Préférences par rapport au risque et marchés à terme : le cas d'une quantité incertaine

Benoît Sévi*

LASER-CREDEN**

1 Introduction

Notre travail vise à expliciter le résultat original de Losq (1982) et à le généraliser aux différentes situations de marché à terme et aux cas, plus réalistes, où les risques prix et quantités encourus par la firme peuvent être liés. Notre démonstration est plus directe et permet de faire apparaître les conséquences de la prudence au sens de Kimball (1990) sur le ratio optimal de couverture. Un point intéressant est l'explication de ce résultat au moyen de l'aversion au risque de perte (Menezes, Geiss et Tressler, 1980). La notion de prudence, importante sur le plan théorique, trouve ici un intérêt pratique, puisque le cas d'un quantité incertaine est souvent en économie plutôt la règle que l'exception. Le cas de l'extraction de mineraux, des cultures agricoles, de l'élevage, de la fourniture énergétique ou du commerce international sont autant d'exemples où il subsiste un risque ultime (météorologie, niveau de demande, aléa technique, etc.) non diversifiable et non assurable.

* Je tiens à remercier Agnès d'Artigues, Laurent Linnemer, Jacques Percebois, Olivier Rousse et Wilfried Sand-Zantman pour leurs remarques constructives sur ce travail. Je tiens également à remercier l'éditeur des Recherches Économiques de Louvain ainsi que trois rapporteurs qui ont permis d'améliorer significativement cet article. Les erreurs qui demeurent sont bien sûr de ma responsabilité.

** LASER-CREDEN, Faculté de Sciences Économiques, Av. de la Mer, Site de Richter, CS 79606. 34960 Montpellier cedex 2, France. Email: benoit.sevi@gmail.com

1 Rappelons que Kimball (1990) développe un modèle d'épargne-consommation sur deux périodes montrant qu'une condition nécessaire et suffisante pour une épargne de précaution en première période (relative à un risque sur le revenu de la seconde) est la convexité de l'utilité marginale (dérivée troisième positive). Kimball parlera ainsi de "prudence" et pourra expliquer les conclusions de contributions plus anciennes (Leland (1968), Sandmo (1970), Drèze et Modigliani (1972)) en reproduisant, trait pour trait, l'analyse de Pratt (1964), cette fois-ci par rapport à l'utilité marginale. Pour une présentation détaillée du concept de prudence, voir Crainich et Eeckhoudt (2005).

2 En particulier, elle sous-tend l'hypothèse d'Arrow d'aversion absolue au risque décroissante avec la richesse (DARA).
Le comportement d’une firme en concurrence, maximisant son espérance d’utilité, soumise à une incertitude de prix a été étudié de manière concomitante par Baron (1970), Rothschild et Stiglitz (1971) et Sandmo (1971). L’apport particulièrement significatif de ces contributions est de mettre en relation le degré d’aversion au risque de la firme avec sa décision optimale de production. Le résultat central est que l’une firme averse au risque produira, à espérance égale, moins dans le cas d’un prix risqué que dans le cas d’un prix non-risqué. L’existence d’un marché à terme peut modifier ce résultat, en garantissant à l’avance un prix au producteur. Les travaux de Danthine (1978), Holthausen (1979) et Feder, Just and Schmitz (1980) montrent que si le producteur a accès à un marché à terme, il considérera le prix à terme comme un prix de vente certain pour son output et adaptera sa production en conséquence. La position sur le marché à terme sera alors la somme d’une composante représentant la volonté de l’agent de diminuer son risque (composante de couverture) et d’une composante représentant sa volonté de profiter du biais anticipé sur le marché à terme, c’est-à-dire la différence entre le prix à terme et l’espérance du futur prix spot (composante spéculative). Cependant, cette propriété ne demeure vérifiée que dans le cas d’une quantité déterministe, c’est à dire connue précisément au moment de la détermination de la couverture optimale.

