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Abstract: In this paper the choice of the optimal sensor location, especially of the gas 
product in an anaerobic wastewater treatment process is discussed. First, we have 
applied the observability measures theory considered in Waldraff, et al. (1998) on the 
distributed parameter model of an anaerobic wastewater treatment process (Schoefs, et 
al., 2003), which is discretized by using the orthogonal collocation method. Then a state 
observer has been implemented to illustrate the results. These investigations lead to 
recommend appropriate sensor locations. Copyright 2004 IFAC 
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1. INTRODUCTION 

A usual problem of monitoring and control of 
anaerobic wastewater treatment is the lack of sensors 
and/or analyzers, which could in a reliable way 
provide on-line information about the degradation 
process. In order to overcome this difficulty, model-
based state estimation methods (e.g. Kalman or 
Luenberger observers) can be used to estimate 
variables that are not available from on-line 
measurements. The used sensors play a crucial role to 
warrant a successful implementation of the state 
estimation. In this paper, we have chosen an example 
where only the produced gas is measurable on-line 
(Bernard, et al., 2001). 

The observability of a distributed parameter system is 
not only affected by the choice of sensor but also by 
the sensor location. It is important to know the 
appropriate positions in order to obtain the best 
information about the process dynamics along the 
reactor. Here, we discuss the choice of optimal 
sensor positions with a predefined number of sensors. 

This paper is organized as follows. We introduce first 
the distributed parameter model described by partial 
differential equations (PDE’s) as proposed in 
(Schoefs, et al., 2003). The orthogonal collocation is 
used to solve it, and different observability measures 
(Waldraff, et al. (1998)), i.e. the observability matrix 
and Gramian methods as well as the Popov-
Belevitch-Hautus one, are considered. The results of 

this study will be illustrated in numerical simulations 
by implementing a state observer, the extended 
Luenberger observer, here. Finally, the appropriate 
sensor positions will be recommended. 

2. DYNAMICS MODEL OF THE WWTP 

Let us consider an anaerobic WWT process operated 
in a fixed-bed reactor (Bernard, et al., 2001).  
Anaerobic digestion is basically composed of two 
phases, acidogenesis and methanization. The axial 
dispersion in the reactor (i.e. tubular reactor) is taken 
into account (Schoefs, et al., 2003). The dynamics of 
the concentrations of the acidogenic and 
methanogenic biomasses X1 and X2, respectively, are 
described by the following equations:  
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where α and D are the bacteria fraction in the liquid 
phase and the effluent dilution rate, respectively. 
Here, the biomass kinetics, µ1 and µ2, follow Monod-
Contois and Haldane-Contois (to account for 
possible volatile fatty acid (VFA) accumulation) 
models, respectively: 
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with µ1max, µ2s, KC1, KC2 and KI2, the biokinetic 
parameters. The time evolution of the concentrations 
of alkalinity Z, organic substrate S1, VFA S2, and 
inorganic carbon C are represented by the following 
equations, ∀z ∈ [0, H],  
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where qc is the CO2 concentration flow rate: 
 ( ) ( )CHLc PKZSCaktzq −−+= 2,  (9) 
For the above expression, we can express the CO2 

molar flow rate accumulated at height z as follows: 
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with the CO2 partial pressure, PC, equal to: 
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Indeed, PT (z) is the total pressure at the point z:  
 ( ) ( )zHgPzP atmT −+= ρ  (13) 
and QM is the CH4 molar flow rate, such as: 
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ki, i∈[1,6], are the yield coefficients, kLa and KH are 
the liquid-gas transfer coefficient and the Henry’s 
constant, respectively. 
The following boundary conditions have also to be 
added, ∀t∈�

+, ∀ξ* = [S1, S2, C, Z],  
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where ( ) 1−⋅= effrec VDQR  is the recycle rate with Qrec 
and Veff, the effluent recycle flow rate and the 
effective tank volume, respectively. 

3. OBSERVABILITY OF AN APPROXIMATE 
FINITE-DIMENSIONAL MODEL 

Sensor location studies typically refer to quantitative 
tests based observability tests for a discretized model 
of the PDE equations of the process (Waldraff, et al., 
1998). That’s why a discretization scheme, e.g. finite 
difference or orthogonal collocation, has to be 

applied to have a finite-dimensional approximation. 
The observability measure of a finite-dimensional 
system (Waldraff, et al., 1998) is related to the 
condition number, or more specifically to the 
singular values of the system observability matrix, 
denoted ϑ, which can be defined different ways 
(presented in the sequel).  

