Chapitre V:

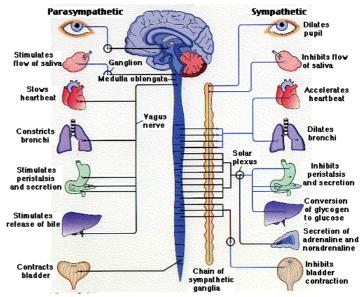
Le système nerveux autonome

- 1. Définition
- 2. Rappels
- 3. Contrôle de l'homéostasie
- 4. Applications à quelques systèmes/organes
 - L'œil
 - Le cœur
 - Les vaisseaux baroréflexes et chémoréflexes
 - Le métabolisme
 - L'immunité
- 5. En résumé

Définition

« Le sytème nerveux végétatif ou autonome contrôle le « monde intérieur » (en association avec le système endocrinien). Son activité est indépendante du contrôle volontaire et fonctionne de façon autonome. Il accorde les fonctions des organes internes aux besoins de l'organisme. Le contrôle par voie nerveuse permet une adaptation très rapide tandis que le système endocrinien règle l'état des fonctions à long terme. »

→ Pratiquement, il contrôle:

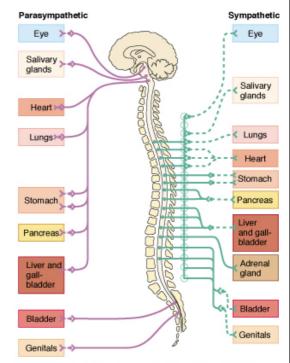

La contraction/relaxation des muscles lisses (vaisseaux et viscères)

Les sécrétions exocrines (endocrines)

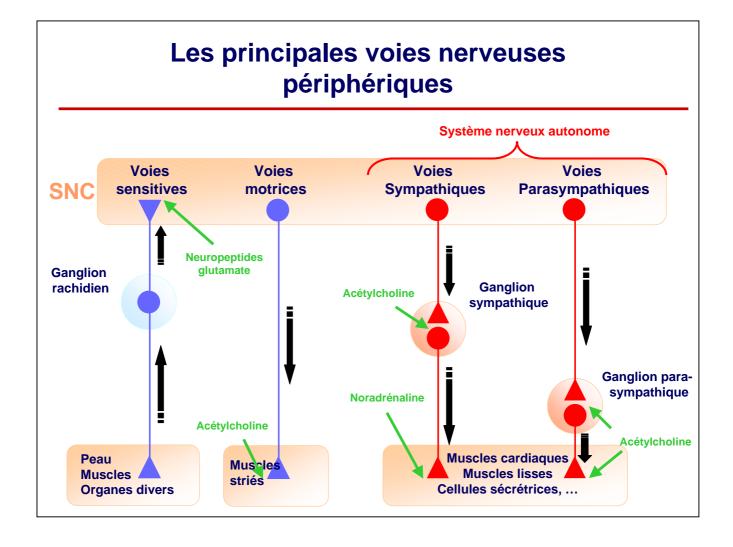
L'activité cardiaque

Le métabolisme énergétique

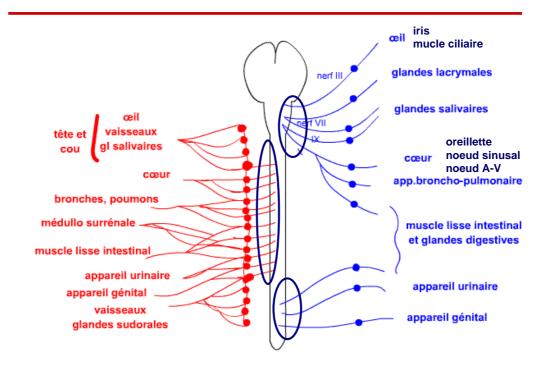
Le système immunitaire



- 1. Définition
- 2. Rappels
- 3. Contrôle de l'homéostasie
- 4. Applications à quelques systèmes/organes
 - L'œil
 - Le cœur
 - Les vaisseaux baroréflexes et chémoréflexes
 - Le métabolisme
 - L'immunité
- 5. En résumé


Le système nerveux autonome/ rappels

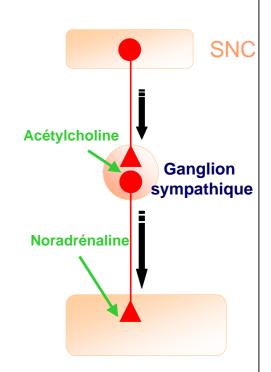
Divisions anatomiques:


