

STAT3222 Survival analysis

[15h] 3 crédits

Cette activité se déroule pendant le 1er semestre

Enseignant(s): Ingrid Van Keilegom

Langue d'enseignement : anglais

Niveau: Troisième cycle

Objectifs (en termes de compétences)

A l'issue de ce cours, l'étudiant sera familiarisé avec les concepts et modèles de base en analyse de survie. En outre, l'étudiant sera capable d'analyser des données réelles à l'aide de logiciels. Le cours accentue surtout la méthodologie, l'interprétation et les mécanismes derrière les modèles courants en analyse de survie, et moins les aspects théoriques et mathématiques.

Objet de l'activité (principaux thèmes à aborder)

Les concepts et modèles suivants seront étudiés dans ce cours :

- Censure à droite, troncature à gauche
- Certaines fonctions de répartition paramétriques courantes en analyse de survie
- Estimation nonparamétrique des quantités de base (l'estimateur de Kaplan-Meier de la fonction de survie, l'estimateur de Nelson-Aalen de la fonction de hasard cumulée,...)
- Tests d'hypothèse concernant l'égalité de deux ou plusieurs courbes de survie
- Modèles à hasards proportionnels
- Modèles de régression paramétriques / Modèles à hasards accélérés
- Modèles de 'frailty'

Résumé: Contenu et Méthodes

Contenu

- Introduction aux concepts de base (commes les mécanismes de censure et troncature, certaines fonctions de survie paramétriques courantes en analyse de survie,...)
- Estimation nonparamétrique des quantités de base (l'estimateur de Kaplan-Meier de la fonction de survie, l'estimateur de Nelson-Aalen de la fonction de hasard cumulée,...), le développement de certaines propriétés (asymptotiques) de ces estimateurs, et des tests d'hypothèse concernant l'égalité de deux ou plusieurs courbes de survie
- Modèle à hasards proportionnels (estimation des composantes du modèle, tests d'hypothèse, sélection de variables explicatives, validation du modèle,...)
- Modèle à hasards accélérés (estimation des paramètres du modèle, tests d'hypothèse, sélection du modèle, validation du modèle....)
- Modèle de `frailty' (introduction, motivation, estimation des composantes du modèle,...) Méthodes

Le cours consiste en des cours magistraux, et un projet individuel sur ordinateur.

Autres informations (Pré-requis, Evaluation, Support, ...)

Pré-requis

- L'étudiant devrait avoir une bonne connaissance de probabilité et de statistique.
- Une bonne maitrîse de SAS ou Splus (ou un autre logiciel avancé) est nécessaire.

Evaluation

L'évaluation consiste en :

- un examen oral
- un projet sur ordinateur, qui consiste en une analyse de données réelles

Support

Les notes de cours sont distribuées lors de la première séance du cours.

Encadrement

Professeur: Ingrid Van Keilegom, tél.: 010/47 43 30, e-mail: vankeilegom@stat.ucl.ac.be

Références

Cox, D.R. et Oakes, D. (1984). Analysis of survival data, Chapman and Hall, New York.

Hougaard, P. (2000). Analysis of multivariate survival data. Springer, New-York.

Klein, J.P. et Moeschberger, M.L. (1997). Survival analysis, techniques for censored and truncated data, Springer, New York.

Pour plus d'informations :

http://www.stat.ucl.ac.be/cours/stat3222/index.html http://www.stat.ucl.ac.be/cours/stat3222/index.html

Autres crédits de l'activité dans les programmes

STAT3DA/B diplôme d'études approfondies en statistique (biostatistique et (3 crédits)

épidémiologie)

STAT3DA/E diplôme d'études approfondies en statistique (statistique et (3 crédits)

économétrie)

STAT3DA/M Diplôme d'études approfondies en statistique (méthodologie de (3 crédits)

la statistique)

STAT3DA/P diplôme d'études approfondies en statistique (pratique de la (3 crédits) Obligatoire

statistique)