McKinnon (1967) le premier, fait remarquer que le cas d’une quantité certaine ne convient pas, par exemple, au domaine agricole, en raison d’aléas climatiques et biologiques qui sont par définition non maîtrisables. Par rapport à ce type de risques, les marchés sont incomplets, car ils ne proposent ni produits financiers ni contrats d’assurance adaptés. L’analyse de McKinnon s’effectue dans un cadre moyenne-variance et conclut à un niveau optimal de couverture égal à l’espérance de la quantité produite. L’hypothèse implicite de McKinnon (préférences quadratiques) ne permet pas de tenir compte des effets de troisième ordre sur l’utilité. Losq (1982) relâche cette hypothèse et montre que le niveau de couverture optimal dépend du signe de la dérivée troisième de l’utilité. Or c’est précisément le signe de la dérivée troisième qui permettra quelques années plus tard à Kimball de caractériser le comportement de prudence. De plus, la contribution de Losq n’examine pas les différentes situations du marché à terme (déport normal, report) et utilise un cadre d’analyse qui limite la relation statistique entre le prix spot et le prix forward à la stricte indépendance.

Plus récemment, Kerkvliet et Moffett (1991) ont envisagé le cas d’une multinationale devant recevoir un montant imparfaitement connu en devises étrangères, qu’elle souhaite couvrir sur le marché dérivé des changes. Les auteurs retiennent le critère de minimisation de la variance qui ne prend

L’objet de cet article est de réinterpréter le résultat de Losq à la lumière du concept de prudence développé ultérieurement par Kimball. L’analyse montre un lien entre le caractère prudent d’un agent économique et sa décision optimale de couverture théorique dans un cadre où le risque de prix coexiste avec un risque volumétrique. Nous envisageons de plus les cas, laissés de côté dans la littérature, où ces deux risques peuvent être statistiquement liés, et montrons qu’il n’est alors pas possible d’évaluer la couverture optimale par rapport au niveau espéré de production.

La section 2 présente le cadre théorique et examine le cas référence, où les risques prix et quantités sont considérés comme statistiquement indépendants. La section suivante envisage la situation où les deux risques sont corrélos. La section 4 discute les résultats obtenus et conclut.

2 Indépendance des risques prix et quantité

2.1 Cadre théorique et condition d’optimalité

Le modèle comporte deux périodes \(t = 0, 1 \). La firme doit décider de sa position optimale sur le marché à terme, sachant qu’elle va disposer en \(t = 1 \) d’une quantité d’un bien qu’elle souhaitera vendre immédiatement. Par souci de simplicité, nous faisons abstraction des coûts de production. La quantité est représentée par une variable aléatoire \(\tilde{q} \) définie sur un support \([g, \bar{q}]\), avec \(g > 0 \). Le bien est vendu en \(t = 1 \) sur le marché spot au prix \(\tilde{p} \) (support \([\tilde{p}, \bar{p}]\) avec \(\bar{p} > 0 \)). Prix et quantités ne sont pas connus en

5 Anderson et Danthine (1983, p 377) font remarquer que la minimisation de la variance correspond mal à l’activité entrepreneuriale ou agricole, qui par nature recèle toujours une part de risque non diversifiable et non assurable. Commentant l’article de McKinnon, ils s’expriment ainsi : “This behavioral assumption appears inappropriate, since if they were in fact risk minimizers they would not farm, since quantity uncertainty is unavoidable.”

6 Afin de mettre en avant les propriétés des solutions en référence au comportement par rapport au risque de l’agent, on fait l’hypothèse que le seul instrument financier disponible pour la firme est un contrat forward correspondant précisément au bien détenu et dont la date de maturité est exactement \(t = 1 \). On évite ainsi le ‘risque de base’ lié aux différences dans les dates et lieux de livraison, ou encore aux différentiels de qualités (cf. Lapan et Moschini, 1994).

7 Dans le cas d’un coût de production de forme convexe ou bien d’un coût constant, l’existence d’une solution intérieure unique n’est pas remise en cause. Nous discutons cette hypothèse dans la conclusion.
période 0 ; l’incertitude est levée en période 1. Dans ce modèle, l’unique variable de contrôle est le nombre \(h \) de contrats forward vendus (\(h < 0 \) correspond à une position ‘longue’ tandis que \(h > 0 \) illustre une position ‘courte’) au prix \(f \) sur le marché à terme. La richesse finale de la firme peut donc s’écrire :

\[
\tilde{W} \equiv W_0 + \tilde{p} q + h(f - \tilde{p})
\]

avec \(W_0 \) la richesse initiale de la firme.

On fait l’hypothèse que les préférences de la firme peuvent se représenter au travers d’une fonction d’utilité \(u \), croissante et concave, permettant d’illustrer la présence d’aversion pour le risque. Le programme de la firme consiste donc à maximiser son espérance d’utilité, par rapport à la variable \(h \), soit :

\[
\max_h E U(\tilde{W})
\]

avec \(E(\cdot) \), l’opérateur d’espérance conditionnellement à l’ensemble de l’information disponible pour le décideur sur les prix et les quantités.