Let us consider the following system representation: 
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where x∈�
n, A∈�

n×n and G∈�
m×n, n is the number of 

state variables and m is the number of measurements.  

3.1. Observability measure based on the 
observability matrix singular value 

This method is based on the condition number of the 
following observability matrix: 

 [ ]TnGAGAG 1−= �ϑ  (17) 
i.e., the ratio between its maximal, denoted σmax(ϑ), 
and its minimal singular values, σmin(ϑ). 
The observability index is measured by the inverse of 
the condition number, i.e. σmin(ϑ)/σmax(ϑ). 

3.2. Observability measure based on the 
observability Gramian singular value 

The Gramian observability matrix is given by: 
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The system is completely observable, if and only if:  
 Rank(ϑG) = n  (19) 
As the previous method, the observability measure of 
the considered system can also be related to the ratio 
between σmin(ϑG) and σmax(ϑG). 

3.3. Observability measure based on the Popov-
Belevitch-Hautus singular value 

The observability matrix of Popov-Belevitch-Hautus 
(PHB) can be written as follows: 
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where λi is the ith eigenvalue of A. The system is 
observable if and only if:  
 Rank(ϑPHB(λi)) = n (21) 
An equivalent form for observability evaluation of 

eq. (20) is 
( )( )
( )( )iPHB

iPHB

i λϑσ
λϑσ

λ
max

minmin . 

 
PHB rank test proposes also another observability 
measure. If E is the smallest perturbation to the 
matrix A so as to make the pair (A+E, G) 
unobservable, the minimal distance to the set of all 



 

unobservable pairs (A+E, G) is then given by the 
solution of the following minimization problem: 
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The minimization problem (22) is generally non-
convex, i.e. difficult to solve. However, the algorithm 
presented in (Boley, 1990) allows to have upper and 
lower bounds on 

2
E . Therefore, the lower bound 

can be considered as an observability measure. 

4. ORTHOGONAL COLLOCATION APPROACH 

4.1. Transformation into a lumped system 

The orthogonal collocation allows to transform the 
PDE model into ODE’s by expressing the state 
variables x(z,t) as a finite weighted sum of the state 
variables at a number n+1 of locations called the 
collocation points: 
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where xj(t) = x(zj,t) is the value of x at the collocation 
point zj, j∈[0,n], with 0 < z1 < z2 < … < zn = H. λj(zi) 
are the orthogonal functions (e.g. the Lagrange 
polynomials): 
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By applying (23), equations (6), (7), (8) and (5) 
become, ∀zi ∈ [0, H], 
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Similarly, the biomass equations at the collocation 
points are written as follows: 
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Hence, an ODE nonlinear system can be considered 
here: 
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where f(ξ) represents the nonlinear term of the 
model, and 
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ξ0 is the input vector, such as: 

 [ ]TZCSS 000,20,10 =ξ  (33) 
with the following boundary conditions: 
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where ξn= [S1,n  S2,n  Cn  Zn]
T, ξin= [S1in  S2in  Cin  Zin]

T. 
Thus, the matrices A and B are: 
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where LL ���  and are the first and second derivatives of 
L (i.e. Lagrange polynomial) according to z (i.e. axial 
position), respectively. 

4.2. Tangent linearization around an operating point 

Let us now consider a tangent linearization around an 
operating point, defined by the nominal values of the 

state vectors and the input vectors, ξ  and u , 

respectively. If δξ = ξ – ξ  and δu = u – u , a linear 
system can be derived, as follows:   
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where � is the Jacobian matrix of the system, which 
also represents the dynamics of the system around 
the operating point.  
Referring to the model (31) with u=ξin, one can write: 
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If the measured variable(s) satisfy this expression: 
 ( ) ( )δξδξ ⋅== Ghy  (39) 
then, the study of the system observability can be 
carried out on the observability matrix, denoted ϑ, 
which is given by: 
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As the Lagrange polynomial L is considered here, at 
a given instant, one can interpolate the solution at all 
points from the solutions at collocation points 
according to: 
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If one locates a sensor at point zi, the matrix G in 
equation (39) can be written as follows: 
 [ ]0000 �� mGG =  ; G ∈ �1×6n (44) 
with
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Note that the non-zero elements of the matrix G, 
denoted Gm, depend on the kind of measurement 
(substrate, inorganic carbon, etc.) 
 
In this paper, we explore the sensor location question 
with only the gas measurement: this corresponds to 
the most largely encountered situation in anaerobic 
digestion processes. More precisely, we shall 
concentrate on the availability of CH4 gas 
measurements. Eq. (14) specializes that two sensor 
locations are needed: 
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where zc is the nearest collocation point above zi,  
0 ≤ zi < zc ≤ H. In this case, we can write: 
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Note that the choice of a collocation point as one of 
the sensor locations is arbitrary. Nevertheless, it 
allows to have zc closed to zi. 

