Objectifs
Ce cours vise à donner aux étudiants les bases conceptuelles et les méthodes du calcul matriciel, de la résolution des systèmes d'équations linéaires et des problèmes aux valeurs propres, et de la réduction des formes quadratiques.
Cahier des charges
Introduction aux notions fondamentales de l'algèbre linéaire, en vue de leurs applications en analyse, géomètrie, physique et analyse numérique.
Résumé
Contenu:
- Système d'équations linéaires, échelonnement de matrices.
- Espaces vectoriels, sous-espaces vectoriels et applications linéaires.
- Matrices: rang, déterminant, inversibilité.
- Produit scalaire et projections orthogonales.
- Opérateurs linéaires: valeurs propres et vecteurs propres, théorème spectral pour les opérateurs sur un espace euclidien. Formes quadratiques: diagonalisation et loi d'inertie de Sylvester.
Méthodes:
Le cours comprend des exposés théoriques, des séances d'exercices encadrées et un projet facultatif (exercice sbstantiel à résoudre individuellement ou en groupe).
Autres informations du cahier des charges
Pré-requis : Connaissance des opérations fondamentales sur les nombres réels et complexes, capacité de lire un texte écrit en français, familiarité minimale avec l'utilisation de symboles mathématiques (indices, notamment)
Evaluation : Examen écrit portant sur la compréhension de la théorie (concepts, énoncés, démonstrations) et sur la résolution d'exercices de synthèse
Support : Notes rédigées par le professeur, et comprenant à la fois la théorie et les exercices (diffusion DUC)
Séances d'exercices obligatoires et séances de monitorat facultatives, assurées par les assistant(e)s chargé(e)s de l'encadrement (membres de l'unité AGEL, spécialisé(e)s en algèbre).
Le cours MATH1110 est mentionné dans les programmes suivants :
MATH1
|
Candidature en sciences mathématiques
|
| |
PHYS1
|
Candidature en sciences physiques
|
| |
Valeurs ECTS de l'activité
SCC11
|
Première candidature en sciences mathématiques et physiques (groupe C)
|
|
Obligatoire
|
Valeur ECTS par défaut
|
(7 ECTS)
| |
|