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Abstract–One of the most popular multivariate statistical
methods used for signals based process monitoring and data
compression is the Dynamic Principal Component Analysis.
This method computes the orthogonal principal directions
assuming stationarity in the time series of the process,
however, if observations are not stationary, false alarms
could be generated during the fault detection and isolation
task. To reduce the false alarms rate, this paper extends the
dynamic principal component analysis for the case on non
stationary data. This is achieved including in the monitoring
procedure an on-line mean estimator and standardizing
the time series data of the process according to the values
generated by the estimator. As study case the detection of
faults in a flow control valve has been used, in which it is
assumed that the control signal, stem displacement and flow
are measured signals. Simulator data are used to adjust the
procedure and show the improvement of the novel dynamical
principal component analysis methodology.

Index Terms–Dynamic Principal Component Analysis,
Signal Based Fault Detection, Classification in Diagnostics,
No Stationary Time Series, Feature Extraction.

I. INTRODUCTION

The on-line process monitoring for fault detection
and isolation, FDI is an important task to ensure plant
safety and maintaining product quality. Both, model
based [1] and signal based methods for FDI [2] have
been proposed and they have been applied in diverse
diagnosis problems during the last twenty years. While
model based methods can be used to detect and isolate
specific faults in the system, only if a good model is
available, signal based methods attempt to extract
maximum information from historical data generated by
sensors and actuators and apply classification methods
according to specific features. In particular, pattern
recognition approaches considered as signal based
methods require an implicit nominal behavior of process
signals which is compared on-line with the signals taken
from the process and if they don’t match with the
nominal, a fault symptom is obtained. A variety of
approaches can be used to obtain the implicit nominal
model and the fault symptom [3].

This paper includes results of the EOLI project supported by
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On the other hand, the multivariate statistical tool
called Principal Component Analysis (PCA) is a signal
based method and has been recognized as a powerful
tool for fault diagnosis issues when many data of
process variables are available. The key of this method
is its hability to model the nominal behavior of a
process through the extraction of the main features
of the process variables from historical data when
the process is operating in normal conditions. Thus,
PCA transforms by a parallel correlation analysis, a
set of multivariate observations to a lower dimension
space, retaining the most important variables of the
original data [4]. Since, PCA has shown its potential
in the case of FDI for static process, the procedure
has been extended to the case of data coming from
a dynamic system taking into account not only the
parallel correlation between variables but also the series
correlation between observations and is called dynamic
principal component analysis, DPCA [5]. However,
since PCA and DPCA assume sationarity in time series
during the process of modeling, high rate of false alarms
are generated if the statistical property of stationarity
is not hold in the test data during the diagnosis stage.

The above described problem has not been pointed
out before and solved. This fact motivated this work in
which one overcomes the stationary condition assuming
signals with known time variant means obtained on line
by single moving average estimation. One shows that
the estimation of the statistical parameters of the input
and output signals assuming normal condition reduces
the false alarms rate in the DPCA based fault detection
algorithm without demanding a precise system descrip-
tion. As a case of study it is considered a flow control
valve which implicit model is obtained by simulation
from the control input signal, stem displacement signal
and flow signal. Three faults conditions in the valve are
introduced to evaluate the effectiveness of the proposed
methodology.

II. FAULT DETECTION VIA DPCA

The fault detection task can be divided in two
general stages, the first one is associated with the
procedure of defining a data based reference pattern
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(nominal statistical model) of the process under
monitoring assuming normal operating conditions; and
the last is the fault detection as such which consists in a
classification procedure of an on line generated symptom.

Let X be a set of historical data composed of nt
observations from p variables of a process, in which some
of the p time series are inputs and the rest outputs,
described by the matrix

X =
£
X1 X2 · · · Xp

¤
(nt×p) (1)

in which it is assumed that each time series Xi is
stationary, i.e. its means and standard deviations are
constant for every time interval of observation. If the
data of the set X is generated from a dynamic system,
there exist a time dependence in each time series where
current values depend on past values. So to include the
serial correlation of data, it is constructed the so called
trajectory matrix applying a ‘time lag shift’ of order w
on each of the p columns of the matrix X. This means

Xw
i =⎡⎢⎣ Xi (1) Xi (2) · · · Xi (w)

Xi (2) Xi (3) · · · Xi (w + 1)

.