- Système nerveux parasympathique
- Système nerveux (ortho)sympathique
- Système nerveux entérique ensemble des plexus nerveux du tractus gastrointestinal, grandes capacités intégratives (relative indépendance par rapport au SNC), interconnections étroites avec le SNP et le SNO.

ght @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longma

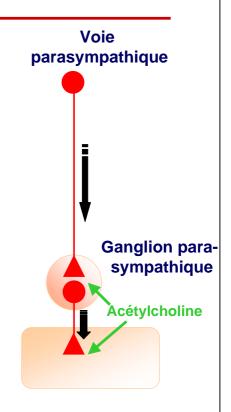
Les voies de transmission du SNA

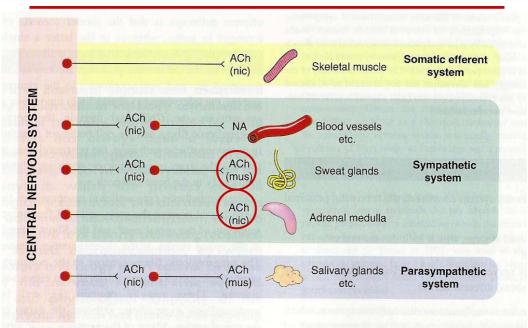
Système parasympathique


Système orthosympathique

Le système (ortho)sympathique : rappels

Les voies nerveuses (ortho)sympathiques sont composées de deux neurones successifs :


- un neurone cholinergique dont le corps cellulaire se situe dans la corne antérieure de la moelle épinière lombaire et thoracique
- un neurone adrénergique dont le corps cellulaire se situe dans les ganglions sympathiques qui constituent les relais entre les deux neurones

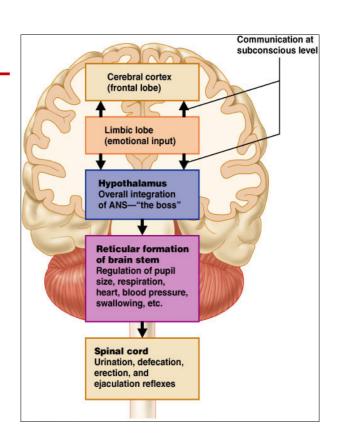

Le système parasympathique : rappels

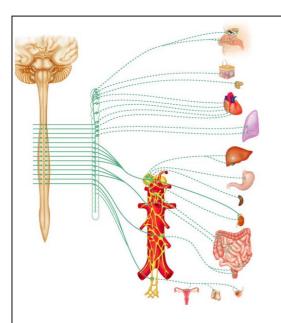
Les voies nerveuses parasympathiques sont composées de deux neurones cholinergiques successifs :

- le premier neurone cholinergique dont le corps cellulaire se situe dans le pont ou la moelle épinière (nerfs craniens (III,VII, IX, X); nerfs sacrés (racines S2,S3,S4)
- un second neurone cholinergique dont le corps cellulaire se situe dans les ganglions parasympathiques qui constituent les relais entre les deux neurones. Ces ganglions sont souvent inclus dans l'organe innervé >>>> ce deuxième neurone est donc très court.

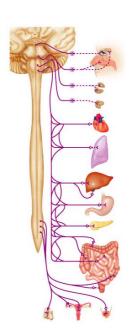
Les neurotransmetteurs du SNP

Système sympathique :


Ganglions : Ach/récepteurs cholinergiques nicotiniques Organes cibles : Nad/récepteurs adrénergiques α et β 2 exceptions : glandes sudoripares et médullosurrénale


Système parasympathique :

Ganglions : Ach/récepteurs cholinergiques nicotiniques Organes cibles : Ach/récepteurs cholinergiques muscariniques