La condition de premier ordre s’écrit :

\[
E [u'(\tilde{W})(f - \tilde{p})] = 0
\]

L’aversion au risque suffit à rendre le problème concave en fonction de la variable \(h \) et satisfait donc la condition de second ordre, d’où une solution intérieure unique satisfaisant la condition de premier ordre.

Soient \(x \) et \(y \), deux variables aléatoires réelles, les deux propriétés suivantes sont toujours vérifiées :

\[
E(xy) = E(x)E(y) + \text{cov}(x, y)
\]

\[
\text{cov}(x, y) = \text{cov}(E(x|y), y)
\]

(4)

(5)

On utilise ces deux propriétés pour réécrire la condition 3 et faire apparaître la position relative du prix du contrat forward par rapport à l’espérance du futur prix spot, soit :

\[
[f - E(\tilde{p})]E u'(\tilde{W}) = \text{cov}(\tilde{p}, E(u'(\tilde{W})|p))
\]

Lorsque le prix forward se situe en deçà de l’espérance du futur prix spot (\(f < E(\tilde{p}) \)), on parle de déport normal (normal backwardation). Dans le cas contraire (\(f > E(\tilde{p}) \)), on parle alors de report (contango). Lorsque le prix forward égale l’espérance du futur prix spot, le marché est dit ‘non-biaisé’. Envisageons dans un premier temps le cas non-biaisé.

8 L’hypothèse d’une firme présentant de l’aversion pour le risque est standard depuis la contribution de Sandmo (1971). Un autre moyen de justifier cette hypothèse est le recours à la littérature sur la gestion des risques par la firme (corporate risk management) dont on peut trouver une bonne présentation dans l’article de Graham et Rogers (2002). L’aversion pour le risque peut encore n’être qu’apparente et due à des imperfections de marché ; on parle alors de ‘pseudo aversion pour le risque’ (voir à ce sujet Masson (1972), Greenwald et Stiglitz (1990,1993) ou Vercammen (1994)). Dans ce cas, l’agent neutre au risque se comporte comme s’il avait de l’aversion pour le risque.

9 On se reporterà à Hull (2003), chap. 2 et 3 pour une explication détaillée de ces deux théories et des auteurs qui y sont rattachés.
2.2 Couverture optimale dans le cas d’un marché à terme non-biaisé

Puisque dans notre problème la quantité est incertaine, nous fixons le niveau de référence à $E(\tilde{q})$, soit la quantité anticipée par la firme. Lorsque le nombre de contrats forward vendus est au delà de cette quantité, on parlera de sur-couverture. Dans le cas contraire, on parlera de sous-couverture. La couverture est dite totale pour le cas où il est vendu un nombre de contrats égal à $E(\tilde{q})$. Dans le cas particulier où le prix forward est non-biaisé, le type de position prise par la firme sur le marché à terme est donné par la relation suivante :

Proposition 1. Si le marché à terme est non-biaisé, soit $f = E(\tilde{p})$, un agent prudent ($u'' > 0$) choisira de sous-couvrir sa position sur le marché à terme. Inversement, un agent imprudent décidera de sur-couvrir. Si l’agent n’est ni prudent, ni imprudent ($u'' = 0$), la position optimale sur le marché à terme devient une couverture totale.

Si le marché à terme n’est pas biaisé, la condition 6 implique

$$cov(\tilde{p}, E(u'(\tilde{W}) | p)) = 0.$$

Cette covariance ne peut être nulle si $\partial E[u'(\tilde{W}) | p] / \partial p$ est strictement monotone sur le support $[\tilde{p}, \tilde{p}]$ de \tilde{p}. La dérivée se calcule comme suit :

$$\frac{\partial E[u'(\tilde{W}) | p]}{\partial p} = E[(\tilde{q} - h)[u''(\tilde{W}) | p]]$$

$$= [E(\tilde{q}) - h]E[u''(\tilde{W}) | p] + cov(\tilde{q}, u''(\tilde{W}) | p)$$

