 3 the features proposed to be extracted from the respiration signal are

• rmax,1 and rmax,2 the two maxima
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• rmin the minimum between the two maxima

• The properties of the triangle (a, b, c, α, β, γ) defined by rmax,1, rmax,2 and rmin

• re the endogenous respiration estimate (= bmx)

• rtotthe total metabolic respiration

• tmax,1the time until rmax,1

These are partially indicated in Figure 4.
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Figure 4: Features of the Nominal Respiration Rate Signal

A corresponding relatively simple feature extraction algorithm has been implemented in MATLAB.

Fault Diagnosis based on Uncertain Mathematical Model The presented mathematical mass balance model
of the WWT SBR process can be used for the generation of respiration signal data with diagnostic information.
To take into account the uncertainties in initial conditions and inflow concentrations, a Monte Carlo method is
employed, that consists of taking uniform random samples from intervals [value±ε%] for the uncertain parameters
or initial conditions (cs,in, mx).

For each condition (constant and sampled parameters and initial values), the following sets of data are produced:

1. Changes of ±50% in steps of 10% in the parameters Ks and Ki (separately and not concurrently), which
are tagged with the corresponding diagnostic class that indicates the type of fault.

2. To take into account uncertainties in the identification of the parameters, changes of ±5% in steps of 1%
(separately and not concurrently), which are tagged with the diagnostic class that indicates normal behavior.

Data sets with diagnostic information are generated and accumulated for a given number of randomly sampled
conditions and then used further in the offline part of the procedure, as input for two well known machine learning
algorithms for pattern recognition, provided by the WEKA Machine Learning Toolkit [21]:

1. J48 an implementation of the C4.5 algorithm for machine learning of of decision trees. This algorithm
requires few time for learning and has the advantage that it’s knowledge is explicit.

2. A Multilayer perceptron (MLP) algorithm, which constructs a simple neuronal network and trains it by
means of backpropagation. The number of input nodes, output nodes and of nodes in the single hidden
layer is equal to the number of features, the number of diagnostic classes and a fixed ratio between the latter
two respectively.
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The resulting procedure is a specific example of the generalized methodology described formerly and is visualized
in Figure 5.
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Figure 5: Diagnostic Procedure Overview

3. Results

The method proposed for fault diagnosis based on the uncertain mathematical model, has been verified with a set
of simulations. These take into account uncertainties of ±25% in mx(0), the initial biomass and cs,in the substrate
concentration in the inflow, as well as an error of 5-10% in the identification of the parameters K s and Ki. The
inflow rate qin as well as all other parameters have been assumed to be known and constant.

To obtain classification results for feature sets that have not been used for training, the complete generated data set
has been randomly permuted and split into training ( 2

3 ) and test ( 1
3 ) sets. The former has been used as input for the

machine learning algorithms that yield the classification models for the detection (2-class) and diagnostic cases
(3-,5-class). The latter has been used to obtain the classification results for unknown feature sets that have not been
used for training. This ensures that the results are representative for an online use of the generated classification
models. A comparison of the classification results for the two types of classifiers and the three sets of diagnostic
classes is presented in Figure 6:
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Figure 6: Comparison of Classification Results

4. Conclusion

A PFD procedure based on a feature extraction and classification methodology is presented, that uses an uncertain
mathematical model for the generation of the absent historical process data and associated diagnostic information.

The employed model describes the corresponding aerobic SBR process that treats waste water contaminated with
4-Chlorophenol, an inhibitory organic toxic compound. In a first step the original concentration based model
is transformed to a mass balance model that allows to estimate the respiration rate during the feed and reaction
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phase of the process. Variations in the respiration rate signal due to variations in parameters (which are defined as
process faults) and the initial condition mx(0) are evaluated through the application of sensibility analysis.

The results from the analysis not only yield that the respiration rate is a good indicator, but also indicate the
features that should be extracted from the signal. Consequently, the extracted features are employed to construct
classification models through well known machine learning algorithms for pattern recognition. This part of the
procedure takes into account parameter and initial condition uncertainties (biomass and substrate concentration in
the inflow) through the use of a Monte Carlo type approach during the generation of data sets through simulation.

Results show that despite of significant uncertainties the methodology is quite successful, given that the percent-
age of correct detection and diagnosis is above 95% in almost all cases. This indicates that the machine learned
classification models can be used online for the detection and diagnosis of certain process faults, which cannot be
detected by a straightforward application of well studied quantitative PFD approaches.
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