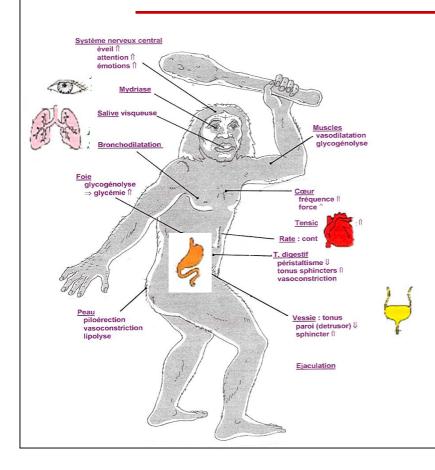

Contrôle central

Le contrôle central est assuré par l'hypothalamus

ORTHO versus PARA

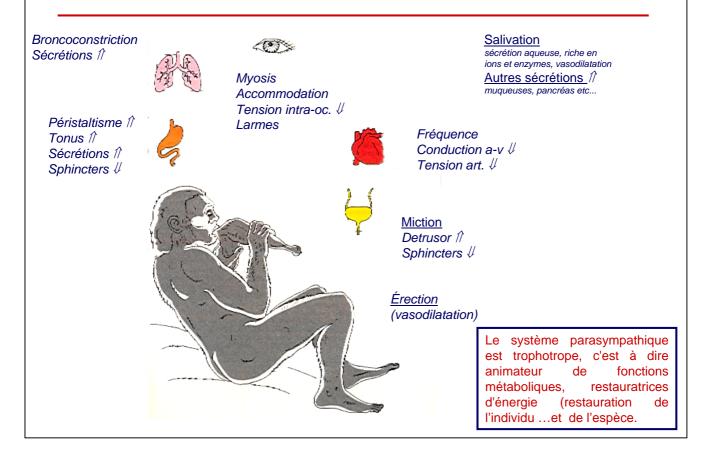
De nombreux organes possèdent une double innervation:

- → effets opposés
- → cœur
- → muscles lisses intestinaux
- → vessie

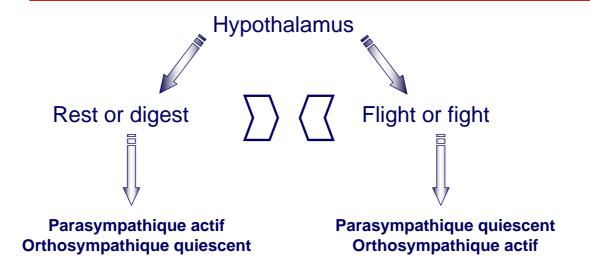

Glandes sudoripares et la plupart des vaisseaux: système ortho prépondérant

Muscle ciliaire de l'œil : parasympathique

Glandes salivaires : double innervation → même action


- 1. Rappels
- 2. Contrôle de l'homéostasie
- 3. Applications à quelques systèmes/organes
 - L'œil
 - Le cœur
 - Les vaisseaux baroréflexes et chémoréflexes
 - Le métabolisme
 - L'immunité
- 4. En résumé

Activation du sympathique



Le système sympathique est ergotrope, c'est à dire producteur d'énergie. En caricaturant : toute réaction de l'organisme permettant d'aboutir rapidement à un état d'activité plus élevé, propice au combat ou à la fuite.

Activation du parasympathique

Fonctions du SNA

→ Conserver l'homéostasie face à toute modification interne ou externe

Adaptation aux changements posturaux, à l'exercice, aux variations de température,

Rest and digest

Intégration de différents systèmes qui induiront :

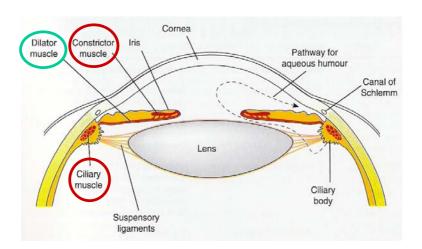
- 1. Diminution du métabolisme
- 2. Diminution du rythme cardiaque et respiratoire
- 3. Activation glandes salivaires et digestives
- 4. Augmentation des apports sanguins aux organes digestifs et urinaires
- 5. Activation de la motilité gastrointestinale et vésicale

→ Stockage des réserves

Flight or Fight

Intégration de différents systèmes qui induiront :

- 1. Augmentation du métabolisme
- 2. Augmentation du débit cardiaque et fonction respiratoire (ventilation)
- 3. Ralentisement de la digestion et de la filtration urinaire
- 4. Redirection des apports sanguins vers les muscles
- 5. Augmentation du glucose sanguin

