UCL Faculté des sciences

SC

CHIM1251 Chimie générale (2ème partie)

[45h+54h exercises] 8 credits

This course is taught in the 2nd semester

Teacher(s):	Michel Devillers (coord.), Bernard Tinant
Language:	french
Level:	1st cycle course

Aims

Quantitative interpretation of chemical phenomena on the basis of physico-chemical laws. Initiation to the use of databases.

Main themes

Thermodynamics : first principle - thermochemistry. Chemical equilibrium : general theory, equilibria in solution : acidobasicity and neutralization curves, precipitation, solubility and pH dependence, complexation and influence on the solubility - Electrochemistry : electrolysis, conductivity ; batteries, redox potentials - Phase equilibria : systems with one and two constituents (liquid-vapor, solid-liquid, liquid-liquid); cryoscopy, ebullioscopy - Thermodynamics : second principle.

Content and teaching methods

Content : Thermodynamics : First principle, forms of energy, state functions, internal energy, enthalpy.

Thermochemistry : determination of reaction enthalpies, Hess's law, formation enthalpies (also for ions), combustion enthalpy, solution enthalpy; resonance energy.

Chemical equilibrium : reaction prediction and shift of equilibrium (Principles of Berthelot, Mattignon, Le Chatelier); law of mass action; formulations of the equilibrium constant. Ionic equilibria : acid-base equilibria, pH calculations for systems with one or several solutes : buffer mixtures; neutralizations curves; acid-base indicators.

Solubility and precipitation. Complexation equilibria and influence of complex formation on solubility.

Electrochemistry : electrolytic conductors. Electrolysis : reactions at electrodes and Faraday's law of electrolysis. Electrolytic conductivity and applications of conductimetry. Batteries : Daniell's cell, electromotive force and free energy. Types of electrodes. Electrode potentials and Nernst's equation.

Phase equilibria : systems with one or two components (liquid-liquid, liquid-vapor, solid-liquid) Thermodynamics : second principle.

Methods : lectures - problem solving in small groups - practical exercices in the laboratory.

Other credits in programs

BIOL12	Deuxième candidature en sciences biologiques	(8 credits)	Mandatory
BIR12	Deuxième année du programme conduisant au grade de	(8 credits)	Mandatory
	candidat bio-ingénieur		
CHIM12	Deuxième candidature en sciences chimiques	(8 credits)	Mandatory