La condition 7 permet de déduire le comportement optimal si la firme est prudente ($u'' > 0$) ou imprudente ($u'' < 0$). En effet, si ($u'' > 0$) (u'' croissante), alors $cov(\tilde{q}, u''(\tilde{W}) | p) > 0$ puisque la richesse finale est une fonction strictement croissante des réalisations de \tilde{q} sur $[\tilde{q}, \tilde{q}]$. Si $[E(\tilde{q}) - h] < 0$ alors $\partial E[u'(\tilde{W}) | p] / \partial p$ est uniformément positive sur $[\tilde{p}, \tilde{p}]$, ce qui est impossible. On a donc $h < E(\tilde{q})$ ce qui correspond à une sous-couverture. Le raisonnement est similaire dans le cas où la firme est imprudente. Dans ce dernier cas, la firme va sur-couvrir. Une couverture totale sera optimale si la firme n’est ni prudente, ni imprudente, soit $u'' = 0$ (préférences quadratiques).

L’intuition de ce résultat découle de l’équivalence (cf. Eeckhoudt, Gollier et Schlesinger, 2005) entre les concepts de prudence et d’aversión pour le risque de perte au sens de Menezes et al. (1980). Un agent prudent accepte plus difficilement l’introduction d’un bruit blanc dans les basses réalisations de sa richesse finale que dans les hautes réalisations de celle-ci. Dans notre modèle, l’agent peut modifier la distribution de sa richesse finale en vendant moins de contrats à terme. La richesse finale est la plus faible

10 Le terme anglo-saxon est full-hedge, routine hedge ou encore perfect hedge. L’adjectif ‘total’ ne rend qu’imparfaitement compte du sens original. Notons que le concept de full-hedge est le premier à émerger en théorie financière (Ederington (1979) montrera que ce ratio n’est pas adapté lorsqu’il y a risque de base).
lorsque se réalisent à la fois q pour la quantité et \bar{p} pour le prix 11 (voir la définition de la richesse finale, éq. 1). En réduisant le nombre de contrats à terme vendus, la firme limite donc le risque lié à la possibilité d’une couverture excessive et diminue ainsi l’occurrence des plus basses réalisations. Notons que la firme augmente également sa richesse finale maximale (cas où \tilde{q} et \bar{p} se réalisent). Cette translation du support s’effectue aux dépens des réalisations intermédiaires. Le raisonnement est inversé dans le cas d’une firme imprudente.

2.3 Couverture optimale dans le cas de marchés à terme biaisés

Envisageons à présent le cas où le marché à terme peut être en situation de déport normal ou de report. On a vu précédemment que la prudence était une condition suffisante pour amener la firme à dévier d’une couverture totale sur le marché à terme, même dans le cas non-biaisé. Dans le cas de marchés biaisés, une composante spéculative apparaît (cf. Holthausen (1979), Anderson et Danthine (1981, 1983)). La composante spéculative est inversement proportionnelle au degré d’aversion pour le risque. Elle s’exerce dans le sens du biais anticipé par la firme. Selon que les effets liés à la prudence et à la volonté de spéculer jouent ou non dans le même sens, on peut conclure ou ne pas conclure quant à l’effet global. La proposition suivante résume les résultats obtenus ; les explications suivent 12 :

Proposition 2. *Dans le cas où le marché à terme se trouve en situation de déport normal, un agent prudent ou exhibant des préférences quadratiques choisira une sous-couverture. Dans le cas où le marché à terme se trouve en situation de contango, un agent imprudent ou exhibant des préférences quadratiques choisira une sur-couverture.*

Si le marché est en déport normal, la firme spéculle en vendant moins de contrats que dans le cas non-biaisé. La prudence a le même effet pour la raison expliquée précédemment. Les effets spéculatifs et liés à la prudence jouent donc dans le même sens et permettent de conclure que la firme optera pour une sous-couverture. Le raisonnement est identique si la firme est imprudente et que le marché est en situation de report. La firme optera alors pour une sur-couverture.

On ne peut cependant conclure lorsque le biais anticipé par la firme et le comportement de prudence ont des effets contraires. C’est le cas d’une firme prudente dans un marché en report. C’est aussi le cas d’une firme imprudente dans un marché en déport normal. Nous faisons figurer l’ensemble des résultats des deux propositions dans le tableau 1.

