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1 Introduction

1.1 The standard microeconomic theory

When one considers an activity involving the production of a single prod-
uct, microeconomic theory tells us that with adjusted capacity, short-run
and long-run marginal costs are equal under certain conditions. To take a
specific example, consider a construction project for a facility of which the
size (i.e., the production capacity) needs to be determined. We assume that
this size can be represented by a continuous variable. We also assume that the
annual production cost for a given size, i.e. the short-run annual cost, is a
continuous function that can be differentiated with respect to the quantity
of good produced over the year. If the marginal cost begins to increase at a
certain level of production, the curves representing the annual cost for facili-
ties of various sizes generally take the shape of those drawn by the dashed lines
on the first graph of Figure 1. The curve representing the long-run annual cost
is then the envelope curve (shown by a solid line) of the short-run cost curves.
The second graph of Figure 1 reveals, in the case of a rising marginal cost over
the long run (long dashed lines), the usual shape of average cost curves over
the short run (dashed lines) and the long run (solid line), as well as curves
representing short-run and long-run marginal cost (it should be noted that
marginal cost can decrease over the long-run in the presence of economies of
scale). Under the usual conditions of continuity and differentiability, these
properties are well known (e.g. see Boiteux 1960).

* The author is grateful to an anonymous referee and to Denis Babusiaux for helpful comments.
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Figure 1 : Equality of short-run and long-run marginal costs in standard micro-
economic theory

LAC: long-run average cost; LMC: long-run marginal cost; AC): short-run average cost with a
production facility of size Ey; MCy: short-run marginal cost with a production facility of size Ey.
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1.2 Purpose of this paper

In this article, we analyze the case of the production of joint products using
various types of interdependent equipment when the production system is
meodeled via a linear program. Our objective is to establish the relationship
between short-run marginal costs and long-run marginal costs in this case.

A first example of such a production system is given by the petroleum
refining industry: the main variables represent the quantities of crude oil to
be processed and the various flows of intermediate products that characterize
the operation of the production units (atmospheric and vacuum distillation,
reforming, cracking, etc.) and the composition of the finished products (gaso-
line, automotive diesel, heating oil, heavy fuel oil, etc.). The main constraints
are material-balance equations (which are the most common), product-qual-
ity specification equations (sulphur content, gasoline octane number, etc.)
and demand equations for finished products {(quantities produced, increased
in some cases by imported quantities and decreased by exported quantities,
greater than or equal to demand). In a short-term management model, there
are also capacity equations limiting the feedstock to be processed in each of
the units. The economic function only includes operating costs {decreased
where applicable by revenues generated by the sale of certain products). In
a long-term investment model, variables represent the capacities of the units
to be built. If we are dealing with a dynamic model extending over several
periods, (linear) investment costs must be associated with these capacity
variables, and the economic function is then a total cost discounted over a
long period. If we are dealing with a “static” long-term model, the model is
representative of a given time horizon. An equivalent annual investment cost
is then associated with each capacity variable (initial investment divided by
the sum of the discount factors). The economic function to be minimized is
then an equivalent annual cost, which results from the sum of the operating
cost and equivalent annual investment costs.

Yet another example is supplied by an electrical production system
using various types of power plants (nuclear, coal, gas turbine, etc.). The
main variables are the powers supplied by the different types of plant for
the various hourly/seasonal periods (peak periods during winter weekdays,
off-peak periods during summer weekends, etc.). The main constraints are
the demand equations expressing the requirement to supply the power
demanded for each hourly/seasonal period (and for each outcome if the
demand is randomized). Anderson (1972) offers a general description of this
type of model.

In practice, the models used for short-term management (particularly
in the very short run), are often profit maximization programs, with the
price of products being fixed and assumed to be given by the market. It is
always possible, however, by taking certain precautions where appropriate,
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to make the transition from such a profit-maximization formulation to a
cost-minimization formulation, subject to the constraint of satisfying a
demand for finished products. It is this latter formulation that will be used
in the remainder of this article.

