Strong Asymptotics of Planar Orthogonal Polynomials: Gaussian Weight Perturbed by Finite Number of Point Charges

Meng Yang

Abstract

We consider the planar orthogonal polynomial $p_{n}(z)$ with respect to the measure supported on the whole complex plane $$
\begin{equation*} \mathrm{e}^{-N|z|^{2}} \prod_{j=1}^{\nu}\left|z-a_{j}\right|^{2 c_{j}} \mathrm{~d} A(z) \tag{1} \end{equation*}
$$ where $\mathrm{d} A$ is the Lebesgue measure of the plane, N is a positive constant, $\left\{c_{1}, \cdots, c_{\nu}\right\}$ are nonzero real numbers greater than -1 and $\left\{a_{1}, \cdots, a_{\nu}\right\} \subset \mathbb{D} \backslash\{0\}$ are distinct points inside the unit disk. In the scaling limit when $n / N=1$ and $n \rightarrow \infty$ we obtain the strong asymptotics of the polynomial $p_{n}(z)$. We show that the support of the roots converges to what we call the "multiple Szegő curve," a certain connected curve having $\nu+1$ components in its complement. We apply the nonlinear steepest descent method on the matrix Riemann-Hilbert problem of size $(\nu+1) \times(\nu+1)$. This is the joint work with Seung-Yeop Lee(University of South Florida).