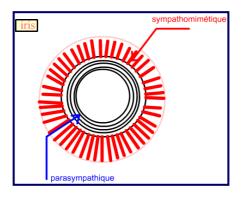

En résumé

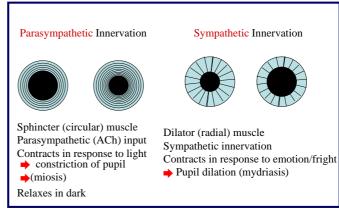
	Parasympathetic Response "Rest and Digest"	Sympathetic Response "Fight or Flight"	
Heart (baroreflex)	Decreased heart rate Cardiac output decreases Increased rate and strength contraction Cardiac output increases		
Lung Bronchioles	Constriction Dilation		
Liver Glycogen	No effect	Glycogen breakdown Blood glucose increases	
Fat tissue	No effect	Breakdown of fat Blood fatty acids increase	
Basal Metabolism	No effect	Increases ~ 2X	
Stomach	Increased secretion of HCI & digestive enzymes Increased motility	Decreased secretion Decreased motility	
Intestine	Increased secretion of HCI & digestive enzymes Increased motility	Decreased secretion Decreased motility	
Urinary bladder	Relaxes sphincter Detrusor muscle contracts Urination promoted	Constricts sphincter Relaxes detrusor Urination inhibited	
Rectum	Relaxes sphincter Contracts wall muscles Defecation promoted	Constricts sphincter Relaxes wall muscles Defecation inhibited	
_Eye	Iris constricts Adjusts for near vision	Iris dilates Adjusts for far vision	
Male Sex Organs	Promotes erection	Promotes ejaculation	

Le système nerveux autonome

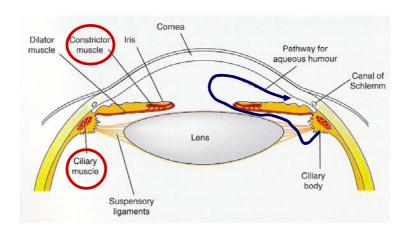
- 1. Rappels
- 2. Contrôle de l'homéostasie
- 3. Applications à quelques systèmes/organes
 - L'œil
 - Le cœur
 - Les vaisseaux baroréflexes et chémoréflexes
 - Le métabolisme
 - L'immunité
- 4. En résumé

Contrôle autonome de la vision




Muscle « constricteur » ← Contrôle para Contrôle ortho Muscle « dilatateur »

Accomodation vue de près/vue de loin Accomodation à la lumière Régulation de la pression intraocculaire


Accomodation à la vue de près/loin parasympathomimétique contraction du muscle ciliaire (cycloplégie) relachement du muscle ciliaire (cycloplégie) relâchement du cristallin cristallin sous tension vision de loin -vision de près + vision de près -Distant Vision Near Vision Suspensory Ligaments Lens Parasympathetic Ciliary muscle (ACh) Input → Constriction Accommodation

Accomodation à la lumière

Contrôle parasympathique de la vision

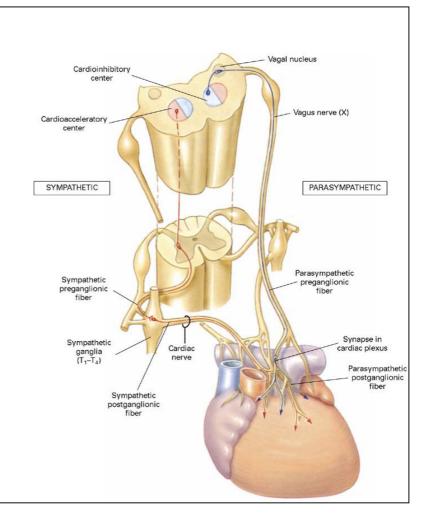
- * Contraction du muscle ciliaire → nécessaire à l'accomodation (vue de près)
- * Contraction de la pupille →

En cas de glaucome : la dilatation de la pupille empêche un drainage correct de l'humeur aqueuse → augmentation de la pression intraocculaire → intêret des agonistes muscariniques et contre-indication majeure des antagonistes muscariniques

Implications

Tout ce qui ↑ la transmission cholinergique → myosis

→ Favorable en cas de glaucome


Tout ce qui ↓ la transmission cholinergique → mydriase

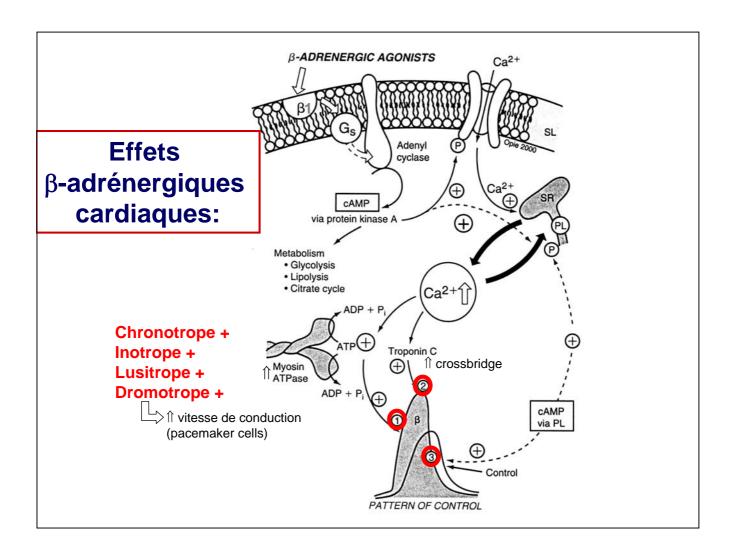
→ Contre-indication majeure en cas de glaucome

