Comportement des groupes d’investissement face à une incertitude sur l’environnement*

Johanna Etner**

EUREQua, Paris 1-Sorbonne et GAINS, Université du Maine

Pierre-André Jouvet***

INH, Angers et GREQAM, Marseille

The originality of this paper is to consider that investors are sensitive to pollution and take account of the fact that their investments could influence their own life quality due to the production externalities they cause. We propose to study an investment choice in a two-sector model where each sector uses different capital for production. We suppose that one of the two types of firm does not produce any externality whereas the other has an uncertain effect on environmental quality.

Agents live throught two periods and have a disutility linked to environmental damage. They work, consume and save during their first period of life and are retired and consume the return of savings in the second life period. Agents are price takers and choose their consumption level in a non-strategic way. But, as far as investment is concerned, agents form investor groups which have a strategic weight in the economy. We then suppose that there exist N investment groups in the economy which are composed of a continuum, normalised to one, of identical individuals. The portofolio choice of these groups is strategic and their target is to maximise members’ welfare. Consequently, these groups are aware that their investment can or can not influence environmental quality and thus also influence the members’

* Les auteurs remercient particulièrement Pierre Pestieau pour l’ensemble de ses commentaires sur une version préliminaire de ce travail, Philippe Michel et l’ensemble des membres du groupe de travail « Générations imbriquées » ainsi que Frédéric Jouneau et Olivier Torres pour leurs discussions. Les auteurs remercient également un rapporteur anonyme pour ses remarques constructives. Les auteurs restent bien sûr seuls responsables des erreurs ou omissions.

** Maison des Sciences Economiques - 105-112 Bd de l’Hôpital - 75647 Paris Cedex 13
Université du Maine - Faculté de Droit et de Sciences Economiques
avenue Olivier Messiaen - 72085 Le Mans cedex 9
e.mail : jotner@univ-paris1.fr

*** Institut National d'Horticulture, 2 rue Le Nôtre - 45049 Angers cedex 01
e.mail : pajouvet@inh.fr
welfare during the second life period. Each investment group has to choose in a strategic way in which types of firms they wish to invest members’ savings. Taking account of the effect of investment on the environment is thus linked to the fact that investment decisions are taken by investment groups.

As far as concerns firms which effect environmental quality, investor groups do not know if this effect will be positive or negative, they are only aware that there exists an uncertainty linked to their investment choice. This kind of uncertainty is often observed. In fact, in a general way, we can note that when we consider a new form of production, using capital or natural exploitation, we can initially believe that this new production contributes to an improvement in environmental quality, but in the long-run, it is often difficult to evaluate the externalities of this new production and thus its positive or negative effects on the environment.

In this context, our questions are (i) how will investment groups share their capital knowing that there exists a risk on environmental quality? (ii) what are the consequences of an increase in risk on the sharing of capital? (iii) what are the consequences of an environmental risk on aggregate savings?

In order to answer to these questions, we study, primarily, only investor-group decisions concerning portfolio choice. At equilibrium, we show that an increase in risk implies a decrease in the amount invested in firms having an uncertain effect on environmental quality when (a) pollution has a distasteful effect on consumption (Michel and Rotillon (1995)) and that this distasteful effect is a decreasing function of the level of pollution; (b) groups adopt precautionary behaviour (Kimball (1990)) and the degree of relative prudence is inferior to 2 (Sandmo (1970)), Drèze and Modigliani (1972)). Finally, it is necessary to have additional conditions to determine the direction of the variation of aggregate savings.

1 Introduction

La question environnementale de par son aspect irréversible semble prendre une part croissante dans les préoccupations tant des décideurs politiques que des industriels ou des financiers. Cette prise en compte souligne, et se heurte, au problème de l'identification des causes des dommages environnementaux et de leurs effets en terme de Bien-Être, qu'il s'agisse de santé publique, de production ou de consommation. En effet, l'une des caractéristiques des problèmes d'environnement semble être les nombreuses incertitudes d'ordre scientifique sur les causes et effets de la dégradation de la qualité de l'environnement (Chichilnisky et Heal (1993)).

