
1 Description of the Provided Modules

This appendix provides a short description of the modules provided with the QuantumLeap framework.
If necessary, developers may write new modules to better fit their needs.

1.1 Sensors

1.1.1 Leap Motion Controller

A module that connects to the LMC and fetches frames using its JavaScript API. It returns the position
of a set of articulations of the hand at one instant in time.

1.2 Filters

1.2.1 1€

A simple and efficient low-pass filter inspired by the $-family of recognizers [1]. Designed for interactive
systems, it relies on an adaptive cutoff frequency that allows it to greatly reduce jitter at low speed while
limiting lag at high speed.

1.3 Static and Dynamic Datasets

1.3.1 QLDynamic

A dataset composed of 17 dynamic gestures performed by four participants. Each participant performed
each gesture four times above the LMC.

1.3.2 QLStatic

A dataset composed of 5 static poses performed by only one participant above the LMC.

1.4 Static Recognizers

QuantumLeap comes with two modules for static gesture recognition. Table 1 summarizes their invari-
ance properties.

Recognizer
Type of invariance

Position Scale Rotation Direction

$P3+
GPSDa

Table 1: Invariance properties of the static recognizers.

1.4.1 $P3+

A 3D version of $P+ algorithm [2]. It is position-, direction-, and scale-invariant [3], but not rotation-
invariant. It is described into more details in Appendix 1.7.

1.4.2 GPSDa

A novel position-, scale-, direction-, and rotation-invariant recognizer for hand poses regardless of the
position of the hand. Its rotation-invariance makes it well-suited to situations where hand poses should
be recognized regardless of their direction (e.g., rotate a picture by performing a “grab” static gesture
and gradually rotating the hand).

1.5 Analyzers

1.5.1 Basic Analyzer

This module extracts four values from each frame: (1) rotation, the rotation of the hand compared to
the previous frame; (2) pinch, the ratio of the distances between the index and the thumb of the current
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and the previous frames; (3) translation, the displacement of the palm compared to the previous frame;
and (4) thumbVector, a 3D vector that gives the orientation of the thumb.

1.6 Segmenters

Three simple segmentation methods have currently been implemented to demonstrate the possibilities
of QuantumLeap. We are planning on implementing more advanced segmentation techniques such as
Taranta et al.’s Machete [4] and Chen et al.’s Pactolus [5]. However, support for Pactolus will only be
relevant once EMG sensors are supported by QuantumLeap.

1.6.1 Zoning Segmenter

A segmenter that triggers gesture recognition when one or more selected points are within a bounding box
above the sensor. After all the selected points have left, the recorded frames are sent to the recognizer.

1.6.2 Threshold Segmenter

A sensor that triggers gesture recognition when one or more parameters meet a pre-defined condition.
The conditions (e.g., the value of a parameter exceeds/falls below some threshold) can be manually
configured from the UI. Once the conditions are no longer met, the recorded frames are sent to the
recognizer.

1.6.3 Window Segmenter

A segmenter that triggers gesture recognition at regular intervals by relying on fixed-size buffers called
windows. To adapt to varying gesture duration, it can be configured with any number of windows. Each
time a new frame is received, it is pushed in the window(s), while the oldest frame is removed. Every
fixed number of frames, the buffered gesture data are sent to the recognizer.

1.7 Dynamic Recognizers

QuantumLeap comes with ten modules for dynamic gesture recognition. Table 2 compares their in-
variance properties.

Recognizer
Type of invariance

Position Scale Rotation Direction

$P3

$Q3

$P3+

$P3+X

3 cent

Jackknife

$F

FreeHandUni

Rubine3D

Rubine-Sheng

Table 2: Invariance properties of the dynamic recognizers.

1.7.1 $P3

A generalization of $P [6] towards supporting 3D multi-stroke gestures which is similar to the $P3D
recognizer implemented by[7]. However, unlike $P3D the recognizer $P3 does not support 3D static
poses and 2D dynamic gestures recognition. To keep memory usage and execution time low, gestures are
represented as unordered sets of points, called point clouds. Gesture recognition happens in two phases:
normalization and cloud-matching. The normalization process is similar to other $-family algorithms
and is divided into three steps: (1) resample the gesture to a fixed number of equidistant points; (2) scale
the gesture uniformly to keep its shape; (3) translate the centroid of the point cloud to the origin, i.e.,
(0, 0, 0). The cloud-matching phase matches a gesture’s point cloud to the point cloud of each template
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by associating each point from the template to exactly one point from the gesture. It then computes the
resulting distance, as the sum of Euclidean distances between all pairs of matching points, and returns
the template that minimizes it. This recognizer is position-, direction-, and scale-invariant, but not
rotation-invariant.

1.7.2 $Q3

A 3D variant of $Q [8], which achieved a 46X speedup on average over $P with no loss of accuracy. It
brings two key changes to $P3: (1) early abandonment of templates, as soon as the distance exceeds
the current shortest distance; (2) each point cloud has a 16×16×16 3D look-up table (LUT), where
each location (x, y, z) refers to the closest point. These LUTs allow $Q3 to compute a lower bound of
the distance between a gesture and a template in O(n). If it exceeds the current shortest distance, the
template can be rejected without computing the exact distance. It has the same invariance properties
as $P3.