We will therefore consider a system composed of a variety of equip-
ment, called production units, producing several joint products. The inter-
dependencies between the units are represented via a linear programming
model. We distinguish between a short-term program, for which the capac-
ity of the units is assumed to be fixed, and a long-term program for which
a certain number of capacities are variables to be determined. Equivalent
annual investment costs are then associated with these variables. For pur-
poses of simplification, we will present the analysis by referring to a static
long-term model representative of a given time horizon. Over both the short-
and long-term, we will consider a cost-minimization problem under demand
constraints.

1.3 Preliminary remarks on marginal costs

We will begin with some general remarks. Marginal production costs are
equal to the dual variables associated with demand constraints, at least if
there is no degeneracy. When one varies the demand for a given product,
while keeping the demand for other products unchanged, the marginal cost
of that product is stable as long as the optimal solution corresponds to the
same basic solution. The curve representing the marginal cost as a function
of the quantity produced is therefore a stair-step curve. This is true for both
the short-run marginal cost and the long-run marginal cost.

Let’s consider the optimal solution of a long-term problem, determined
by taking into account a fixed demand b; for each product 4. This solution
gives the optimal value for the capacities to be built for the various units.
Now set these capacities at their optimal values. The short-term program
thus obtained supplies the values for the short-run marginal costs and, in
more general terms, allows us to trace the short-run marginal cost of a prod-
uct as a function of the demand for that product. The short-run marginal
cost curve for a product 7 intersects the long-run marginal cost curve for a
demand equal to b;, with the capacities consequently being adjusted. This
is in line with standard microeconomic theory. The distinguishing feature of
a production system represented by linear programming is related to the
stair-step profile of the curves represented in Figure 2. In general, the long-
run marginal cost is stable in the neighborhood of b; while one observes a
discontinuity of the short-run marginal cost.
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Figure 2 : Short-run and long-run marginal costs of product i in linear programming,
with capacity adjusted to demand b;

In fact, a long-term problem can be converted into a short-term pro-
blem by adding constraints setting the capacities of the units, requiring that
the feedstock processed by a unit, or its production, be less than the capacity
defined by the optimal solution of the long-term program. These constraints,
or at least a certain number of them, are binding at the optimum of the short-
term program, which is then degenerate. The objective-function value of the
program is no longer differentiable in b;. Nevertheless, it has a sub-differential
and directional derivatives, which explains the discontinuity of the short-run
marginal cost observed at b; in figure 2.

For each finished product, the short-run marginal costs at the left side
and right side of the anticipated demand for which the capacity is adjusted
are then different and given by components of the dual variables vectors. The
literature on degeneracy supplies the criteria for selecting these components
in the presence of multiple dual solutions (Aucamp and Steinberg 1982, Gal
1986 and Greenberg 1986). Consequently, we must consider a left-hand mar-
ginal cost and a right-hand marginal cost for each finished product.
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The objective of this article is to study the relationship between short-
run marginal costs and long-run marginal costs. The analysis relies on the
marginal values of capacities, equal to the dual variables associated with the
capacity constraints introduced in the short-term model. In theory, these var-
iables are negative: in the short run, an increase in available capacity should
not generally result in an increase in the operating cost. In order to simplify
the presentation of results, we assume throughout this article that the mar-
ginal values of capacities are all negative.

1.4 Breakdown of long-run marginal costs

We use the breakdown of long-run marginal costs in linear programming
proposed by Pierru and Babusiaux (2004): the long-run marginal cost of a
given finished product results from the sum of a marginal operating cost
and a marginal equivalent investment cost. To obtain it, one simply breaks
down the objective function into two elementary economic functions . The
marginal operating cost (respectively the marginal equivalent investment
cost) is equal to the variation of the elementary function representing the
operating cost (respectively the equivalent annual investment cost) for an
infinitesimal increase in finished product demand. It has to be noted that
the marginal equivalent investment cost is equal to the marginal capacity
adjustment times the equivalent annual investiment cost per unit of installed
capacity.