.

.
.
.
.

. . .
.
.
.

Xi (nt − w + 1) Xi (nt − w + 2) · · · Xi (nt)

⎤⎥⎦
(n×w)

Xw =
£
Xw
1 Xw

2 · · · Xw
p

¤
(n×m) (2)

where n = nt − w + 1, m = pw and the value w is
selected on the base on the number of correlated lags
of the variables. One option is to calculate w in the
same way as is defined the number of lags to use in an
auto-correlation function of a signal as it is suggested
in [6], w = nt

4 .

In a multivariate observation some of the variables
could have different range of values, therefore, before
the appication of PCA it is convenient to carry on a
data standardization in matrix Xw with respect to its
means and standard deviations in order to obtain a
standardized data matrix Xsw with zero mean and unit
variance.

The means vector and standard deviations vector of
the trajectory matrix Xw are

µ =
£
µ1(.) µ2(.) · · · µm(.)

¤
(1×m) (3)

σ =
£
σ1 (.) σ2 (.) · · · σm (.)

¤
(1×m) (4)

Assuming that data are generated from a stationary
process, it is satisfied the following equality

µ1(.) = µ2(.) = · · · = µm(.)
σ1 (.) = σ2 (.) = · · · = σm (.)

Thus, the data standardization is obtained through

xswij =
xwij − µj

σj
(5)

for i = 1, . . . , n and j = 1, . . . ,m, which constitute
the entries of the standardized matrix Xsw. This data
matrix is the start point to decompose the multivariate
data and to get its principal components.

The principal components statistical model Y of
dimension n×l is defined as a linear transformation of the
original variables involved in Xsw, such principal com-
ponents extracted are uncorrelated vectors. Specifically,
the matrix of principal components is obtained through
the following transformation

Y = XswVt (6)

where the transformation matrixVt ∈ <m×l is composed
of an appropriate selection of l eigenvectors associated to
the correlation matrix R of the standardized trajectory
matrix Xsw.

For each observation in the principal components
model Y it is possible to define a kind of behavior
symptom described by the univariate statistic T 2y called
Hotelling parameter, this is

T 2y = yS
−1
Y yT (7)

where SY is the covariance matrix of Y. Finally,
it is defined a threshold of normal condition from
the probability density function (pdf) of the set of
parameters T 2y . In [7] it is very well described the
procedure to obtain this threshold named UCL (Upper
Control Limit) in the area of Statistical Quality Control.

By the other hand during the fault detection
stage, it is taken on line an actual m-dimensional
observation vector xaw which is standardized with
respect to the means (3) and standard deviations (4),
transformed through the matrix Vt in the principal
component subspace, and mapped in the univariate
parameter T 2ya ; if the resulting statistic deviates from
the threshold it is an indication of the presence of a fault.

DPCA allows straightforward to detect a deviation of
vector xaw from the historical reference data in terms
of its mean and its standard deviation. This is the main
property of DPCA which can be managed to solve fault
detection issues. It is important to note that if the
trajectory matrix Xw was obtained with data around
one operation point of the system, any change in the
nominal values of the signals is interpreted by DPCA
as a fault, even when the process is healthy, this is
because the components of (3) are time variant and as
a consecuence the stationarity property is not satisfied.

To overcome this difficulty one suggests the on line
estimation of the statistical set (3) assuming healthy
conditions and the use of it for the standardization
procedure. This estimation can be achieved if simple
relations in normal conditions between system input
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and its output are known. Thus, the objective is to
standardize the data around any normal condition of
the process keeping the condition of zero mean and unit
variance.

III. DPCA WITH MEAN PARAMETER
ESTIMATION

Lets consider for simplicity in the presentation the
case of a SISO system operating in normal condition
around an operating point of which sets of input data
X1 and output data X2 are described by the matrix

X =
£
X1 X2

¤
(8)

Following the standard DPCA procedure described
in section II, the principal components model Y can
be obtained from the historical data X as well as the
threshold from the pdf of T 2Y.

