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Abstract: Optimal operation of fed-batch bioreactors is an important practical issue. 
Since control actions are saturation-limited, the optimal control consists usually of 
both singular and bang-bang arcs. However, its realization requires good model 
knowledge and also measurement of all state variables, requirements hardly satisfied 
in real applications. In this paper a method is proposed, for a class of bioreactors, to 
robustly optimize the operation when few measurements are available and the model 
is uncertain. Such control law is justified and its properties analyzed. The class of 
processes addressed includes a biomass growth bioreactor and an experimental 
wastewater treatment plant for degrading toxicants. Copyright © 2004 IFAC 
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1. INTRODUCTION 

Many important industrial fermentation processes, for 
the production of antibiotics and enzymes or for the 
treatment of wastewater, are carried out using bio-
reactors operated in fed-batch mode. Since it is rea-
sonable to improve their performance, optimal control 
theory has been used to determine the best control 
policy (Smets et al., 2002; Sarkar and Modak, 2003; 
Moreno, 1999). Such strategy can be described as a 
feedback control law, and it is usually necessary to 
know perfectly the model of the plant, and to measure 
the whole state to implement it. In many applications 
these two conditions are very restrictive: a perfect mo-
del and parameter knowledge is very often unrealistic, 
and in biotechnology and wastewater treatment it is 
either impossible or very expensive to measure all 
state variables. In order to cope with the first problem 
different robust approaches have been proposed in the 
literature. Most often different adaptive algorithms 
identify the parameters of the (otherwise assumed well 
known) mathematical model, and adapt accordingly 
the control strategy (Bastin and Dochain, 1990; Van 
Impe and Bastin, 1995; Van Impe, 1998). Adaptive 
Extremum-Seeking strategies have been also proposed 
(Marcos et al., 2004; Titica et al., 2003). Although the 

methodology is most appropriate for continuous reac-
tors, where an optimal steady state operation is sear-
ched, under suitable conditions it can also operate cor-
rectly for fed-batch processes (Betancur et al., 2004b). 
 
In this work a different approach to deal with the lack 
of measurements and the uncertainty in the model, 
while optimizing operation, of a class of bio-reactors 
will be proposed. The main idea is based on the 
following observations. Usually, the exact optimal 
control, when the realistic assumption of limited input 
variables is done, can be decomposed in bang-bang 
and singular arcs. When this solution can be imple-
mented via feedback the information required for the 
bang-bang part is very low, and its implementation is 
very robust to model uncertainties. More problematic 
is the determination and implementation of the 
singular arc. It requires basically a good knowledge of 
the model and parameters of the plant, and it is usually 
very sensitive to uncertainties. Our method proposes 
to replace the sensitive and smooth singular control by 
a bang-bang one that maintains the system trajectory 
around the singular surface. The produced error can 
(theoretically) be made as small as desired (Hermes 
and LaSalle, 1969; Moreno, 1999). The advantage of 
this replacement is that it is usually very robust against 



 

     

uncertainties and, for its implantation, a reduced quan-
tity of information is required (Moreno, 1999). The ro-
bustness of this implementation is linked to the well-
known properties of Sliding Mode Control (Khalil, 
2002; Slotine and Li, 1991). The requirement of low 
quantity of information is related to the fact that it is 
only necessary to determine the singular surface in the 
state space. This surface is usually associated to some 
events on internal variables. If such events could be 
software-sensed using just the measurable variables, 
then a practical solution is feasible. Moreover, if the 
switching or singular surfaces are robustly related to 
these variables, the approach can be made robust 
against model changes or uncertainties. 
 
In the following section the class of problems for 
which these ideas are developed will be introduced. In 
Section 3 the previously outlined strategy will be 
carried out for these problems. In Section 4 some 
experimental results will be presented. 

2. PROBLEM FORMULATION 

The optimization problem for a class of simple 
microbial growth process in a fed-batch bioreactor is 
considered, using the following dynamical model 
(Smets et al., 2002): 
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where states X (g/L) and S (g/L) hold for biomass and 
substrate concentrations, respectively, µ (h-1) is the 
specific growth rate, Si (g/L) denotes the concentration 
of the substrate in the inflow, k1 is a yield coefficient, 
m is a maintenance constant, F (L), the control 
variable, is the inflow and V (L) is the volume of the 
liquid medium in the tank. zT=[X, S, V] represents the 
state vector, that is restricted to the set 
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The input is restricted to 0 = Fmin≤ F ≤Fmax. For any 
system variable φ  let’s denote its value at instant t as  
φ (t,t0,z0,F) for input F, being z0 the state at to < t. 
 