Le système nerveux autonome

- 1. Rappels
- 2. Contrôle de l'homéostasie
- 3. Applications à quelques systèmes/organes
 - L'œil
 - Le cœur
 - Les vaisseaux baroréflexes et chémoréflexes
 - Le métabolisme
 - L'immunité
- 4. En résumé

Contrôle de la fonction cardiaque par le système nerveux autonome

Le contrôle autonome du coeur



Localisation anatomique	Effet ortho	Récepteur adrénergique	Effet para	Récepteur cholinergique
Nœud sino-auriculaire	Rythme↑	β_1	Rythme √	M_2
Muscle atrial	Force ↑	β_1	Force ↓	M_2
Nœud auriculo-ventriculaire	Automaticité ↑	β_1	conduction vélocité↓ block atrioventriculaire	M ₂ e M ₂
Muscle ventriculaire	Automaticité ↑ Force ↑	β_1	-	

Le contrôle autonome du coeur

Cœur : contrôle parasympathique dominant (rythme sinusal : 100b/min – rythme vagal 70b/min)

→ Surmontable par le système orthosympathique en cas de nécessité (stress, exercices, ...)

Les récepteurs muscariniques en périphérie

Cardiaque:

- → chronotrope négatif
 - effet muscarinique médié par M2
 - M2 → Gi → canaux KAch → diminution de la pente de dépolarisation diastolique → diminution du rythme
- → inotrope négatif
 - effet muscarinique médié par M2
 - M2 \rightarrow Gi \rightarrow AC inactivée \rightarrow \downarrow cAMP \rightarrow PKA non active \rightarrow canaux calciques non activés \rightarrow \downarrow Ca2+ \rightarrow diminution de la force contractile

Implications

Agonistes muscariniques:

diminution du rythme et du volume d'éjection Vasodilatation NO-medié

→ Chute depression

Réponse à l'exercice non affectée

Anticholinestérases réversibles et irréversibles

Diminution du rythme et du volume d'éjection Hypotension

Antagonistes muscariniques:

Tachycardie modérée Pression artérielle non altérée

Agonistes β-adrénergiques (non sélectifs 1/2) tachycardie

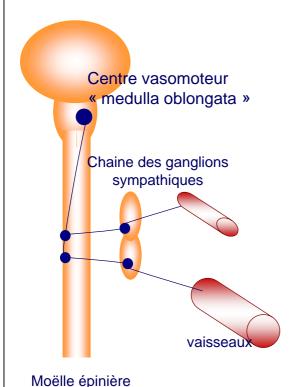
Antagonistes β-adrénergiques :

Traitement de l'hypertension (notamment!) Voir pharmaco spéc. FARM22..

- 1. Rappels
- 2. Contrôle de l'homéostasie
- 3. Applications à quelques systèmes/organes
 - L'œil
 - Le cœur
 - Les vaisseaux baroréflexes et chémoréflexes
 - Le métabolisme
 - L'immunité
- 4. En résumé

Le contrôle autonome du tonus vasculaire

Le système orthosympathique exerce un contrôle dominant sur la pression sanguine en maintenant les vaisseaux dans un état partiellement contracté (tonus sympathique):


- constriction supplémentaire → augmentation de pression
- dilatation → chute de pression