For the fault detection task assume as known a linear
relationship in normal condition for the input and
output variable given by x2 = L (x1). Then one can
evaluate, on line, from the input variable x1(t) and for a
time window its mean µx1(t) and successively estimate
the mean of the output variable µ̂x2(t) assuming that
the process is in normal condition and using the linear
relation between variables. Thus, to evaluate and classify
an actual observation xaw this has to be previously
standardized with respect to the estimated means.
The procedure described before is what constitutes the
extension to the standard DPCA based fault detection
algorithm and which allows to manage no-stationary
processes. The implementation of this extension of
DPCA for the case of non stationary process can be
summarized as follows:

1) Estimate through L(.) the w-output componentsbx2 (k) ...bx2 (k + w − 1) from the input actual data
x1a (k) ...x1a (k + w − 1) and construct the follo-
wing vectorbxw = £ x1a (k) · · · x1a (k + w − 1) · · ·

· · · bx2 (k) · · · bx2 (k + w − 1) ¤ (1×m)
(9)

2) Using the well known single moving average on bxw,
determine the actual estimated means vector

bµ = £ bµ1 (.) bµ2(.) · · · bµm(.) ¤(1×m) (10)

which will be used for the standardization.

3) Generate, from real data of the input and output
signals of the process, the vector of actual obser-
vations with time lag shifts of order w

xaw =
£
x1a (k) · · · x1a (k + w − 1) · · ·

· · · x2a (k) · · · x2a (k + w − 1)
¤
(1×m)

(11)

Fig. 1. Actuation System with Fault Diagnosis Module

4) Standardize the m terms in (11) using the estima-
ted means vector (10) and the standard deviations
in (4), this is

xaswj =
xawj − bµj

σj

for j = 1, . . . ,m. xaswj will have approximately
unit variance and zero mean under normal
operating condition even before level changes in
the input signal.

5) Transform the vector xaswj in the principal com-
ponent subspace ya through Vt

ya = xas
w
j Vt

6) Map ya in the univariate parameter T
2
ya through

T 2ya = yaS
−1
Y yTa

if the resulting statistic deviates from the normal
condition threshold a fault is present in the system.

In the following section this procedure is applied to
detecte faults in a valve in which only a very simple
input output model is considered for the estimation of
the mean value of the output.

IV. EXAMPLE OF A FLOW CONTROL VALVE

A. Scheme for Fault Diagnosis

The fault detection task is carried out, in general,
exploiting the variety of internal signals that can be
measured in a system. In particular Fig. 1 shows the
block diagram of a valve considered as an actuator in a
FDI distributed system, with its FDI block, the control
of flow integrated with a position sensor, the signal
conversion, the modulator and the final control element.
In this case, the fault diagnosis module is designed in
such a way that it gets at every sampling period (0.5 s)
the control signal CV , as input variable, and the stem
displacement X, and flow Q, as output variables. On
the base of these signals, one takes the advantage of
the correlation between these three time series of the
variables to detect and isolate mechanical faults in the
valve.
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B. Valve Simulator

To generate the time series required to adjust the
algorithm the simulator reported in the DAMADICS
(Development and Application of Methods for Actuator
Diagnosis in Industrial Control Systems) benchmark [8]
is used. This benchmark consists of the valve model
in Simulink, and other modules which comprise the
DABLib (DAMADICS Actuator Benchmark Library).

C. Detection Results

The fault detection algorithm is adjusted considering
the trajectory matrix X with one input variable
CV , and two outputs X and Q. Just three principal
components are used for the characterization of the
valve. The procedure has been evaluated considering
the following cases:

1) Normal operation of the valve with step changes
in the input signal.

2) Fault condition, f1-Valve Clogging of magnitude
0.75 with step changes in the input signal.

3) Fault condition, f2-Valve Plug or Valve Seat Sedi-
mentation of magnitude 0.75, with step changes in
the input signal.