Inhibitory specific growth rates will be considered, al-
though everything is also valid for µ monotonic. They 
are described by a non-monotonic function of the 
substrate concentration, like the Haldane law: 
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where µ0 is a parameter related to the maximum value 
of the specific growth rate µ*, KS denotes the 
saturation and KI the inhibition constant. In general, it 
will be assumed that µ(S) grows monotonically for 
S∈[0, S*] and decreases for S∈[S*,∞]. Such a model is 
typically used to describe the substrate inhibition 
effect in fed-batch bioreactors, as shown in Figure 1. 

In industrial fermentations (e.g. production of baker’s 
yeast) the aim is to maximize the total biomass at the 
end of the process (Smets et al., 2002), but when m>0 
this amounts to minimize the reaction time. For Waste 
Water Treatment Plants (WWTP) m is usually consi-
dered to be zero and the objective is to minimize the 
time necessary to degrade the substrate (Moreno, 
1999). The measured variables depend strongly on the 
application. In general, it is difficult and expensive to 
measure biomass and substrate concentrations, but it is 
easy to measure volume, gaseous products and dis-
solved oxygen concentrations. For the biotechnolo-
gical application it will be assumed that the gas pro-
duction y = k2µX is measurable, and then, using the 
volume V, it is possible to calculate yB, which will be 
used for the control implementation: 
 
 BkXVkyVyB µµ 22 ===  (6) 
 
where XVB =  (g) is the total Biomass. 
 
For the WWTP it is assumed that Dissolved Oxygen 
concentration O (g/L) and volume level V (L) are 
measured. Using its dynamics 
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and (2), the variable yW can be calculated: 
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For the WWTP the variable Si is a (possibly) time-
varying perturbation term difficult to measure, but it is 
a known constant for the biotechnological process. For 
both systems the functional description of the specific 
growth is not well known so (5) is only an 
approximation. The objective is to design an optimal 
control law that uses the measured variables, 
respectively yB and yW, and that is robust against 
uncertain model and uncertain parameters. 

3. CONTROL STRATEGY 

The design of a control law that satisfies the imposed 
requirements will be explained in three steps. 
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Figure 1. Haldane’s type biomass specific growth rate. 
The dotted line depicts a measurable γ =(aµ+b)c



 

     

3.1. Exact optimal control law 

For both systems the optimal control law for one batch 
consists of two bang-bang arcs, and an intermediate 
singular arc.  The batch finishes when V=Vmax and  
S≤ Send, where Send is some (small) rest substrate value. 
The optimal control law, to minimize reaction time, is 
given by (Smets et al., 2002; Moreno, 1999) 
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is the control inflow along the singular arc, and S* is 
the value where µ reaches its maximum µ*. Define the 
function T(F,z0) to represent the time necessary to 
bring the initial state z0 to the target set Zf ={(X,S,V)/ 
S ≤ Smin ∧ V ≥ Vmax} using F as input (the other model 
parameters are fixed).  Topt(z0)=T(Fopt , z0) corresponds 
to the optimal path. Note that in the state space Ω the 
surfaces defined by S=S* and V=Vmax are, respect-
ively, the singular and a switching surface. Note that 
implementation of feedback law (9) requires, in 
principle, good knowledge of the model of the plant 
and the measurement of all state variables. 
 

3.2. Approximated optimal control law 

A well-known result (Hermes and LaSalle, 1969) 
states that any trajectory of a nonlinear system can be 
arbitrarily well approximated by one generated using a 
bang-bang control law. So, it is possible to approxi-
mate the time optimal trajectory generated by the con-
trol law (9) with a bang-bang one. This corresponds in 
this case to the approximation of the trajectory along 
the singular arc with a bang-bang one (Moreno, 1999). 
Since the performance criterion does not depend on 
the input function, and it is continuous with respect to 
the trajectories, then the optimal index is arbitrarily 
nearly reached by the approximated trajectory. For the 
problem at hand this has also been directly 
demonstrated by (Moreno, 1999). 
 