5. IMPLEMENTATION OF THE 
OBSERVABILITY MEASURES VIA 

NUMERICAL SIMULATIONS 

For simulations, we consider a tubular reactor with a 
Peclet number, ulH/εlEz, equal to 20 (Schoefs, et al., 
2003), corresponding to a highly dispersed tubular 
reactor. Consider that the reactor height H is equal to 
3.5 m and its diameter is equal to 0.6 m. The 
effective volume of the medium is 0.948 m3 (i.e. εl = 
0.96). The inlet flow rate is maintained constant, 
equal to 12.87 L/h. The reactor is operating with a 

recycle flow rate, i.e. 50 L/h. The atmospheric 
pressure Patm= 1.04 atm, the pressure coefficient 
related to the gravity ρg = 0.096841 atm/m, and the 
temperature is maintained constant, i.e. 35°C.  
The other parameters are as follows:  

 

Parameter Value 
µ1max (day–1) 1.2 

KC1 (g S1/g VSS) 50.5 
µ2s (day–1) 0.74 

KC2 (g S2/g VSS) 16.6 
KI2 (mmol/L) 256 
kLa (day–1) 19.8 

KH (mol/(L.atm)) 16 
k1 (g/g) 42.14 

K2 (mmol/g) 250 
K3 (mmol/g) 134 
K4 (mmol/g) 50.6 
K5 (mmol/g) 228.4 
K6 (mmol/g) 244.86 

α 0.5 
Ez 1 

 

Once the model parameters are defined, we have then 
computed the three observability measures on the 
orthogonal collocation model by positioning the 
sensor at a point, denoted zs, that moves from 0 to H.  

Let us then consider 7 collocation points (including 
the boundaries, i.e. at 0, 0.16, 0.81, 1.75, 2.69, 3.34, 
3.5 m), chosen as the zeros of a Jacobi polynomial 
with the parameters (α,β) = (0,0) (i.e. Legendre 
polynomial). It can be shown that this choice is 
sufficient to obtain a good approximation, especially 
for the system spectrum, see (Waldraff et al., 1998). 
From the first observability matrix (see section 3.1) 
we can deduce the observability measure as the 
minimal/maximal singular values ratio for a varying 
sensor position, 0 ≤ zs ≤ H, as shown by the curves on 
Figure 1. Figure 2 shows the Gramian observability 
measure. 

Note that both methods result in very low 
observability indices. These values are therefore not 
very reliable when related to the numerical accuracy. 
Nevertheless, the minimal downward “peaks” allow 
to detect the position where there are observability 
losses. 

Let us now consider the PHB method. Figure 3 
shows the results from the first and the second PHB 
methods. As we can see, the observability index 
values are “better” than the previous ones. 

Using the three methods, we can note that by 
considering 7 collocation points there are 5 locations 
between 0 and H, where there are observability 
losses. They are 0.1, 0.8, 1.7, 2.7 and 3.3 m.  
If we consider 11 collocations points (i.e. 0, 0.06, 
0.29, 0.68, 1.18, 1.75, 2.32, 2.82, 3.21, 3.44, 3.5 m), 
the PHB observability measure gives 9 positions of 
observability loss, i.e. 0.04, 0.28, 0.67, 1.16, 1.72, 
2.31, 2.80, 3.20 and 3.43. Figure 4 illustrates the 
results of the PHB method. We have also applied the 
PHB method on a 16 point-model, and this gives 14 
locations of observability loss.  



 

  
Figure 1. Observability measure based on the usual 

observability matrix using 7 points. 

  
Figure 2. Gramian observability measure using 7 pts. 

  
Figure 3. PHB observability measure using 7 points. 

 
Figure 4. PHB observability measure using 11 points. 
 
These locations approximately correspond to the 
zeros of the PDE model eigenfunctions (Waldraff, et 
al., 1998). The larger the model dimension is, the 
more observability losses may exist. 

6. LUENBERGER OBSERVER SYNTHESIS 

For illustrating the observability results at different 
sensor positions, let us consider a state observer. 
Here, we propose to use the extended Luenberger 
observer, which is well adapted to a system evolving 
around an equilibrium point. The synthesis of the 

observer is as follows. If the nonlinear model of the 
process is given by the following state system: 
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the observer equation will satisfy the equation (51): 
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where K is a static gain that is calculated by placing 
the poles of: 
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so as to let the estimation error ( ) ( )( )txtx −ˆ converges 
to zero. 