11 Ce n’est vrai que si la quantité de contrats forward vendus est élément du support quantité $[q, \tilde{q}]$, ce qui est une hypothèse raisonnable.
12 Les démonstrations sont similaires à celle de la proposition 1.
\[\begin{array}{|c|c|c|c|}
\hline
& u'' > 0 & u'' = 0 & u'' < 0 \\
\hline
\text{deport normal } f < E(\tilde{p}) & \text{sous-couverture} & \text{sous-couverture} & \text{indéterminé} \\
\hline
\text{non-biaisé } f = E(\tilde{p}) & \text{sous-couverture} & \text{couverture totale} & \text{sur-couverture} \\
\hline
\text{contango } f > E(\tilde{p}) & \text{indéterminé} & \text{sur-couverture} & \text{sur-couverture} \\
\hline
\end{array}\]

Tableau 1 : Couverture d'une quantité incertaine et prudence (risques indépendants)

3 Cas où les prix et les quantités sont liés

On trouve au sein de la microéconomie de l'incertain plusieurs concepts permettant l'analyse de la décision lorsque l'agent est soumis à plusieurs risques \(^{13}\). L'hypothèse généralement admise est que ces risques sont indépendants. Peu de contributions envisagent l'existence d'un lien statistique entre les deux risques (Pratt (1988), Finkelshtain et Chalfant (1993), Finkelshtain, Kella et Scarsini (1999) et Tsetlin et Winkler (2005) font néanmoins exception). Le but de cette section est d'envisager le cas où les risques prix et quantité sont corrélés.

Cette hypothèse, si elle ne permet malheureusement pas d'arriver à des résultats non ambigus, comme dans le cas de l'indépendance, s'accorde toutefois mieux avec la réalité. Prenons deux exemples. Dans le cas d'un bien agricole, on peut penser qu'un climat favorable bénéficiera à l'ensemble des producteurs (risque systémique) plutôt qu'à un seul (idiosyncrasie du risque). Le niveau global de la production est alors augmenté et les prix auxquels chaque producteur peut écouter sa marchandise est diminué. Les risques prix et quantité sont donc négativement corrélés dans ce cas (cf. McKinnon, 1967). Un autre exemple est le cas d'un producteur d'électricité soumis à une enchère à prix uniforme (merit order, cf. Wilson, 2002). Dans ce cas, une intensification de la demande se traduit par une augmentation du prix. En effet, pour les producteurs se situant à la marge (lieu de détermination du prix unique), une augmentation du volume se traduit par une augmentation du prix et inversement. Cette fois, les risques prix et quantité sont positivement corrélés. Afin d'envisager les cas ci-dessus et de conserver un bon niveau de généralisation, nous proposons une relation du type :

\[\tilde{q} = g(\tilde{p}) + \tilde{\varepsilon} \quad (8)\]

avec \(\tilde{\varepsilon}\) un bruit blanc, et \(g\) une fonction quelconque de \(\tilde{p}\) (indifféremment croissante ou décroissante, mais monotone, de même que convexe ou concave). Cette relation ne pose aucune restriction quant à la forme de

\(^{13}\) Voir le chapitre 9 et plus généralement la partie 4 de Gollier (2001) pour une présentation exhaustive de ces concepts et des liens qui les unissent.
relation existante entre prix et quantités hormis quant au signe de la corrélation 14.

La condition de premier ordre s’écrit à nouveau :
\[\frac{\partial E[u'(\hat{W})]}{\partial \hat{p}} = \text{cov}(\hat{p}, E[u'(\hat{W}) | p]) \]
mais avec une richesse finale
\[\hat{W} \equiv W_0 + \hat{p}(g(\hat{p}) + \hat{\varepsilon}) + h(f - \hat{p}) \]

On peut alors calculer la dérivée partielle de l’espérance de l’utilité marginale par rapport au prix, qui s’écrit cette fois :
\[\frac{\partial E[u'(\hat{W}) | p]}{\partial \hat{p}} = \text{E}[(g(\hat{p}) + \hat{p}g'(\hat{p}) + \varepsilon - h)u''(\hat{W}) | p] \]
\[= [g(p) + pg'(p) - h]E[u''(\hat{W}) | p] + \text{cov}(\varepsilon, [u''(\hat{W}) | p]) \] (9)

On sait que la richesse finale de la firme est une fonction croissante des réalisations \(\hat{\varepsilon} \) de l’aléa \(\varepsilon \).

Par conséquent, si \(u'' > 0 \) alors \(\text{cov}(\hat{\varepsilon}, [u''(\hat{W}) | p]) > 0 \) (inversement, si \(u'' < 0 \) alors \(\text{cov}(\hat{\varepsilon}, [u''(\hat{W}) | p]) < 0 \)).