Approximate control laws can be generated in diffe-
rent forms. They differ basically in the information 
required to implement them. Some examples will be 
discussed in the following paragraphs. The following 
assumption will be made: 
 
Assumption 1: In the state space Ω  it is satisfied that 
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Note that inequality (11) has to be satisfied for S≤ S* 
for the control law (9) to be feasible, and so it is a 
natural condition for the problem. 
 

3.2.1. Suboptimal control law using S 

If S is measured and S* is known, then selecting 
values 0 < Sl < S* < Sh (see Figure 1) the following 
control law approximates arbitrarily well the optimal 
trajectory (Moreno, 1999) 
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In the interval  the control function can, in 
fact, take any value but, in order to obtain a bang-bang 
cycle, the previous one is kept until the other extreme 
is reached (this is a hysteresis effect, see Figure 2). 
Moreover, when S ≤ Send and V ≥ Vmax then the reaction 
phase is finished and a new cycle may be started. 
 
 

Figure 2. Control scheme for S measurable, S* known. 
Control of Volume not shown for simplicity 

 
The important feature of this control law is that, since  
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and because of Assumption 1, every system trajectory 
tends to the set Sl ≤ S ≤ Sh, stays there until the reactor 
is full, and then reaches the final set Zf, finishing the 
reaction phase. Moreover, if Assumption 1 is satisfied, 
substrate S(t,to,Sl,Fmax) increases monotonically until it 
reaches Sh, and S(t,to,Sh,0) decreases monotonically 
until Sl. It is important to note that the trajectory is 
confined to the set Sl≤ S≤ Sh, independently of and 
without knowledge of the parameters and/or the exact 
form of the growth rate and of the value of the input 
substrate concentration Si. 
 
Theorem 1:(Moreno,1999) Suppose that system (1-3) 
is given, S is measured and S* is known. Then 
replacing the optimal control law (9) by the 
approximate control law (12) the time to reach the 
target, from any initial condition z0∈Ω, is  
T(F,z0) = Topt(z0)+∆(F, Sl, Sh, z0) with ∆(F, Sl, Sh, z0) 
continuous and finite and ∆→0 as Sh,Sl →S*. i.e. the 
target will be reached in finite time, and the time along 
the approximate trajectory can be made as near to the 
optimal one as desired. This is true for any form of the 
growth rate (positive if S positive), for unknown Si and 
for any positive value of parameters k1, m. 
 
Note that the approximate control law is robust against 
model and parameter uncertainties and/or changes. 
Moreover, it requires little information from the 
system: only S needs to be measured and S* and the 
instant when V=Vmax need to be known. 
 

3.2.2. Robust Suboptimal control law using  f(µ) 

If instead of S an appropriate but unknown function of 
µ is available, i.e. γ = f(µ), then it is possible to derive 
a control law that approximates arbitrarily well the 
optimal one. It will be assumed that f(µ) is a strictly 
monotonic increasing and continuous function of µ, as 
for example f(µ)=(aµ+b)c; for a,b,c unknown cons-
tants, a,c>0. The maximum γ* =  maxS≥0 f(µ(S)) = f(µ*) 
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is then well defined. It should be noted that it is not 
necessary to know the exact shape of µ or f(µ). If 
Assumption 1 is satisfied, and because the monotone 
increasing (decreasing) behavior of S(t) when it goes 
from Sl to Sh (from Sh to Sl, respectively), it is clear 
that γ (t) increases from γl = f(µ(Sl)) (γh = f(µ(Sh))) until  
maximum γ* and then decreases until γh (γl res-
pectively). If γ* is assumed constant but unknown, this 
leads to scheme in Figure 3. There, an Events Soft-
ware Sensor (ESS) estimates a maximum of f(µ) in 
real time, as γκ*(t)=max(f(µ(S(τ)))) for τ ∈(tk,t), were 
tk is the instant when the last kth state change in the 
Event Driven Optimal Controller (EDOC) took place. 
 
Comparing the actual values of γ  and γκ* allows to 
determine if S=Sl or S=Sh have been reached, even if 
S, Sl and Sh remain unknown. In particular, consider 
Sl<S* and Sh>S* such that f(µ(Sl))=f(µ(Sh)) =Pγ*, 
where 0<P<1 is a near-optimality control parameter. 
Making P close to one renders Sl, Sh close to S*. 
Figure 1 shows the relation between Sl, Sh, γ* and P 
for the case γ  = f(µ) = (aµ+b)c. The ESS also 
determines easily if S>S* or not, i.e. if the system is in 
the inhibition zone. 
 

