

## ELEC2900 Signal processing

[30h+30h exercises] 5 credits

This course is taught in the 2nd semester

| Teacher(s): | Benoît Macq, Luc Vandendorpe |
|-------------|------------------------------|
| Language:   | French                       |
| Level:      | Second cycle                 |

#### Aims

At the end of this lecture, the students will be able to

- make the link between the analog description of sampling and sequences,

- modify the sampling rate of a discrete time signal i.e., upsample or downsample lowpass or passband signals, deterministic or random; implement these operations by means of efficient structures, in particular polyphase structures,

- understand the consequences of sampling the spectrum,

- design from a spectral template, finite impulse response (FIR) filters by means of different optimum and suboptimum methods,

- design from a spectral template, infinite impulse response (IIR) filters; understand and use the bilinear transform; design filters based on criteria discussed in "INMA2731 : Processus stochastiques",

- design systems for processing multidimentional signals, in particular images,

- understand and use linear transformations for decorrelation, multiresolution analysis, and sicriminant analysis

### Main themes

Identical to the contents of the course

#### Content and teaching methods

- Sampling : Shannon sampling theorem ; notions of sequence,
- Sampling rate conversion : interpolation, downsampling, lowpass and bandpass signals, deterministic and random signals,
- Structures and graph theory (introduction), polyphase components,
- Discrete Fourier transform,
- Finite impulse response filters,
- Basics of analog filters and templates,
- Bilinear transform and design of infinite impulse response filters
- Processing of random signals,
- Processing of multidimensional signals,
- Denoising and singularity detection,
- Orthogonal transforms,
- Decorrelative transforms,
- Wavelet transform,
- Linear discriminant transform,
- Non parametric (periodogram) and parametric (process identification) spectral analysis

# Other information (prerequisite, evaluation (assessment methods), course materials recommended readings, ...)

Teaching and learning method : There will be lectures interleaved with practical training (in teaching room or computation center with MATLAB) Prerequisites : INMA1731 : Random processes : estimation and prediction Assessment : Written examination about exercices, with notes Could be given in English

## Other credits in programs

| ELEC22              | Deuxième année du programme conduisant au grade<br>d'ingénieur civil électricien                             | (5 credits)                | Mandatory |
|---------------------|--------------------------------------------------------------------------------------------------------------|----------------------------|-----------|
| ELEC23              | Troisième année du programme conduisant au grade<br>d'ingénieur civil électricien                            | (5 credits)                |           |
| FSA3DA<br>FSA3DS/TL | Diplôme d'études approfondies en sciences appliquées<br>Diplôme d'études spécialisées en sciences appliquées | (5 credits)<br>(5 credits) |           |
|                     | (télécommunications)                                                                                         |                            |           |