4) Fault condition, f3-Valve Plug or Valve Seat
Erosion of magnitude 0.75, with step changes in
the input signal.

The first evaluation has as goal to test the performance
of the algorithm with respect to the step changes in the
control signal CV when the valve is operating in normal
conditions. One has simulated positive and negative
step changes non higher than the maximum step size
permitted for a valve ( ∼= 10%, [9]) the sequence is as
follows: positive step change from (18s ≤ t ≤ 43s) and
negative step change from (93s ≤ t ≤ 143s).

As it can be seen from Fig. 2 the simple DPCA
algorithm generates false alarms during the transient
response of the step changes in CV even when the
valve is working healthy; this phenomenon is due to the
absence of the stationary condition in the time series of
CV , X and Q.

The response of the new algorithm with estimation of
the statistical parameters on-line is given in Fig 3 and
shows the reduction of the false alarm rate. Although
the stem displacement and flow estimation are not very
good, this fact doesn’t affect significantly the results,
since the procedure requires on-line only the output
signals means.

The second part of the validation shows the response
of the modified algorithm under faults f1, f2 and f3
of magnitude 0.75. Each fault appears at time 93s, and
the input signal is changed at 18s in all the cases.
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Fig. 2. Step changes in CV and response of the standard DPCA
algorithm with constant means
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Fig. 3. Actual, estimated and averaged values of variables X and
Q; and response of the new algorithm in normal conditions

As it is seen in Figs. 4, 5 and 6, the three symptom
values have a value close to zero if there is a change in
the input signal and only exceed the threshold when the
faults are present.

D. Isolation Issue

For the fault isolation task one suggest to use a
cluster analysis approach. The cluster analysis classifies
a set of multivariate observations in a number of
mutually exclusive groups based in a kind of similarity
among the observations. It is important to note that
the classification for the purpose of fault isolation will
only be possible if there exist different signatures for
each of the faults which one is interesting to isolate.

This section shows preliminary analysis of the isolation
issues based in a graphical description of the signatures
for each one of the faults under study. Fig. 7 shows
the three principal components space for each set of
faults considered. From the graphs one observes four well
defined clusters. This means, exist different signatures,
one for the normal condition, and the rest for each one
of the faults under study. If the valve is operating in
normal conditions, the actual data stay in the normal
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Fig. 4. Detection of fault f1-Valve Clogging of magnitude 0.75
and with input change
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Fig. 5. Detection of fault f2-Valve Plug or Valve Seat Sediment-
ation of magnitude 0.75 and with input change
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Fig. 6. Detection of fault f3-Valve Plug or Valve Seat Erosion of
magnitude 0.75 and with input change
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Fig. 7. Set of observations for normal, f1, f2 and f3 operating
conditions of the valve, projected in the 3 dimensional principal
components space

cluster, however, if a fault appears, the data trajectories
moves from the normal condition cluster to a specific
region of fault depending on each fault. This analysis
indicates that it is possible to isolate in a very simple
way three faults using only two outputs of the valve.

At the present, one is working in the implementation
of an automatic algorithm to solve the isolation task. The
idea is to assign a specific region for each considered fault
fi in the l-dimensional space of the principal components
with a similarity measure between point to point or point
to set.

V. CONCLUSIONS

Even when the DPCA can overcome the restriction
of applying PCA on time correlated variables, however,
due to the dynamic changes in the input and output
signals in normal conditions, the stationarity assumption
is not satisfied. Here it has been proposed a modification
to the DPCA algorithm for fault detection, in which
it is carried out an appropriate standardization with
regard to the stastistical parameters on-line of input
and output signals. This idea allows to deal with non
stationary signals and to reduce significatively the rate
of false alarms. By the other side it is taken advantage of
the multivariate statistical analysis approach, where it
is possible to complement the methodology with cluster
analysis which is another multivariate tool to isolate
three faults in the valve. It was shown through a series
of tests the effectiveness of the fault detection modified
algorithm to make a distinction between normal changes
in signals and the variations due to the presence of a
fault.
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