Table 1. ESS events for fed-batch processes 
 

Tag Trigger Estimation Meaning 
e1.0   dγ /dt>0  S < S* Not Inhibited 
e2.0   dγ /dt<0  S > S* Inhibited 
e2.1   γ ≤ Pγκ∗  S = Sh MustWait 
e1.2   γ ≤ Pγκ∗  S = Sl MustFill 
e3. V≥Vmax  (measured) TankFull 
e4. γ < γend S < Send EndReaction 
 
Table 1 shows the events estimated by the ESS. Using 
such events the EDOC shuts down or powers up the 
influent pump F as appropriate. The finite state EDOC 
is depicted in Figure 4. The initial state at k = 0 for t = 

t0 = 0 is always σ0. If inhibited, the system will jump 
instantaneously to state σ2. After the initial bang-bang 
arc, the cycling between σ1 and σ2 will approximate 
the singular arc. Once the tank is filled, σ3 will 
complete the last bang-bang arc. The reaction finishes 
when σ4 is reached. After this the rest of the batch 
sequence (settling, draw…) may be completed and 
afterwards a whole new cycle may be started. A result 
similar to Theorem 1 applies in this case. 
 
Theorem 2: Suppose that system (1-3) is given, that a 
continuous and strictly monotone increasing function 
f(µ) of µ is available, and Assumption 1 is satisfied. 
Assume, furthermore, that γ* is constant for each 
batch cycle, but unknown. Then replacing the optimal 
control law (9) by the EDOC law the time to reach the 
target from any initial condition z∈Ω is  
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with ∆(P,z0) continuous and finite and ∆→0 as P→1. 
i.e. the target will be reached in finite time, as near to 
the optimal one as desired, up to a small value δ > 0. 
This is true for any form of the growth rate (positive if 
S positive), of the function f(µ), for unknown Si and 
for any values of the parameters k1>0, m≥ 0. 

Proof (sketch): Similar to the proof of Theorem 16 in 
(Moreno,1999) and Theorem 3. The important obser-
vation here is that limits Pγ* given in terms of f(µ) 
correspond (in an unknown form) to limits Sl<S<Sh in 
S (because of the continuity of µ and f(µ) with respect 
to S). The value 0>δ  is introduced by the initial test 
(Figure 4) when S0 > S*. Its value depends on the time 
it takes the ESS to determine the first event.             ▄ 
 
Robustness: Analyzing the event triggers in Table 1 
for transitions between σ1 and σ2, i.e. e1.2 and e2.1, it 
follows that, even if for some reason (i.e. noise or 
perturbation) the system enters a wrong state, after 
some time the conditions for a transition to the correct 
state will always appear. This is so because even if the 
detected γκ* is not the maximum i.e. γ*, at some time 
a γ = Pγκ* will be found. Note that the approximate 
control law is robust against model and parameter 
uncertainties and changes. Moreover, it requires low 
information from the system: only γ = f(µ) and the 
instant when V=Vmax have to be known, and the fi-
nishing value γend given. It is important to note that the 
trajectory is confined to set Sl ≤ S ≤ Sh independently 
of and without knowledge of the parameters, the exact 
form of the growth rate, of f(µ) and of the value of Si. 

3.3. Robust general near-optimal control law 

In the previous paragraph a suboptimal control law 
was given. If estimations in Table 1 are exact, it can 
be made as near to optimality as desired by selecting 
appropriately the parameter P. However, this property 
depends strongly on the availability of an exact value 
for γ. If there is some measurement noise or pertur-
bation, if the parameters vary in time or as function of 
some other state variables, then Theorem 2 is no 
longer valid as estimations in Table 1 might have 
errors. In this Section it will be shown that, under rea-
sonable circumstances, the estimation errors are tole-
rably low and so the approximated control still be-
haves correctly and robustly. The tradeoff is that 
optimality cannot be arbitrarily well approximated. 
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Figure 4. Finite state transitions for EDOC 
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Figure 3. Event Driven Optimal Control scheme



 

     

Note that the practically possible measurements for 
the two case systems, (6) and (8), are of the form 
η = f(µ)B = γB. Since the total biomass B=XV satisfies 
dB/dt = µB, it is clear that it is not a constant but a 
monotone increasing function of time, and η does not 
have the required form for the EDOC. Let us analyze 
its behavior when instead of γ the measured η is used. 
 