Intégrer la dimension environnementale, négligée pendant un temps, dans les décisions publiques ou privées implique par conséquent la prise en

L’originalité de notre travail est de considérer que les investisseurs ont une certaine sensibilité à la pollution et prennent en compte le fait que leurs investissements peuvent influencer leur propre qualité de vie par les externalités de production qu’ils permettent. Nous proposons d’étudier un choix d’investissement dans un modèle à deux secteurs de production utilisant un capital différent pour produire. Nous supposons qu’un des deux types de firme ne produit aucune externalité tandis que l’autre a un effet incertain sur l’environnement. Les agents vivent deux périodes et subissent une désutilité liée à la dégradation de l’environnement. Ils travaillent, consomment et épargnent durant leur première période de vie et sont à la retraite et consomment le revenu de leur épargne en seconde période. Les agents sont preneurs de prix et choisissent, alors, leur consommation de manière non stratégique. En revanche, en matière d’investissement les agents forment des groupes d’investisseurs qui ont un poids stratégique dans l’économie. Nous supposons alors qu’il existe dans l’économie N groupes d’investisseurs composés d’un continuum, normalisé à 1, d’individus identiques. Ces groupes agissent de manière stratégique au niveau du choix de portefeuille et leur objectif est de maximiser le Bien-Être de leurs membres. Par conséquent, ces groupes ont conscience que leur investissement peut influencer ou non la qualité de leur environnement et donc le Bien-Être en seconde période de vie de leurs membres. Chaque groupe d’investissement va donc choisir de manière stratégique dans quels types de firmes il souhaite investir l’épargne de ses membres. La prise en compte des effets des investissements sur l’environnement est donc liée au fait que les décisions d’investissement sont prises par des groupes d’investisseurs.
Concernant les firmes ayant un effet sur l'environnement, les groupes d'investisseurs ne savent pas si cet effet va être positif ou négatif, ils sont seulement conscients qu'il existe une incertitude lors de leur choix d'investissement. Ce type d'incertitude est corroboré par l'observation. En effet, d'une manière générale, nous pouvons remarquer que lorsque nous considérons une nouvelle forme de production, d'utilisation de capital ou d'exploitation de ressources naturelles : d'une part, nous pouvons croire que cela permet de contribuer à la qualité de l'environnement, mais, d'autre part, il est souvent très délicat d'évaluer les externalités que peut avoir ce nouveau mode de production et donc ses effets positifs ou négatifs sur la qualité de l'environnement.

Dans ce contexte, nos interrogations sont alors les suivantes :

Comment les groupes d'investisseurs vont-ils répartir leur capital sachant qu'il existe un risque pour l'environnement ? À l'équilibre, quelles sont les conséquences d'une variation de risque sur la répartition du capital ? Enfin, qu'elles sont les conséquences d'un risque environnemental sur le niveau de capital agrégé de cette économie ? Peut-on identifier les effets retour d'une variation de risque sur le rendement du portefeuille des agents et donc sur le choix de placement et d'épargne ?

Pour répondre à ces différentes questions, nous étudions, dans un premier temps, uniquement les décisions des groupes d'investisseurs concernant le choix de portefeuille. Autrement dit, nous supposons que les choix de consommation des agents sont donnés. Nous montrons alors que si le rendement des actifs dans les firmes sans externalité est inférieur à celui obtenu par les firmes avec externalité, les deux types de firmes vont coexister à l'équilibre puisque chaque groupe d'investisseurs va diversifier son portefeuille. Nous montrons qu'un accroissement de risque implique une diminution de la part investie dans les firmes avec incertitude - sans pour autant les faire disparaître de l'économie - lorsque : (i) la pollution a un effet de dégoût sur la consommation (Michel et Rotillon (1995)) et que ce dégoût est une fonction décroissante du niveau de pollution (la dérivée tierce croisée de la fonction d'utilité est négative); (ii) les groupes adoptent un comportement de précaution (Kimball (1990)) et que le degré de prudence relatif est inférieur à 2.

En référence aux travaux sur les déterminants de l'épargne de précaution (Leland (1968), Sandmo (1970), Drèze et Modigliani (1972)), les agents se prémunissent contre un accroissement du risque sur la qualité de l'environnement en diminuant la part de leur actif aux « effets incertains ». Puis, nous analysons alors les effets d'un accroissement de risque pour l'environnement lorsque les individus choisissent leur niveau de consommation et d'épargne et les groupes d'investisseurs la répartition de cette épargne.