Assume that the process is initially in steady-state. 
The initial profiles of the substrates, biomasses and 
gas flow rates of the WWT process are illustrated on 
Figure 5. At a given time (here 10 days), steps on the 
influent concentrations are applied to the process as 
shown on Figure 6. In this case, the influent pH is 
maintained constant, equal to about 7, and so is the 
influent inorganic carbon, i.e. 0.525 mmol/L.  
Using these data we have then simulated the model 
via the finite difference method with 50 nodes, so as 
to obtain a reference process, which will be 
considered as the measured variables for the state 
observer synthesis. Indeed a finite difference scheme 
with 50 nodes gives a relatively good accuracy. 

 

 
Figure 5. Initial profiles of all the state variables 

(substrates and biomasses) of a WWT process. 
 

  
Figure 6. Profiles of the influent parameters.  
 



 

First simulations are dedicated to CH4 measurements 
when the sensor is located at the positions where 
observability losses are detected. Here, the 
Luenberger observer based on the 7-point-orthogonal 
collocation model does not perfectly track the 
simulated model variable. Figure 7, with a sensor 
placed on 1.715 m, gives an example of a bad 
observation. In this case, there is a risk of divergence 
when there is change of equilibrium, especially if the 
process is noisy.  

On the other hand, Figure 8 is one example of a good 
sensor location. We can see in this example that the 
convergence time after the equilibrium change is 
good. 

Note that small static errors can be noted in the 
curves between the reference (i.e. finite difference 
scheme) and estimated (i.e. collocation method) 
models in the steady-state conditions. Using the finite 
difference method, the mass conservation law is not 
totally satisfied because of Taylor approximation. On 
the other hand, the orthogonal collocation satisfies 
the mass conservation law. 

 
 

 
Figure 7. Comparison between the process (dash-

dotted lines) and the observer (continuous lines) 
by placing the sensors at 1.715 m and 1.75 m. 

 
 

 
Figure 8. Comparison between the process (dash-

dotted lines) and the observer (continuous lines) 
by placing the sensors at 3.4 m and 3.50 m. 

7. CONCLUSION 

In this paper, we have analyzed the sensor location 
for an anaerobic WWT where only the produced gas 
is on-line measurable (Bernard, et al., 2001; Schoefs, 
et al., 2003). The analysis is based on system 
observability tools for the PDE model of the process 
(Waldraff, et al., 1998)  

In order to illustrate the sensor location results, the 
Luenberger state observer has been implemented in 
simulations. The state observer is designed by using 
the orthogonal collocation method, while the 
reference model is using a finite difference scheme.  

The observability analysis has shown that the system 
is observable if we measure the CH4 (methane) gas 
product at 2 positions, one is chosen at a collocation 
point and the other must be chosen so as to avoid 
losses of observability.  

As the collocation method is a pseudo-spectral 
method, it transfers approximately the spectrum of 
the PDE equation. The observability losses are 
related to the zeros of the PDE model eigenfunctions. 
Therefore, their number and positions depend on the 
model dimension. A 7-point-collocation model is the 
best compromise between accuracy and least of 
observability losses. 

ACKNOWLEDGEMENT 

This paper presents research results of the Belgian 
Program on Interuniversity Attraction Poles, initiated 
by the Belgian State, Prime Minister’s Office for 
Science, Technology and Culture, and of the 
European commission, Information Society 
Technologies program (contract TELEMAC number 
IST-2000-28156). The Scientific responsibility rests 
with its authors. 

REFERENCES 

Bernard O., Z. Hadj-Sadok, D. Dochain, A. Genovesi, and 
J.-P. Steyer, 2001. “Dynamical Model Development 
and Parameter Identification for an Anaerobic 
Wastewater Treatment Process,” Biotechnol. Bioeng., 
Vol. 75, p. 424-438. 

Boley D., 1990. “Estimating the sensitivity of the algebraic 
structure of pencils with simple eigenvalue estimates”, 
SIAM Journal of Matrix Analysis Applications, Vol. 11, 
No 4, p. 632-643. 

Schoefs O., D. Dochain, H. Fibrianto and J.-P. Steyer, 
2003. “Modelling and identification of a distributed-
parameter anaerobic wastewater treatment process”, in 
the Multiconference on Computational Engineering in 
Systems Applications (CESA 03), July 9-11, Lille, 
France. 

Waldraff W., D. Dochain, S. Bourrel and A. Magnus, 1998. 
“On the use of observability measures for sensor 
location in tubular reactor”, Journal of Process 
Control, Vol. 8, No 5-6, p. 497-505. 