Along a trajectory of the plant it is easy to see that 
 

 ( )( ) ( )( )BfSfBf µµµµµγη +′′=+= &&&  (15) 
 

Where ϕ’ represents the derivative of ϕ  with respect 
to its argument. When dS/dt > 0, which is always 
satisfied if F=Fmax under Assumption 1,  
sign(dγ/dt) = sign(µ׳). When dS/dt < 0, i.e. when F=0, 
sign(dγ/dt) = - sign(µ׳). Note from (15) that the be-
havior of η does not reflect that of γ, and the EDOC 
would work wrongly. However, if µf << f’dS/dt one 
would expect that the behavior of η approximates that 
of γ, and the EDOC would work correctly. 
 
Theorem 3: Suppose that system (1-3) is given, with 
continuously differentiable µ. Suppose that η=f(µ)B, 
with B the total biomass and f(µ) a continuously 
differentiable and strictly monotone increasing func-
tion of µ, is available and Assumption 1 is satisfied. 
Assume, furthermore, that γ* = max f(µ) is constant 
for each batch cycle, but unknown. Suppose that there 
exists some Smax > S2 > S* such that for Ω ∩ [S2,Smax] 
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and that there exists 0 < S1 < S* such that for Ω ∩ (0,Smax] 
 

 ( ) ( )( ) 01 <+′′+− µµµµ ffXmk . (17) 
 

Denote as Bmax=maxz0∈ΩB(Topt,0,z0) the maximal quan-
tity of biomass that can be obtained in the reactor, and 
as Bmin the minimal possible quantity of biomass  
in the reactor.  It is said that P ∈ (0,1) is feasible if 
there exist 0 < S3 < Sl and S2 < S4 < Smax such that 

( )( ) ( )( ) max3min1 BSfBSPf µµ = , ( )( ) ( )( ) max4min2 BSfBSPf µµ =  are 
satisfied. Suppose that there exists a feasible Pf. Then 
replacing γ by η in EDOC law, the time to reach the 
target from any initial condition z ∈ ΩI and for any 
P∈[Pf,1) is 
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with  continuous and finite, i.e. the target will 
be reached in finite time. However, when P→1 it is 
not always true that tends to zero. 
 
Proof: Note that if Pf is feasible, so is every P∈[Pf,1). 
From (15) and Assumption (16) it follows that when 
z0∈ ΩI is such that S0∉[S*,S2] (and EDOC is in σ0) 
then sign(dγ/dt)=sign(µ׳), and the transitions are the 
same when using η instead of γ. If S0∈[S*,S2], then 
both transitions e1.0 or e2.0 are possible. 

Now suppose that the EDOC is in σ1 and S ≤ S*. Then 
from (15) it follows that sign(dη/dt)>0, and 
γk*(tk)=η(tk). Then γ, η and S increase until S=S*, at 
t=tk+T*, where γk*(t)=η(tk+T*). At this point γ begins 
to decrease, although η can increase further. However, 

because of (16), η is decreasing at the latest when 
S=S2. Furthermore, if e3 is not reached before, the 
state transition e2.1 is satisfied at the latest when S=S4.  
 
Now suppose that the EDOC is in σ2 and S ≥ S*. Then 
sign(dS/dt)<0, sign(dη/dt)<0, and γk*(tk)=η(tk). Then γ, 
η increase and S decreases until S=S*, at t=tk+T, 
where γk*(t)=η(tk+T*). Although at this point γ begins 
to decrease, η can still increase further. However, 
because of (17), η is decreasing at the latest when 
S=Sl. Furthermore, if e3 is not reached before, the state 
transition e1.2 is satisfied at the latest when S=S3. 
 
Note that once σ1 or σ2 have been reached, then the 
substrate S stays in the set [S3,S4] until σ3 is reached. If 
the EDOC is in σ1 and S∈[S*,S2] it is clear that at the 
latest when S=S4 the state transition e2.1 gets satisfied. 
 
Note that when P→1 then [S3,S4]→[S1,S2], but it is not 
true that  tends to zero.           ▄ 
 
Some remarks are in order: 
• (16) and (17) are satisfied if, for example, the 
relative change |f´µ´/fµ| is big outside a vicinity of 
S*, and if Fmax and/or Si are big. Note also that as  
(S2-S1)→0 the results of EDOC are recovered. 