We will adopt this breakdown with the comment that the equivalent
annual investment cost taken into account can result from the sum of the
investments in the various units whose capacities are to be optimized. In
addition to the operating cost, we will therefore associate an elementary
function with each capacity variable. The long-run marginal cost of a prod-
uct can therefore be broken down into a marginal operating cost and as
many marginal equivalent investment costs as there are capacity variables.
To eliminate any ambiguity, we specify that for a given finished product the
term “marginal operating cost” always refers in this article to a change in
the operating cost determined in the long-term model.

The following section introduces the mathematical formulation of the
model and the notations used. The results are then presented in the form
of propositions. For reasons of clarity, in section 3, we first state and prove
the propositions when the model only includes a single capacity variable.
We then state and prove those pertaining to the general case in section 4.
A numerical illustration is proposed in section 5 based on the simplified
refining model developed by Pierru and Babusiaux in their article.

With each elementary objective function these authors associate a vector composed of “elementary dual
variables”; we will not review the method for breaking down long-run marginal costs here.
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2 Notations and mathematical formulation
of the model

To illustrate the problem under study, we will consider a static long-term lin-
ear-programming model and the corresponding short-term linear-program-
ming model. The long-term model is used to define the optimal capacities to
be built to meet a demand vector b and provides the long-run marginal cost
of each finished product, as well as its breakdown into marginal operating
cost and marginal equivalent investment costs. The short-term model deter-
mines the optimal production program for demand b, assuming that capac-
ities are set at the values defined by the long-term model. This short-term
model is used to calculate the marginal values of the capacities, as well as
the short-run marginal costs (on the left-hand and right-hand of demand b,)
for each finished product i. Although the problem studied relates to a linear
programming model, we will adopt a formulation that takes its inspiration
from the lagrangian duality (which facilitates the formal application of the
envelope theorem).

2.1 Long-term model

We consider a capacity variable and a feedstock variable for each equip-
ment. A feedstock variable has to be smaller or equal to the corresponding
capacity variable (plus a possibly pre-existing capacity). With this formu-
lation, the operating cost (associated with the feedstock variable) can be
distinguished from the equivalent annual investment cost (associated with
the capacity variable) in the objective function.

We adopt the following notations, considering that the long-term prob-
lem includes m capacity variables:

b: vector formed from the demanded quantities of = finished products
(the quantity of product ¢ demanded is denoted b,);

z: vector of size g formed from the variables which appear in both
long-run and short-run primal problems;

;: subvector of z whose components are the m feedstock variables;

k = (ky, ky, ..., k,,) : vector formed from the m capacity variables in
the long-term problem;

(z, k) thus represents the entire set of variables of the long-term
problem;

e = (e, €y ..., £,,): vector formed from the equivalent annual invest-
ment costs per unit of installed capacity, building k, (pe {1,2,..,m})

involves an equivalent annual investment cost equal to e,k,;
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The long-term problem is written as follows:
Min{v, x)+ (e k)
re X
s.t.{Az = b
(2r- k<c

Where: A is an nXx g matrix, Az = b represents the set of demand
constraints; X is a closed convex set defined as the intersection of linear
constraints (equalities and inequalities), corresponding to material balance
equations, product-quality specifications, requirements on the signs of varia-
bles ... ¢ is a vector whose components are the pre-existing capacities of the
m types of equipment considered; v is a vector of size ¢ whose components
are the unit costs associated with the variables in x; (.,.) denotes the inner
product of two vectors.

The value of this long-term problem, considered as a function of the
demand for finished products, is notated V(b). We assume that the opti-
mal solution is non-degenerate; the basic solution is thus unchanged in the
neighborhood of b. V(b) is therefore continuously differentiable. We will let

1;(b) represent the long-run marginal cost of the product @ [(b) = g—;j(b) .
It is equal to the dual variable associated with the demand constraint for
that product.

