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Introduction

Simulations of reacting flows for predictive purposes
and engineering designs are much often a challenging
task. Knowing a system’s solution in every point in the
parameter-space may be prohibitive. Many techniques
exist in order to find a trade-off between solution accu-
racy and reasonable computational cost. Principal Com-
ponent Analysis combined with Kriging interpolation
can be viewed as one of the most promising methods.
The idea is simple: from a small data-set, PCA is per-
formed to reduce the dimension (though retaining the
physics) of a system, then Kriging is used to predict the
system’s state at an untried point in the parameter-space.

PCA

Principal Component Analysis (PCA) identifies cor-
relations among the variables defining the state space.
As a result, a new coordinate system is identified in the
directions of maximal data variance, which allows less
important dimensions to be eliminated while maintain-
ing the primary structure of the original data.
The PCA algorithm can be summarized as follows. We
take M observations of N variables and make up the
data-set Y (N × M). The data-set is centered and scaled
(to its variance): ỹ j =

(y j−y)
d j

where y j is the j-th column
of Y.
The covariance matrix is evaluated. This can be done
in spatial domain: S = 1

M−1 ỸỸT or temporal domain
(Sirovich): S = 1

N ỸT Ỹ. Then, the eigenvectors of S are
the PCA modes φi. Only q � N modes are chosen,
the ones with the biggest eigenvalues, and stored in the
columns of the matrix Φ. The PCA coefficients rela-
tive to the j-th observation are evaluated by α j = ΦT ỹ j.
These vectors are stored in the columns of A (q × M),
which can be viewed now as the data-set instead of Ỹ.
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The PCA method does not explicitly guarantee the re-
spect of the physical laws involved, such as conserva-
tion of mass. To guarantee that, Constrained-PCA is
performed: α = minα||y − ypca||2 s.t. L(α) = 0, where
L(α) = 0 represents the constraints adopted. Accuracy
may be lower, but no physical laws are infriged, pro-
vided that the optimization problem is solved correctly.
It is important to stress this out, as the solution of the
optimization problem may not be trivial.
Improved performance can be achieved by applying a
Local-PCA. Data are optimally divided into clusters,
and PCA is performed in each cluster indipendently.
The idea is that if the local regions are small enough,
the data manifold will not curve much over the extent of
the region, and the PCA model will be a good fit.

Kriging

The data-set A (the values of the PCA coefficients)
is used to build a response surface which maps from
the parameter-space to α. If p∗ is an untried point
in the parameter-space, the corresponding α∗ is pre-
dicted, which in turn leads to y∗, whereas Φ remains
unchanged. This way the physics of the system is
stored in Φ and unaffected by the interpolation. For a
scalar target y and a data-set y, the Kriging predictor is:
ỹ(x) = f(x)T β̃+ r(x)T R−1(y−Fβ̃) = f(x)T β̃+ r(x)Tγ. A
target is modeled as a trend function µ(x) = f(x)T β̃ plus
a stationary zero-mean stochastic field. The trend func-
tion is a weighted sum with weights β̃ (determined by
a Generalizes Least Square) of some linear or quadratic
functions of the inputs x. Differences from the trend
are modeled with a white noise. The function describ-
ing the correlation matrix R and cross-correlation vector
r(x) has to be chosen arbitrarily, though with an uspec-
ified set of hyperparameters which are determined by a
Maximum Likelihood Estimator.

Application

With the equivalence ratio ψ as varying parame-
ter, both PCA-K and CPCA-K have been applied to
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Figure 1: Prediction for OH relative to the case with the largest global
error.
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Figure 2: Prediction for CO relative to the case with the largest global
error.

1-D laminar flames (GRI 3.0 mechanism) solved in
OpenSMOKE. In the range ψ = 0.8 ÷ 1.2, both meth-
ods performed effictively with q = 5 modes, predicting
the system’s state at untried points of ψ with a global
error below 1% and 4%, respectively. The algorithm
consisted in using some samples in ψ = 0.8 ÷ 1.2 to
build the PCA-K model, and the remainder for its vali-
dation.

In Fig. 3, it is possible to notice how CPCA-K may
deliver some inaccuracies in order to, for example, keep
the mass fractions positive. Both PCA-K and CPCA-K
generally provide very good results and show discrep-
ancies only for few cases. This can be attributed to the
range of ψ the model has to deal with and it can be likely
improved using Local-PCA.
The Local-PCA formulation combined with Kriging is
expected to deliver prosiming results.
The method has also been used to model the non-linear
source terms of the system’s governing equations. This
can be very useful when directly solving the system’s
equations as it allows to avoid evaluating these highly
non-linear terms, thus leading to computational savings.
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Figure 3: Prediction for C relative to the case with the largest global
error. Both PCA-K and CPCA-K predictions are reported.

Conclusion

The results show that the method presented here is
promising and versatile, as it can be helpful in differ-
ent applications and set up according to one’s needs.
Whether PCA, CPCA or Local-PCA is applied, com-
bined with Kriging, the presented method proved to be a
smart choice for model reduction, combining simplicity
and efficiency. Further developments and applications
will probably confirm what has been asserted so far,
with particular attention to application of the method to
much higher-dimensional systems, with more than one
avarying parameters.

Acknowledgments

This project has received funding from the Euro-
pean Unions Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant
agreement No 643134.

References

[1] Cuoci A., Frassoldati A., Faravelli T., Ranzi E., A computational
tool for the detailed kinetic modeling of laminar flames: applica-
tion to C2H4/CH4 coflow flames, Combustion and Flame (2013),
DOI: 10.1016/j.combustflame.2013.01.011

[2] Kambhatla, N., & Leen, T. K. (1997). Dimension Reduction by
Local Principal Component Analysis. Neural Computation, 9(7),
1493-1516.

[3] Kennedy, M., & O’Hagan, A. (2001). Bayesian calibration of
computer modes. J. R. Stat. Soc. B (2001), 63, part 3, pp 425-
464.

[4] Isaac, B. J., Coussement, A., Gicquel, O., Smith, P. J., Parente, A.
(2014). Reduced-order PCA models for chemical reacting flows..
Combustion and Flame, 161(11), 2785-2800.

2