Paradoxe : très faible innervation parasympathique des vaisseaux

Présence de nombreux récepteurs muscariniques notamment sur l'endothélium

Le système autonome: effets vasculaires

Expression variable / vaisseaux

α₁: majoritaires, musculaires
 α₂: musculaires et endothéliaux

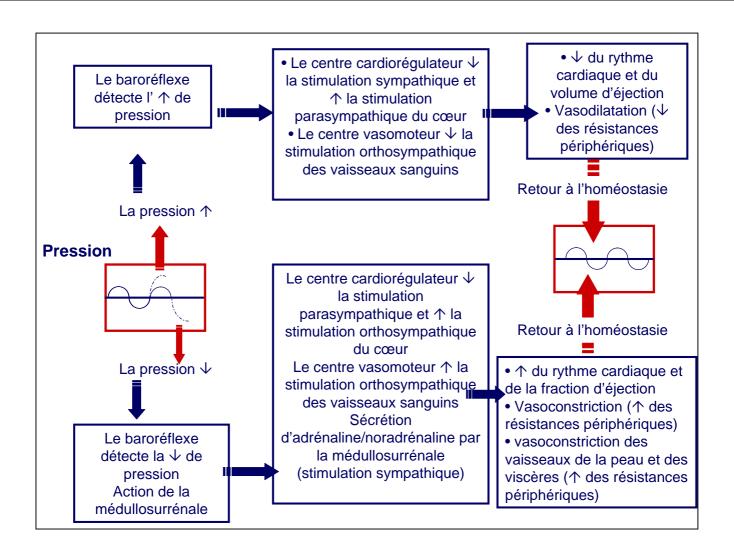
α → musculaires : contraction endothéliaux : relaxation (NO)

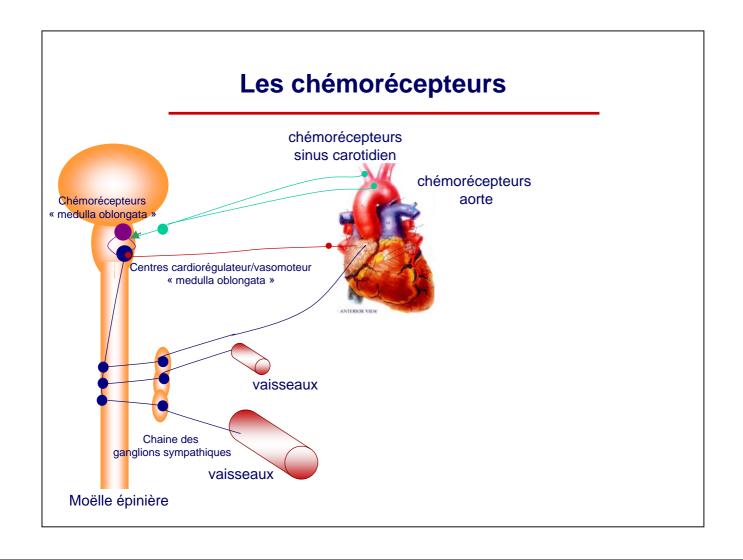
 $\triangleright \beta_2$: majoritaires, endothéliaux/musculaires

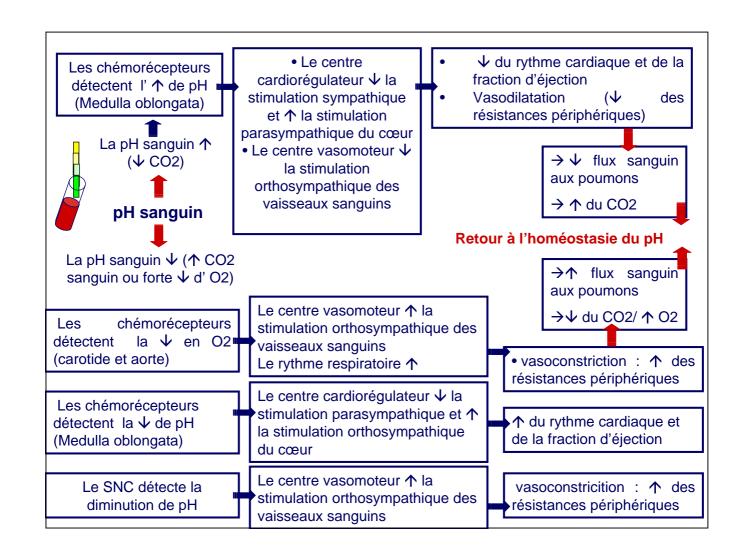
 $\triangleright \beta_1$: peu, gros troncs coronaires

 β₃: microcirculation coronaire, à investiguer, endothéliaux

β → Vasodilatation cAMP ou NO-médiée

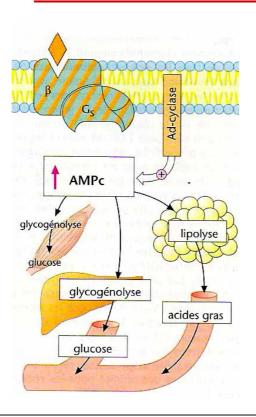

 $M_3 \rightarrow$ endothéliaux, musculaires (peu)


