
Gesture Recognition Techniques for the LMC

We undertook a Systematic Literature Review (SLR) [1] to determine the algorithms used for LMC-based
gesture recognition. We ran the search query “[Full Text: ”leap motion”] AND [Full Text: ”gesture
recognition”]” on The ACM Guide to Computing Literature, the option covering both the ACM Digital
Library of references and its associated venues1. The query was performed on September 20th, 2020
and resulted in 390 publications. After removing six duplicates and excluding 341 irrelevant references
(266 based on their title, abstract, and introduction, and 75 based on their full-text), we identified 43
references with a LMC gesture recognizer (Table 1).

Type Algorithm References

Opportunistic Hard-Coded Thresholds [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
Leap Gestures [3, 13, 14, 15, 16, 6, 7, 8, 10, 17]
GameWAVE Software [15]

Nearest Neighbor K-Nearest Neighbors [18, 19, 20, 14, 21, 22, 23, 24, 25]

Support Vector Machines Support Vector Machine [26, 21, 27, 28, 29, 30, 31, 32]

Neural Networks Multilayer Perceptron [33, 34]
Deep Feedforward Neural Network [35]
Feedforward Neural Network [36]
Gated Recurring Units [25]
Neural Network [27]
Radial Basis Function Network [37]

Hidden Markov Models Hidden Markov Model [38, 39, 40, 41]
Coupled Hidden Markov Model [42]

Ensemble Learning Random Forest [30, 35]
Bagging Trees [27]
Gradient Tree Boosting [28]

Other AI/ML Techniques Decision Tree [21, 12]
Decision Table [43]
Linear Discriminant Analysis [27]
Fuzzy Integral [43]
Multinomial Logistic Regression [28]
Naive Bayes [44]

Table 1: Summary of the gesture recognition algorithms identified in the SLR.

The vast majority of analyzed publications (16
43=37%) implement gestural support in an opportunis-

tic manner, i.e., by relying on the few system-defined gestures natively supported by the LMC or by
recognizing gestures based on hard-coded thresholds (e.g., [2, 5, 12]). While this opportunistic approach
may be appropriate in some cases (e.g., for quick prototyping [45] or very simple UIs), it often forces
developers to make significant compromises that could be avoided with more advanced recognition tech-
niques. For instance, Liang et al. [15] designed a storytelling system in which children interact with hand
gestures, but these gestures are hard-coded and cannot be modified easily to better fit the motor abilities
and preferences of each child. Zocco et al. [17] showed that an LMC-based system could be more efficient
than the traditional trackpad-keyboard combination to interact with a Command and Control system.
However, as they were limited to the system-defined gestures, they did not study whether more suitable
gestures could result in better usability, such as those obtained with user-defined gestures [46].

Found in nine references ( 9
43=21%), K-Nearest Neighbors (KNN) classifiers [47] are also a popular

choice for gesture recognition. These algorithms are a simple yet powerful alternative to the opportunistic
approach as they are easy to implement and to train while being reasonably fast and accurate. Some
are presented as all-purpose recognizers [18, 24] while others target more specific applications such as
handwritten numerals recognition [19] and Sign Language recognition, which remains a key topic for any
language: American [26, 35, 33, 42], Greek [32], and Thai [25].

1See https://dl.acm.org
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The remainder of the papers use more advanced ML techniques such as Neural Networks (NNs)
from Deep Learning, Support Vector Machines (SVMs), Hidden Markov Models (HMMs), or Ensemble
Learning. These techniques are used in all kinds of applications. For instance, Simos and Nikolaos [32]
use an SVM to classify the 24 letters of the Greek Sign Language alphabet with high accuracy, and
Kumar et al. [38] train an HMM to recognize words from single-stroke Latin sentences drawn in mid-air.

Finally, some papers combine algorithms and/or sensors. Daniels et al. [14] combine the LMC native
gestures with the $1 recognizer [48] to recognize a larger set of gestures for manipulating protein struc-
tures. Jiang et al. [27] combine an LMC with myography data, Marin et al. augment the LMC with a
Microsoft Kinect [49] or a depth sensor [30] to increase accuracy.
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