The value of k at the optimum of the long-term problem is denoted l}(b) ,
with k(b) = (k1(d), k2(b), ..., k(b)) . A change in the demand for finished

product ¢ requires a marginal capacity adjustment equal to %’ in order for
§
the p capacity to remain adjusted. This marginal capacity adjustment gene-
kp

rates a marginal equivalent investment cost equal to €3, °
i

2.2 Short-term model

The short-term problem, derived from the long-term problem introduced in
the previous subsection, is written as follows:

Min (v, 1)
[ ze X
s.t.< Az = b
(S c+ I”c(b)
We introduce two vectors of dual variables, associated with two sets
of constraints in this short-term problem:

¥ = (Yp Yg» --» ¥) vector formed from the dual variables associated
with the demand constraints in the short-term problem, where y,
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(ie {1,2,..,n}) is the dual variable associated with the demand con-
straint for product ¢

u = (up, Uy, ..., u,,) : vector formed from the dual variables associated
with capacity constraints in the short-run, where u, (pe {1,2,..,m}) is
the dual variable associated with the p*-capacity constraint.

2.3 Construction of a “short-run cost function
with continuously-adjusted capacity”

Let W be a function correctly defined in a neighborhood of b, representing
the value of the short-term program when the capacity is always adjusted.
W is equal to V (the long-term and short-term problems have the same
optimal solution) less the sum of the equivalent annual investment costs:

”m “
W=V-3% ek (1)
p=1

W, which we will call a “short-run cost function with continuously-
adjusted capacity”, is everywhere equal to the part of the objective function
representing operating costs in the long-term program (i.e. the elementary
function associated with operating costs). As W is equal to a difference of
differentiable functions (assuming that the long-term solution is non-degen-
erate), W is itself differentiable in b. This comment is particularly impor-

tant for the proofs of the propositions stated in the article.

2.4 Short-run marginal costs and marginal values
of capacity

Where L = (v, 2y +(y, b- AD) + (x, - c— I“c( b)) denotes the usual La-
grangian constructed from the short-term program, we have:

W(b) = max min L(z, y, u, k(b), b) (2)

pu20ze X
If we set L(:;(y, u), Y, U l}( b, b = mif‘; Lz y, u, ;c( b), b) . the equa-
L€
tion (2) can be rewritten as follows:
W(b) = max L(Z(y, u), 9, w k(b), b) (3)
yhous
Let Y*(b) denote the set of solutions (y, 1) of the short-term dual
program:
Y*(b) = Arg max (min L(z, v, u, k(b), b))

»u20 ze X
Y*(b) is not a singleton due to the degeneracy of the optimal solution
(there are several vectors of dual variables and thus several saddle points).
L thus possesses partial directional derivatives in b; and each product has
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two short-run marginal costs. Where s;*(4) denotes the right-hand short-
run marginal cost of the product i and s;(b) its left-hand short-run mar-
ginal cost, we encounter the traditional results of the degeneracy (see for
instance Milgrom and Segal 2002):

'L oL
si(b) ==—"= max == max Y,
' W, rwer 0B (uwer
oL

s;(b) = min

ab‘ (y,u)r?;’l"l(b) ab; (y, w)eY*(b)

Similarly, because of the degeneracy of the short-term problem, a left-
hand marginal value and a right-hand marginal value are associated with
each capacity constraint. As explained in the introduction, these marginal
values are here negative: an increase in available capacity will not cause an
increase in the operating cost.

For pe{l,2,..,m}, let u, (respectively p)) be the left-hand
(respectively right-hand) marginal value of the p™ capacity set at cp+ kp()
in the short-term problem.

We have: |/,1;| 2 ePZIy;f]

The proof is straightforward. For instance, let us assume that the sec-
ond inequality is wrong. We then have |p; | > e,,, which means that having
an additional unit of available capacity generates a gain (i.e., a decrease in
cost) higher than the cost of building this additional unit of capacity. This
implies that the capacity is not adjusted in the long-run (which contradicts
our assumptions).