1 Par exemple, les discussions actuelles sur les incinérateurs d'ordures ménagères mettent en évidence que si ces derniers permettent de réduire les décharges, ils produisent en contre partie des émissions de liquides et de gaz toxiques. La mesure relative de ces deux effets sur la qualité de l'environnement est au centre de vives polémiques entre industriels et gouvernement.
Dans un deuxième temps, nous étudions les effets retour en équilibre général. Nous retrouvons les résultats précédents concernant la réaction en terme de choix de portefeuille. Mais, les variations de stock de capital dans les deux types de firmes entraînent de par la loi des rendements décroissants une baisse du rendement du capital investi dans les firmes sans externalités et une augmentation dans les autres. Il faut alors des conditions supplémentaires à celles énoncées précédemment pour déterminer le sens de variation du capital et de sa répartition à l'équilibre.

Ce travail est organisé de la manière suivante. Dans la section 2, nous présentons le comportement des individus et des groupes d'investissement dans un modèle général. Les choix d'investissement sont présentés dans la section 3, avec notamment la sensibilité au risque de ces choix. Les choix d'épargne sont présentés en section 4. Les effets d'équilibre général sont présentés par une illustration en section 5. Enfin, une brève conclusion est établie.

2 Comportement des agents et pollution

Nous supposons qu'à chaque période naît un nombre constant d'individus, vivant 2 périodes, supposés identiques et sensibles à la qualité de leur environnement. Les agents agissent de manière non stratégique dans l'économie et constituent des groupes d'investissement effectuant la répartition de leur épargne de manière stratégique. Il existe \(N \) groupes d'investisseurs dans l'économie. Chaque groupe est composé d'un continuum d'individus identiques dont la taille est normalisée à 1.

Il existe 2 types de capital dans l'économie \(K^n \) et \(K^e \), non substituables. L'utilisation du capital \(K^n \) est supposée ne produire aucune externalité sur l'environnement ; nous dirons que ce capital est neutre vis-à-vis de la qualité de l'environnement et il est utilisé dans des firmes de type \(n \). Par contre, l'utilisation du capital \(K^e \) a un effet sur la qualité de l'environnement, mais l'on ignore le sens de cet effet. Autrement dit, l'utilisation de ce capital peut se révéler, à long terme, être bénéfique ou néfaste à l'environnement. L'incertitude porte donc sur les conséquences pour l'environnement de l'utilisation du capital \(K^e \) par les firmes dites de types \(e \).

Aussi, dans cette économie, les firmes de type \(e \) sont caractérisées par le fait qu'elles utilisent un capital ayant un effet incertain sur la qualité de l'environnement. Nous supposons que l'utilisation d'une quantité de capital \(K^e \) conduit à une production jointe impliquant soit une dégradation de la qualité de l'environnement soit au contraire à son amélioration de manière proportionnelle au stock de capital utilisé \(\gamma K^e \). En supposant qu'il existe un stock de pollution dans l'économie, considérer que l'utilisation du capital \(K^e \) améliore ou dégrade l'environnement peut être représenté par une diminution ou une hausse du stock de pollution. Dès lors, à chaque période, la
variation de la pollution avec une incertitude sur les externalités du capital de type \(e \) est définie par :

\[\tilde{P}_t = \tilde{\gamma}K_t^e \]

(1)

avec

\[\tilde{\gamma} = \theta \tilde{\epsilon} \]

(2)

où \(\tilde{\epsilon} \) est une variable aléatoire centrée et prenant des valeurs dans \(R \) et \(\theta \) est un paramètre dans \(R^+ \). Nous avons alors : \(E(\tilde{\gamma}) = 0 \) et \(Var(\tilde{\gamma}) = \theta^2 \sigma_\epsilon^2 \) où \(\sigma_\epsilon \) est l’écart-type de la variable aléatoire \(\tilde{\epsilon} \), \(\tilde{\gamma} \) suit une distribution de probabilité \(F \).