M₃ → endothéliaux : relaxation (NO) musculaires : contraction

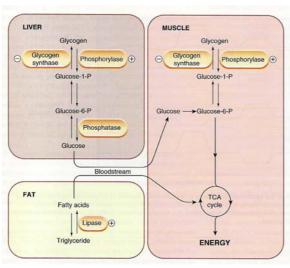

Régulation de la pression sanguine à court terme

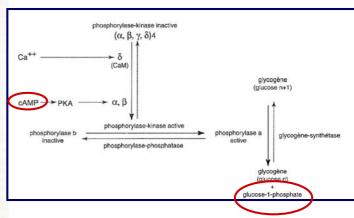
- barorécepteurs Carotide/aorte
- chémorécepteurs Carotide/aorte
- SNC (réponse à l'ischémie)

Barorécepteurs sinus carotidien Barorécepteurs Crosse aortique Centres cardiorégulateur/vasomoteur medulla oblongata » Vaisseaux Vaisseaux Moëlle épinière

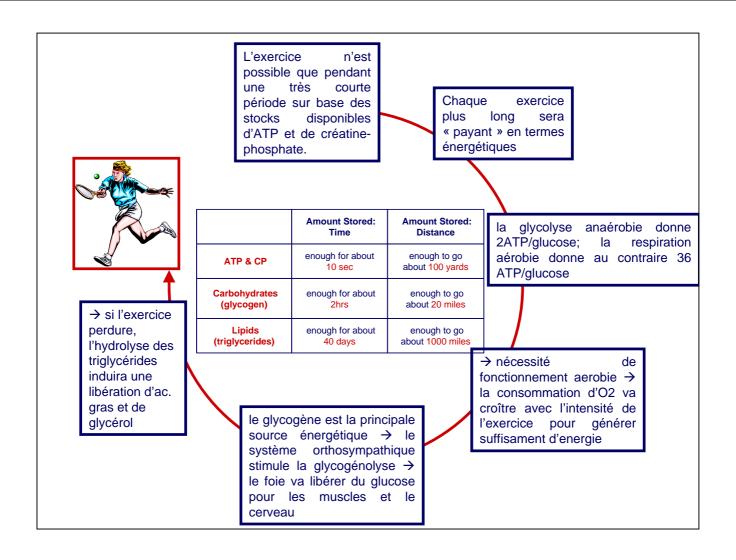


- 1. Rappels
- 2. Contrôle de l'homéostasie
- 3. Applications à quelques systèmes/organes
 - L'œil
 - Le cœur
 - Les vaisseaux baroréflexes et chémoréflexes
 - Le métabolisme
 - L'immunité
- 4. En résumé

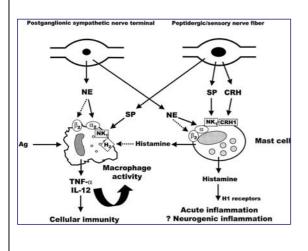

Régulation du métabolisme par les catécholamines

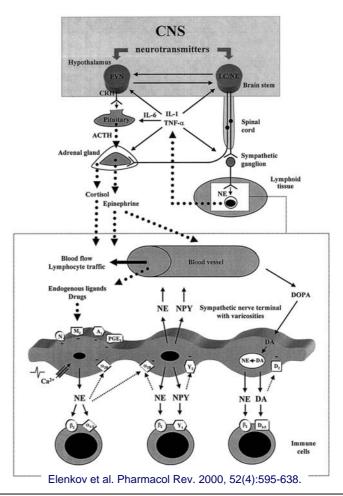


Les catécholamines stimulent la mobilisation des réserves:


- \uparrow Glycogénolyse (foie et muscle squelettique ($\beta 2/\alpha$))
- ↑ Lipolyse (β3)
- ◆ Sécrétion d'insuline → hyperglycémie

Régulation du métabolisme par les catécholamines




cAMP et glucose dans le muscle squelettique

- 1. Rappels
- 2. Contrôle de l'homéostasie
- 3. Applications à quelques systèmes/organes
 - L'œil
 - Le cœur
 - Les vaisseaux baroréflexes et chémoréflexes
 - Le métabolisme
 - L'immunité
- 4. En résumé

Système nerveux autonome et immunité

- 1. Rappels
- 2. Contrôle de l'homéostasie
- 3. Applications à quelques systèmes/organes
 - L'œil
 - Le cœur
 - Les vaisseaux baroréflexes et chémoréflexes
 - Le métabolisme
 - L'immunité
- 4. En résumé