More precisely, we have:

+_ 9L oL ;
‘up = — = max -—— = max —'U-p = —min up
ok, (weV*(® gk, (mwe¥ (b (v, w) e Y*(b)
__ 9L . OL .
Hp=— = mn — = mn -u,= -max u,
akp (1 u) € Y*(b) ak,, (mu)eY*(h) (g, w) e Y*(b)

3 Specific case: model with a single capacity variable

3.1 Statement of the propositions

Our results can be summarized by the following propositions, stated for any
given finished product:

(i) if its marginal capacity adjustment is positive, its right-hand (respec-
tively left-hand) short-run marginal cost is equal to the difference between its
marginal operating cost and the product of its marginal capacity adjustment
by the left-hand (respectively right-hand) marginal value of capacity;
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(ii) if its marginal capacity adjustment is negative, its right-hand
(respectively left-hand) short-run marginal cost is equal to the difference
between its marginal operating cost and the product of its marginal capac-
ity adjustment by the right-hand (respectively left-hand) marginal value of
capacity;

(iiia) the difference between its two short-run marginal costs is equal to
the absolute value of the product of its marginal capacity adjustment by the
difference between the left-hand and right-hand marginal values of capacity;

(iiib) if one considers two distinct finished products: the ratio of the
differences between right-hand short-run marginal cost and left-hand short-
run marginal cost is equal to the absolute value of the ratio of the marginal
equivalent investment costs (or, which amounts to the same thing, to the
absolute value of the ratio of the marginal capacity adjustments).

3.2 Proof of the propositions

As the long-term model includes only a single capacity variable, £, ;c( b),
e, p~ and pt* are scalars. A change in the demand for finished product ¢

ak ak ak
ob;\ ~ 3, ~ db,

for the capacity to remain adjusted. The rnargmal equivalent mvestment

requires a marginal capacity adjustment equal to = in order

cost is equal to e a

ab;”

As the short-run cost function with continuously-adjusted capacity W
is differentiable in b, its left-hand and right-hand partial derivatives with
respect to b; are equal. We will distinguish the two following cases.

3.2.1 A product with a positive marginal capacity adjustment

Consider a finished product i for which the marginal capacity adjustment

is positive, i.e., g b, 2 0. By applying the envelope theorem to equation (3)
we obtain the two following equations:
-+ + _ 4+° ~
W AWy 3L LAk g, O @
ab; db; ab;, ok db; ab;
W 9L ALYk _ . ok .
av, D) = ab ) = EREYAE DA TS ®)

-

Equations (4) and (5) can be analyzed as follows. First, since aa f 20,

the capacity has to increase in order to remain adjusted when the demand
for product 7 increases.
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In equation (4), an increase in demand for product 7 on the right side
of b, implies that the change in the short-term program value caused by
the capacity adjustment is computed using the left-hand marginal value of
capacity. As the product has a positive marginal capacity adjustment, pro-
ducing at the right-hand short-run marginal cost means that the available
capacity is less than the adjusted one, which explains why the left-hand
marginal value of capacity is used to value the capacity adjustment (in other
words, the adjusted capacity is attained from below).

Conversely, in equation (5), an increase in demand for product 4 on
the left side of b; implies that the change in the short-term program value
is computed using the right-hand marginal value of capacity. Here, produc-
ing at the left-hand short-run marginal cost means implicitly that the avail-
able capacity is greater than the adjusted one. Consequently, the adjusted
capacity is attained from above, which justifies using the right-hand mar-
ginal value of capacity.

Equations (4) and (5) thus give us:

~

ok
3

ok

B = siWru S = s+ 5 (6)

A
i

Furthermore, by differentiating equation (1) we obtain:

QW )\ _ 3V Ok _ ok
5. (0 = S0 - egp(h) = (b= e5(b) (7

Equation (7) indicates that a—W(b) is equal to the marginal operating

cost (i.e., the long-run marginal cost less the marginal equivalent investment
cost).

