

ELEC2620 Logic circuits and systems

[30h+30h exercises] 5 credits

This course is taught in the 1st semester

Teacher(s):Jean-Jacques Quisquater, Charles TrullemansLanguage:FrenchLevel:Second cycle

Aims

This is the fundamental course in digital systems and hardware architectures.

After this course, students will be able to specify, represent in several ways and synthesise

- . combinatorial circuits
- . finite state machines
- . algorithmic machines

They will be able to determine by simple way the scheduling of a computation scheme described as a precedence graph, to implement it as an algorithmic machine and to evaluation the implementation cost of this machine in time and space. Advanced synthesis and optimisation methods are covered by the course ELEC2760 (Design and optimization of digital circuits and systems).

Main themes

Identical to the contents of the course

Content and teaching methods

Combinatorial circuits : boolean algebra logical gates boolean networks design methods for universal (multiplexers, registers, counters) or specialised components complexity theory elements Sequential circuits : temporal barrier, master-slave register finite state automaton graph, state stable or programme representation state coding Algorithmic machines : control part and operative part decomposition temporal organization operative part implementation (memory, connection and computation resources) control part implementation (architectural templates, microprogramming) Computation schemes : precedence graphs scheduling cost evaluation (time, space) An algorithmic machine is the implementation of a system whose behaviour is abstractly described as an algorithm. Examples are microprocessors, digital signal processors, industrial controllers ... Architectural templates and design methods for simple systems are introduced by this course. The stress is on formal description and methods, illustrated by examples.

Other information (prerequisite, evaluation (assessment methods), course materials recommended readings,

...)

Methods Lectures and exercices Prerequisits There is no required prerequisite. The course ELEC2531, Electronics II gives a complementary view of the electronic behaviour of digital components and systems. Assessment Written examination Support Slides on http://icampus.ac.be/ This course is partly referring to Daniel Gajski, Principles of Digital Design, Englewood Cliffs, NJ : Prentice Hall, 1995

Other credits in programs

ELEC22	Deuxième année du programme conduisant au grade	(5 credits)
	d'ingénieur civil électricien	
ELME23/M	Troisième année du programme conduisant au grade	(5 credits)
	d'ingénieur civil électro-mécanicien (mécatronique)	
FSA13BA	Troisième année de bachelier en sciences de l'ingénieur,	(5 credits)
	orientation ingénieur civil	
MAP23	Troisième année du programme conduisant au grade	(5 credits)
	d'ingénieur civil en mathématiques appliquées	