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Introduction 

The numerical modelling of turbulent com-
bustion is a very challenging task as it combines the 
complex phenomena of turbulence and chemical reac-
tions. This study becomes even more challenging 
when large detailed kinetic mechanisms are used in 
order to understand some special features such as pol-
lutant formation. The coupling of the kinetic equa-
tions with the physical features of the problem results 
in a set of partial differential equations which is often 
very large to solve and not adequate for the current 
means. In a CFD calculation, the number of species 
tracked impacts the memory usage and CPU time. It 
is thus important to minimize this number by the use 
of a simpler but representative set of variables. There-
fore, there is a need for methods allowing to efficient-
ly parameterizing the thermo-chemical state of a re-
acting system with a reduced number of optimal reac-
tion variables. Among those, Principal Component 
Analysis (PCA) appears as an ideal candidate to fulfil 
the purpose. PCA offers the possibility of automati-
cally reducing the dimensionality of data sets consist-
ing of a large number of correlated variables, while 
retaining most of the variation present in the original 
data. After reduction, the new set of variables, called 
principal components (PCs), are orthogonal, uncorre-
lated and linear combinations of the original variables 
(  ). By retaining the PCs containing most 
of the variance and transporting them in a numerical 
simulation, the dimensionality of the system can be 
highly reduced. Another advantage of PCA reside in 
the fact that the PCs can be obtained through data sets 
based on simple systems (such as canonical reactors) 
and then applied to a similar, more complex system.  

The present work seeks to advance the un-
derstanding and application of the PC-transport ap-
proach by applying this method to more complex 
fuels such as methane and propane. This analysis is 
carried out on the solution of an unsteady PSR calcu-
lation using the PC-transport approach for large kinet-
ic mechanisms. Next, the PC-transport approach is 
coupled with non-linear regression (GPR) in order to 
increase the size reduction potential of PCA. Finally, 
the PC-transport approach is enhanced by the use of 
local regression (GPR). 

PC-transport Approach 
In the work of Sutherland and Parente [1], a com-

bustion model is proposed where conservation equa-
tions for the PCs are derived from the general species 
transport equation: 

 

 
 

 
 
In PCA-based combustions models, one of the major 
weaknesses is that a linear model is trying to describe 
a highly non-linear process. In order to take full ad-
vantage of the PC analysis, a nonlinear mapping to 
the linear underlying surface by using nonlinear re-
gression was proposed [2]. This allows to fully utilize 
the underlying manifold identified by the principal 
component analysis. The linear basis derived from the 
PC analysis allows deriving simple transport equa-
tions, while using nonlinear functions within this ba-
sis allows capturing the nonlinearities which are al-
ways present in combustion systems. 
 

Gaussian Process Regression 
In this study, the state-space variables  

and the PC source terms  are mapped to the PC ba-
sis using nonlinear regression: 

 
 

 
where  is the nonlinear regression function and  
represent the dependant variables. Gaussian Processes 
(GPs) [3, 4] does not assume a specific model for the 
regression function. By doing so, GPs are less paramet-
ric and let the data speak for themselves. A Gaussian 
process generates data in the domain of interest such 
that any finite subset of the range follows a multivari-
ate Gaussian distribution. The dependant variables can 
thus be described by a Gaussian distribution: 
 

 



 

 

where m is a mean function and K is a covariance 
function (or kernel). The mean function is often as-
sumed to be zero. The covariance function used here is 
the Squared Exponential: 
 

 
 
with  being the signal variance and l the character-
istic length scale. These two parameters of the covari-
ance function are called hyper-parameters. After an 
initial guess, those hyper-parameters are optimized 
using a Gaussian likelihood function. 
 
Local Regression 

In order to improve further the accuracy of the re-
gression and increase PCA's potential for size reduc-
tion, a novel approach will be tested where the PC-
score approach is coupled with locally regressed state-
space variables (PC-L-GPR). The idea is to divide the 
PC state-space into bins or clusters, and to perform a 
GP regression separately in each of these bins. As a 
consequence, a better regression would be obtained (if 
each bin is chosen appropriately) and the computation-
al time required for GPR will also be reduced. In order 
to define such bins, a conditioning variable has to be 
chosen. This variable should well characterize the 
state-space. Possible candidates are the PCs source 
terms, as the latter are highly non-linear over the PC 
space. Clustering the source terms manifolds such as 
they can be approximated by quasi-linear functions in 
each bin would simplify and accelerate the regression 
algorithm. 

 

Results 
The proposed method is demonstrated in a PSR, 

comparing the calculations using the full set of equa-
tions to the standard PC-transport approach, and the 
PC-transport approach using nonlinear regression, and 
this for two different fuels: a simple one, methane 
( ), and a more complex, propane ( ). 
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Figure 1: PSR temperature as a function of the 

residence time (methane, GRI-3.0) 
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Figure 2: PSR temperature as a function of the 

residence time (propane, San Diego) 
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Figure 3: PSR temperature as a function of the 

residence time (propane, Polimi) 

 
Figure 1 show the solution using the PC-score 

model together with GPR (PC-GPR) for the methane 
case (with GRI-3.0 mechanism) while using 1 and 2 
PCs. The result shows remarkable accuracy for the 
model with regression using only 2 PCs over the range 
of residences times for the predicted temperature. This 
conclusion also holds for both major and minor spe-
cies. 

Figures 2 and 3 show the solution using GPR for 
the propane cases with the San Diego and the Polimi 
mechanisms, respectively, comparing both the global 
and local regression approaches. It can be seen that us-
ing the local approach improves significantly the accu-
racy of the model, especially in the ignition/extinction 
region, leading to an almost perfect match. 
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