By combining equations (6) and {7), we obtain:

~ -~

WD) = 5T+ (1 + 2 = () + (" + ) B2

This result is crucial since it explains the transition from the long-run
marginal cost to short-run marginal costs. And finally:

5t (0) = (- e 2 ) -2k ®)
i) = (k(p) - e ) ek ©)

Equations (8) and (9) proves the proposition (i).
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3.2.2 A product with a negative marginal capacity adjustment

Now consider a product j for which the marginal capacity adjustment is

negative, i.e., g—; <0. By applying the envelope theorem to equation (3), we
J
obtain:
W, 3w L L3k k
Wiy = Wiy 2L, 9Lk iy, % (10)
0b; b, db; ok db; 0b;
W L 9Lk k
Wiy = LWpy < SL ALk py 1)
ab; db; ab; ok db; b;

The interpretation of equations (10) and (11) is similar to that of
equations (5) and (4). For instance, as the marginal capacity adjustment of
the product considered is negative, producing at the right-hand short-run
marginal cost implicitly means that the available capacity is greater than
the adjusted one, whence the valuation of the capacity adjustment at the
right-hand marginal value of capacity in equation (10). By proceeding as in
the earlier instance, we finally obtain via equations (7), (10) and (11):

.\ k) , ok
Sj*(()) = (lj(b)—ea—bj)—y'é'gj (12)
o ok _dk
5;(b) = (zj(b)-ea—bj)-p 5 (13)

Equations (12) and (13) prove the proposition (ii).

3.2.3 Propositions (iiia) and (iiib)

For any finished product i, the proposition (iiia) is immediately deduced
from the preceding equations:

5 (8) - 55(b) = ’(u‘—u")g—:

For a given finished product, the difference between the two short-
run marginal costs is therefore proportional to the marginal equivalent
investment cost assigned to this product. We do in fact have for any prod-
uct i s;(b) < L(b) < s (b)

If we consider two finished products i and j, we have:
si (b) - s;(b) _ |9k,
si (D) -s;(b)  |9k/db,

marginal equivalent investment cost of product 7

marginal equivalent investment cost of product j
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This equation proves the proposition (iiib): the ratio of the differences
between short-run marginal costs is equal to the absolute value of the ratio
of the marginal equivalent investment costs (i.e., the ratio of the marginal
capacity adjustments).

4  General case: model with several capacity variables

4.1 Statement of the propositions

Let us consider a given finished product i. Let Z;} denote the set of capacity
variables for which the marginal equivalent investment cost associated with
product #is positive. Z; then denotes the set of capacity variables for which
the marginal equivalent investment cost associated with product ¢ is nega-
tive. We can state the following propositions:

(j) the left-hand short-run marginal cost is given by the following for-
mula:

peZ} peZ;

marginal operating cost — Z (y,j %’) - Z (yp’ %’)
Z z z

(jj) the right-hand short-run marginal cost is given by the following
formula:

marginal operating cost - )° (,u; %:) - (,u;' 3—’;’:)

peZf peZ;
(iij) the difference between the two short-run marginal costs is equal to:

m

2

p=1

ok
(1~ ;) 35

4.2 Proof of the propositions

The long-run marginal cost of a given finished product i is broken down into
the sum of m+ 1 terms:

- the marginal operating cost,
- m marginal equivalent investment costs.