On peut alors montrer en utilisant une méthode similaire à la démonstration des deux premières propositions qu’il n’est pas possible de caractériser le niveau de couverture optimal pour la firme par rapport à son niveau espéré de production.

Envisageons dans un premier temps le cas non-biaisé. Si la firme est prudente, nous devons donc avoir (avec le même raisonnement qu’à la section précédente) \([g(p) + pg'(p) - h] > 0 \). Or, on ne peut comparer \(g(p) + pg'(p) \) et \(E[g(p)] \) sans faire d’hypothèse plus restrictive sur la distribution de probabilité de la variable prix ou sur la fonction \(g \) qui caractérise la relation entre les variables prix et quantité 15.

Mahul (2003) fait néanmoins remarquer que lorsque la corrélation est négative entre prix et quantités, la firme bénéficie par le recours aux marchés à terme d’une couverture naturelle liée à la diversification implicite de son portefeuille. À l’extrême, lorsque la corrélation approche -1, tout moyen d’assurance est sans objet, car la recette de la firme est non-stochastique. Cette couverture naturelle est une incitation pour la firme à vendre moins de contrats forward. Lorsque la firme est prudente, elle optera donc plus généralement pour une sous-couverture.

Une corrélation positive entre prix et quantité amplifie le risque au travers de la relation multiplicative qui existe entre les deux termes. La firme souhaite alors augmenter le nombre de contrats vendus. Si elle est imprudente, une sur-couverture sera encore plus probable.

14 Les contributions précédentes (parmi lesquelles Benninga, Eldor et Zilcha, 1984) proposent pour ce type de problème une relation linéaire du type \(\hat{\varepsilon} = \mu + \delta \hat{p} + \hat{\varepsilon} \).

15 On peut vérifier qu’une relation linéaire entre prix et quantité, comme celle proposée par Benninga et al. (1984), ne permet pas de mieux caractériser le niveau optimal de couverture.
Dans le cas où les marchés sont en degré normal ou en report, l’analyse est identique au cas non-biaisé et il n’est pas possible de conclure dans le cas général d’une distribution de probabilité du prix et d’une fonction g quelconques.

4 Conclusion

Nous avons montré comment la notion de prudence peut être utilisée pour caractériser plus précisément les décisions optimales de couverture lorsque la firme est soumise à deux incertitudes corrélatées ou non. Briys, Crouhy et Schlesinger (1993) envisagent le problème de la couverture optimale dans le cas de deux risques, mais le second risque est un background risk, qui n’est donc pas, par définition, corrélaté au risque de prix et de surcroît s’applique additivement à l’ensemble de la richesse. Notre analyse est différente car le risque s’applique multiplicativement, et à une partie seulement – la recette – de la richesse.

Une hypothèse centrale, qui permet de déterminer le niveau de couverture de la firme, est ici l’absence de coûts de production. Afin de conclure sur la position optimale de couverture dans le cas d’un coût de production qui dépend d’une variable quantité aléatoire, il est nécessaire de simplifier le champ d’analyse, par exemple en postulant un critère de décision moyenne-variance (cf. Sévi, 2006).

Si la prudence est admise comme une hypothèse raisonnable, notre résultat renforce les nombreuses observations selon lesquelles, dans de nombreux cas, les agents économiques interviennent peu ou pas sur les marchés dérivés (cf. Stulz, 2003). Cependant, il est difficile de mesurer empiriquement cet effet, puisque la réticence à opérer sur les marchés financiers est de nature très multiple (méconnaissance des mécanismes de marché, coûts de transaction, asymétrie d’information, etc.).

Le lien établi ici entre la prudence et la position optimale sur le marché à terme suggère deux types de travaux appliqués. D’une part, on peut déduire des positions observées sur les marchés à terme le niveau de prudence des agents dans l’esprit de Pennings et Garcia (2001) ou de Pennings et Smittds (2003) pour l’aversion au risque, ou plus généralement des nombreuses études empiriques visant à valider l’existence d’épargne de précaution pour les ménages. D’autre part, on peut déterminer le niveau de couverture

optimal au travers de modèles de simulation (cf. Mahul, 2003) et mesurer l'influence des différentes variables (prix, quantités, corrélations prix-quantités, préférences) sur le ratio obtenu.

Références