Le système autonome

Localisation	Effet ortho	Récepteur adrénergique	Effet para	Récepteur cholinergique
Œil • Pupille • Muscle ciliaire	dilatation relaxation (faible)	α β	contraction contraction	${\sf M_3} \atop {\sf M_3}$
Organe sex. mâle Glandes salivaires	éjaculation sécrétion	α α, β	contraction sécrétion	M_3 ? M_3
		.,		ŭ

Le système autonome

Localisation	Effet ortho	Récepteur adrénergique	Effet para	Récepteur cholinergique
Bronches (muscles lisses)	pas d'inn. ortho dilatation par cath. circulantes	β_2	Constriction	M_3
Glandes	-	-	Sécrétion	M_3
Tractus GI				
 Muscles lisses 		$\alpha_{1}\alpha_{2}$, β_{2}	↑ motilité	M_3
 Shincters 	contraction	α_2, β_2	dilatation	M_3
 Glandes 	-	-	Sécrétion	M_3
			Sécrétion ac. Gastr.	M_1
Foie	glycogénolyse gluconeogenèse	α, β_2	-	
Rein	sécrétion de rénine	β_2		

Approche thérapeutique

Tout agent qui module la transmission cholinergique ou noradrénergique implique une modulation potentielle de la fonction de plusieurs organes/sytèmes.

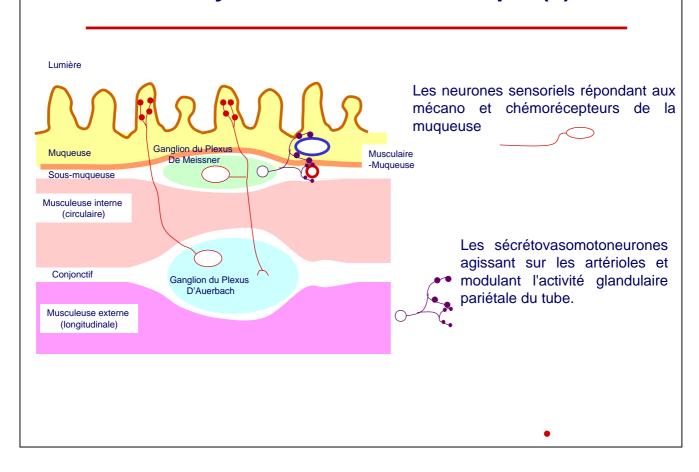
- Effets secondaires
- Importance de la sélectivité pour un isotype de récepteurs

En résumé: les effets muscariniques

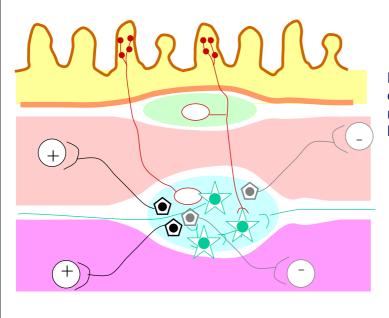
- ↓ Rythme cardiaque
- ↑ Motilité et sécrétions du tractus gastrointestinal
- ↑ Contraction des bronches
- ↑ Contraction de la pupille
- ↑ Salivation, transpiration

En résumé: les effets adrénergiques

- ↑ Rythme cardiaque (béta1)
- ↑ Force cardiaque (béta1)
- ↑ Contraction vasculaire (alpha/contractants >>> béta/relaxants)
- ↑ Relaxation des bronches (béta2)
- ↑ Relaxation de l'utérus (béta2)
- ↑ Conversion des réserves en énergie disponible


Le système nerveux entérique (1)

Le système nerveux entérique est organisé en un réseau ou plexus ganglionné où les ganglions contiennent les corps cellulaires des neurones entériques et les cellules de la glie. Les mailles de ce réseau représentent les axones des neurones qui réalisent un circuit complexe des projections locales. Elles reçoivent des afférences du système nerveux central modulant ses effets par des projections sympathiques et parasympathiques mais reste suffisamment autonome pour agir seul de façon coordonnée.


Le système comprend différentes classes de cellules :

- •Les neurones à neurotransmetteurs multiples (voir shémas suivants)
- •Les cellules de Cajal, d'origine mésodermique de la splanchnopleure jouent un rôle de contrôle du rythme péristaltique en imposant aux léiomyocytes des trains d'ondes aborales (opposé à la bouche).
- •Les cellules de la glie entérique.

Le système nerveux entérique (2)

Le système nerveux entérique (3)

Les neurones moteurs, soit excitateurs ou inhibiteurs et agissant sur la musculeuse circulaire ou sur la longitudinale

Les interneurones modulateurs ascendants et descendants.