Without loss of generality, we will assume that the marginal equiva-
lent investment costs corresponding to the first z capacity variables are pos-
itive and that those corresponding to the other m — z are negative. In other
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terms, the set of the first z capacity variables forms Z;}. The marginal
capacity adjustments are as follows:

ak"(b)>0 for pe {1,2, ..., z}
s
ab,

Following the same line of reasoning as was used in the specific
instance of a single capacity constraint, we obtain:

(b)<0 for pe {z+1,2+2, ..., m}

Lok, 2k B ok
aw(b)-s(b)+z;1p oy p,,ab—s(b)+zy,, 9k + 3 ,,ab”(14)

p=z+ p=2

Moreover, by differentiating equation (1) we have:

FY% mo 3k .
0,0 = Wb~ z ,,ab”(b) (15)

As previously, B_W( b) is equal to the marginal operating cost.
ab, &

By combining equatlons (14) and (15), we obtain:

w05 o) 5 (53 £ %)

pez; peZ;

ww=(0- 03] 5 (635 W3R o

€z} PEZ

i

Equations (16) and (17) prove the propositions (j) and (jj). By com-
bining these two equations, we easily prove the proposition (jjj).

5  Application to a simplified refining model

We will use the refining model developed by Pierru and Babusiaux (2004)
to illustrate their methodology for the breakdown of long-run marginal costs.
The authors present a simplified model of a refinery for which a catalytic
cracking unit must be built in order to increase gasoline yield (four finished
products are produced: gasoline, automotive diesel, heating oil and heavy
fuel oil). At the optimum, the long-run marginal costs and their breakdown
are given in Table 1.
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Oil product Gasoline Auto.motlve Hea'tlng Heavy.r fuel

diesel oil oil

Margmal equivalent 355 94 12.8 0

Investment cost

Marginal operating 209.3 183.7 172.1 0

cost

Long-run marginal 244.8 174.3 159.3 0

cost

Table 1: Long-run marginal costs per oil product ($)

We will now determine the short-run marginal costs for each product. To
do so we must convert the long-term model into a short-term model.

Only the operating cost (denoted f; in the original article) now appears
in the objective cost function to be minimized. As the installed capacity of
the cracking unit (determined at the optimum of the long-term model) is
equal to 1010372.30 tons, the following constraint must be added (k being
notated CAP in the original article):

CAP<1,0104

This constraint specifies that, in the short run, the quantity of distil-
late (expressed in thousands of tons) processed by the cracking unit cannot
exceed the installed capacity. For a given product, an increase in the quan-
tity produced leads to an optimal basic solution different from the solution
for a decrease in the quantity produced.

In the example, e is taken as equal to $28 per ton. If one decreases
the right-hand-side coefficient of the capacity constraint by one ton in the
short-run model, the objective cost function increases by $376.18. We there-
fore have: u- = —376.18. If one increases this coefficient by one ton, the
value of the short-term objective function remains unchanged. We therefore
have here ut = 0.

Table 2 shows the short-run marginal costs obtained. Three values -
shown in boldface — are equal to marginal operating costs previously deter-
mined with the long-term model: the left-hand short-run marginal cost of
the gasoline and the right-hand short-run marginal cost of the automotive
diesel and heating-oil. The three other short-run marginal costs are different.
This result is consistent with propositions (i) and (ii) as here the right-hand
marginal value of capacity is equal to zero.

If we consider the gasoline, for example, it presents a positive mar-
ginal equivalent investment cost. Consequently, in the short run, producing
a ton less of gasoline implies here that all available capacity is not used.
The capacity constraint is thus no longer binding, and the new basic solu-
tion is the same as that considered at the optimum in the long-term analysis
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(with the same binding equations). The left-hand short-run marginal cost
is therefore equal to the marginal operating cost. Conversely, if an additional
ton of gasoline must be produced, the capacity constraint remains binding
(due to the fact that the marginal equivalent investment cost is positive) and
another constraint of the model becomes inactive. The new basic solution is
therefore no longer the one determined at the optimum of the long-term
model, and the right-hand short-run marginal cost of gasoline is consequently
different from the marginal operating cost.