• For WWTPs the change in B during one cycle is 
very small, since the amount of toxics that can be 
treated is typically small compared to B. This means 
that (16) and (17) are typically satisfied, that S2-S1 is 
very small, and therefore the loss of optimality is 
small. Successful experimental results are available 
in (Betancur et al., 2004a). For biotechnology 
process, instead, the change in B is usually large. 
Even for such a case simulation results show the 
effectiveness of the EDOC (Betancur et al., 2004b). 

• The form of µ and f influence how big is the 
minimum loss of optimality. 

• No noise analysis has been carried out because of 
lack of space. However, it can be done in a similar 
fashion as the proof of Theorem 3. 

• In practice, derivatives for Equation (7) and Table 1 
are not available. They are calculated using nume-
rical real-time methods. This introduces some time 
delays and distortion in the derivative signal. The 
same is true for signals generated using real practical 
sensors devices. A way to deal with such time delays 
is given in (Betancur et al., 2004a). Distortions could 
be treated theoretically in the same way as noise. 

4. EXPERIMENTAL RESULTS 

A 7L laboratory scale bioreactor acclimated with 
sludge taken from a municipal WWTP was used to 
degrade 4-chloro-phenol (4CP). The usual influent 
toxicant concentration for traditional sequencing batch 
processing is Si=350mg4CP/L. Applying more than 
twice such quantity would greatly inhibit and stress  
biomass, increasing the needed treating time 
nonlinearly. Applying higher toxicant concentrations 
might even inhibit and/or disable the bioreactor 
permanently. By using the EDOC strategy, instead, 
the biomass was never stressed or inhibited.   A linear 
increase relation of treating time with respect to Si was 
observed in a series of experiments for increasing Si, 
even when making it as high as 7000 mg4CP/L. 
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Theoretically, treating time was near 95% of the 
optimal-time, in all series, for a programmed P = 0.9 
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Figure 5.  Experimental kinetics using EDOC in 

WWTP case 14/07/2003; P.=.0.9; influent 
toxicant concentration Si.=.634mg4CP/L  

Figure 5 shows one experimental kinetic for the 4CP 
degradation case, using yw in Equation (8) for EDOC 
implementation. Toxicant substrate concentration S 
inside the bioreactor (see 4CP in Fig. 5, square marks) 
was measured off-line from manually taken samples 
and was not used for control purposes. Up to 
S=200mg/L it is considered normal and safe for the 
biomass. A model identification exercise later 
revealed a 95% confidence interval of ±7.4% for  
S* = 13.99 mg4CP/L. Figure 5 shows that S  was kept 
oscillating around S*, in an acceptably low 
concentration range, by properly turning on and off the 
influent pump (Fig. 5, continuous thick line). Such 
behaviour shows the effectiveness of EDOC strategy. 
  
Biomass was B=1.4g exhibiting an increase of less 
than 2% during the reaction. Its value was not used by 
the controller. Values of S, Si and S* were not used 
either. Another perturbation comes from the online 
sensor used to measure Dissolved Oxygen (Fig.5, 
continuous thin line). It introduced appreciable second 
order delay effects, and some noise, to state variable 
O. It follows that some delays and signal distortion are 
to be expected when calculating γ=yw in Equation 8 
(Fig. 5, dotted line) for using it in EDOC. But thanks 
to EDOC robustness the system did cope smoothly 
with all this perturbations and uncertainties.  

5. CONCLUSIONS 

A methodology for the robust and practical 
implementation of optimal control strategies for a 
class of nonlinear processes has been introduced. 
When the control law is composed of bang-bang and 
singular arcs the basic idea is to replace the singular 
arc with a bang-bang control. This makes the control 
robust and requires a reduced quantity of information. 
This general idea is developed here for a class of fed-
batch bioreactors. 
 
The use of measurable variables giving minimal 
indirect information is shown to be effective for 
software-sensing events related to the crossing of the 

singular surface of the process. This allows the 
controller to generate bang-bang cycles to 
approximate the singular arcs of the optimal solution.  
 
Studies of two different practical cases were carried 
out successfully: one in the biotechnology area and 
other, including experimental results, in the 
wastewater treatment area. 
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