1.7.3 $P3+

A more accurate version of $P3, adapted from Vatavu’s $P+ [2]. It brings three key improvements to
$P3: (1) each point from the template can now be matched to more than one point of the gesture; (2)
the distance between a gesture and a template takes into account the connections between consecutive
points (in the form of their turning angles); (3) early abandonment of templates. This recognizer has
the same invariance properties as $P3.

1.7.4 $P3+X

A variant of $P3+, which supports partial direction-invariance by keeping track of conflicting templates
(i.e., templates that represent the same gesture but drawn in different directions). If a gesture matches
a conflicting template, its direction is compared with the direction of each conflicting template and the
closest one is returned.

1.7.5 3 cent

An optimized 3D port of Wobbrock et al.’s $1 [9] by Caputo et al. [10], which recognizes uni-stroke
gestures in two phases: the gesture is first normalized (similarly to $P) and its distance to each template
is then computed as the sum of the squared distances of corresponding points. The template with the
shortest distance is returned. 3¢ is position- and scale-invariant, but neither rotation- nor direction-
invariant.

1.7.6 Jackknife

A general-purpose 3D gesture recognizer [11] that supports any number of articulations. Unlike most
$-family recognizers, it represents gestures as time-series. It uses the nearest neighbor approach, where
it compares a gesture to each template and returns the closest one. It uses Dynamic Time Warping as
a distance measure but applies a series of correction factors to take into account differences in gesture
scale and span. As a result, this recognizer is both position- and scale-invariant, but neither direction-
nor rotation-invariant.

1.7.7 $F

A new recognizer that adds $P+’s flexible cloud matching [2] to $P3. As for most $-recognizers, the
points of the candidate and the templates are resampled to equidistantly-spaced points, scaled within a
unit box (isometric [12]), and translated so their centroid is at the origin (0, 0, 0). The template with
the lowest dissimilarity score is considered as the best matching template for the candidate. As opposed
to $P3, $F’s cloud matching is flexible, as points can be matched to more than one point. It consists of
matching the points from the first cloud with their closest point from the second cloud, then matching
the points from the second cloud that have not been matched yet with their closest point in the first
cloud.
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1.7.8 FreeHandUni

A recognizer derived from Vatavu et al.’s Free-Hand recognizer [13], which extends $P [6] to support
3D hand gestures. It replaces the hand pose structure with a 3D point structure (x, y, z). With this
modification, FreehandUni improves $P3 using a flexible cloud matching based on a one-to-many
alignment between points [2]. The pre-processing stays the same but the matching process is more
flexible: each point of the template cloud is matched with the closest point from the candidate cloud,
then the remaining points from the candidate cloud are matched with the closest point from the template
cloud. It returns the gesture class with the lowest dissimilarity score. FreeHandUni is different from
$F in that the early abandoning is not implemented, to align the computational complexity to $P3.

1.7.9 Rubine3D

Inspired by the iGesture framework [14], Rubine3D is a feature-based recognizer that combines a set of
three individual 2D Rubine recognizers [15], one for each plane XY , Y Z, and ZX. Before it can recognize
3D trajectories, Rubine3D pre-processes the training templates to compute weights for each feature of
each gesture class. Then, it can recognize gestures in four steps: (1) it pre-processes the gesture by
scaling and filtering its points; (2) it projects it onto each plane and extracts a feature vector (f1, .., f13)
from each of the three projections; (3) for each projection, it selects the gesture class that maximizes the
similarity score (computed by combining the weights of the gesture class with the feature vector of the
gesture); (4) it determines the resulting class by merging the results from the three projections.

1.7.10 Rubine-Sheng

Rubine-Sheng (RS) is a 3D recognizer inspired by Rubine. It supports 3D gestures by adding three
new features proposed in the AdaBoost recognizer [16] to Rubine’s existing 13 features. Aside from this
difference, it is extremely similar to its 2D counterpart.

Note The implemented multipath recognizers include an optimization which avoids comparing the
candidate gesture performed with one hand against the gestures performed with both hands in the
training set.
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stroke gesture recognizer with controllable position, scale, and rotation invariances. In Proceedings
of the 20th ACM International Conference on Multimodal Interaction, ICMI ’18, page 125–134, New
York, NY, USA, 2018. Association for Computing Machinery.

[13] Elena-Gina Craciun, Ionela Rusu, and Radu-Daniel Vatavu. Free-Hand Gesture Recognizer Pseu-
docode. http://www.eed.usv.ro/mintviz/projects/GIVISIMP/data/Pseudocode2.pdf, 2016.
[Online; accessed 09-August-2020].

5

http://www.eed.usv.ro/mintviz/projects/GIVISIMP/data/Pseudocode2.pdf


[14] Beat Signer, U. Kurmann, and Moira C. Norrie. igesture: A general gesture recognition frame-
work. In 9th International Conference on Document Analysis and Recognition (ICDAR 2007),
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