If we consider automotive diesel (or heating oil), the reasoning is iden-
tical but functions in reverse order. Since the marginal equivalent invest-
ment cost is negative, producing an additional ton implies that the full
available capacity of the cracker is no longer used. Since the capacity con-
straint is no longer binding, the new basic solution is implicitly the same as
that determined at the optimum of the long-term analysis. The right-hand
short-run marginal cost is thus equal to the marginal operating cost. Con-
versely, decreasing the production implies binding the capacity constraint.
Another constraint thus becomes inactive and the basic solution is different
from that determined for the long-term. For this reason, the left-hand short-
run marginal cost is different from the marginal operating cost.

Left-hand
short-run
marginal cost

Long-run
marginal cost

Right-hand
short-run
marginal cost

Gasoline 209.3 244.8 686.4
Automotive diesel 57.2 174.3 183.7
Heating oil 0 159.3 172.1

Table 2: Left-hand and right-hand short-run marginal costs (8)

Proposition (iiib) is also verified. If we consider gasoline and automotive
diesel fuel, for instance, we have:

686.4—209.3 _ |_35.5
183.7-57.2 9.4

The ratio between the marginal equivalent investment cost of gasoline
and that of automotive dicsel shows us that the ratio of the differences of
short-run marginal costs is equal to 3.77. The marginal equivalent invest-
ment costs thus enable us to know the relative amplitude of the “jumps” in
short-run marginal costs.

Property (iiia) is satisfied for all finished products. If we take the
example of gasoline, we have (rounded off):

35.5 % (376.18 - 0)
28

686.4 - 209.3 =
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6 Conclusion: economic interpretation

In conclusion, we will emphasize the economic interpretation of the results
obtained, formulated by the propositions in sections 3 and 4. We will first
consider the specific case of a model with only one capacity variable.

Take the example of a finished product for which the marginal equiv-
alent investment cost is positive. The right-hand short-run marginal cost of
this product is given by the right-hand term of equation (8) which represents
the sum of two terms. The first term is equal to the marginal operating cost
(i.e., the cost of the optimal change over the long run in inputs which remain
variable over the short run). The second term is equal to the marginal capac-
ity adjustment (i.e., the additional capacity required in the long run to pro-
duce an additional unit of the finished product) multiplied by the left-hand
marginal value of the capacity in the short run. Since one cannot have this
additional capacity in the short term, a cost premium, equal to this addi-
tional capacity multiplied by the left-hand marginal value of the capacity, is
generated. Conversely, the left-hand short-run marginal cost of this product
is equal to the marginal operating cost less the marginal capacity adjustment
multiplied by the right-hand marginal value of capacity. In fact, in the long
run, increasing the production of the finished product, to the point of meet-
ing anticipated demand, requires having additional capacity. In the short
run, however, this additional capacity is available (since the capacity was set
in relation to anticipated demand). As a result, the cost premium generated
is computed using the right-hand marginal value of capacity.

A similar analysis can be made for a product with a negative marginal
equivalent investment cost. In this case, both short-run marginal costs are
less than the marginal operating cost since, in the short run, producing more
entails a relaxation of the capacity constraint thereby saving cost.

It is interesting to note that in the specific case in which the absolute
value of the right-hand (or left-hand) marginal value of capacity is equal to
the equivalent annual investment cost per unit of installed capacity, each fin-
ished product has a short-run marginal cost equal to the long-run marginal
cost.

This type of analysis is also applicable in the general case of models
with several capacity variables. Each short-run marginal cost is equal to the
marginal operating cost increased by a sum of additional costs incurred and
decreased by a sum of costs saved.

In addition to their theoretical interest, these results, which comple-
ment traditional microeconomic theory, can be quite useful in practice.
There are numerous constraints and variables in the field of oil refining.
Apart from extreme situations, the number of steps comprising marginal
cost curves is such that the curves are “smoothed” and are not far removed
from those of traditional microeconomic theory. However, for runs with
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highly-binding capacities, the “jumps” in marginal costs can be significant.
This is all the more true for peak demand in the electricity sector, where
power cannot be stockpiled. A better comprehension of marginal costs
should thus serve as a valuable aid for market power analysis.
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