Nous pouvons à présent préciser le comportement des agents sur leur cycle de vie. En fait, à chaque période de vie, les consommateurs subissent une désutilité de la pollution. Durant leur première période de vie, chaque agent né en \(t \), offre une unité inflexible de travail et reçoit en échange le salaire concurrentiel \(w_t \) qu’il alloue entre consommation \(c_t \) et épargne, \(s_t \) :

\[w_t = c_t + s_t \]

(3)

Les biens de consommation étant supposés parfaitement substituables et les individus étant preneurs de prix, les consommateurs ne font pas de différence entre le bien produit par les firmes de types \(e \) et les firmes de type \(n \). Au niveau de l’épargne, chaque agent est membre d’un groupe d’investissement dont l’objectif est la maximisation du Bien-Être de ses membres. Chaque groupe reçoit alors l’épargne de ses membres et peut choisir d’allouer cette épargne dans un type de firme ou la répartir entre les deux types. Les groupes font donc face à un choix de portefeuille portant sur deux actifs dont les rendements sont certains, mais dont l’un ne produit aucune externalité sur l’environnement (investir dans les firmes \(n \)), \(a_t \geq 0 \), et l’autre induisant un risque d’externalité (investir dans les firmes \(e \)), \(e_t \geq 0 \):

\[s_t = a_t + e_t \]

(4)

avec \(a_t = \beta_t s_t \) associé au rendement \(R^n_{t+1} \) et \(e_t = (1 - \beta_t) s_t \) associé au rendement \(R^e_{t+1} \) où \(\beta_t \in [0, 1] \).

En seconde période de vie, les agents sont à la retraite et consomment, \(d_{t+1} \):

\[d_{t+1} = R^\beta_{t+1} s_t \]

(5)

avec \(R^\beta_{t+1} = \beta_t (R^n_{t+1} - R^e_{t+1}) + R^e_{t+1} \) le rendement du portefeuille de l’agent. Donc la consommation de seconde période devient :

\[d_{t+1} = s_t (\beta_t R^n_{t+1} + (1 - \beta_t) R^e_{t+1}) \]

(6)

Les préférences d’un agent né en \(t \), sont représentées par une fonction d’utilité intertemporelle Von Neumann-Morgenstern, \(U(\cdot) \), additives séparables dans le temps :

\[U(c_t, P_t, d_{t+1}, \tilde{P}_{t+1}) = u(c_t, P_t) + E_t v(d_{t+1}, \tilde{P}_{t+1}) \]

(7)
avec \(u : R^{2+} \to R \) et \(v : R^{2+} \to R \), 3 fois continûment dérivables, strictement concaves en chacun de leurs arguments, croissantes en fonction de consommation et décroissantes en fonction de la pollution:

\[
 u_c > 0, \quad u_P < 0, \quad u_{cc} < 0 \text{ et } v_d > 0, \quad v_P < 0, \quad v_{dd} < 0, \quad v_{PP} < 0.
\]

Les dérivées croisées des fonctions d'utilité sont supposées négatives ou nulles, \(u_{cP} \leq 0 \) et \(v_{dP} \leq 0 \). Autrement dit, la pollution a un effet de dégoût sur la consommation; au plus l'environnement est pollué au moins les agents ont de plaisir à consommer une unité supplémentaire de bien (Michel et Rotillon (1995)).

Chaque groupe d'investisseurs participant à la formation du capital dans les firmes \(e \) est conscient qu'une partie \(\gamma \) de son investissement peut contribuer à la dégradation de l'environnement ou à son amélioration. Les agents, en \(t \), décident alors du niveau de leur épargne et les groupes de sa répartition entre les différents actifs en considérant comme donné le choix d'investissement des autres. Autrement dit, chaque individu agit de manière coopérative au sein de son groupe et les groupes agissent de manière non coopérative entre eux. Un agent représentatif d'un groupe d'investisseurs doit alors résoudre le programme suivant en choisissant \(c_t, d_{t+1}, \beta_t \):

\[
\begin{align*}
\max & \quad u(c_t, P_t) + Eu(d_{t+1}, \tilde{P}_{t+1}) \\
\text{s.} & \quad w_t = c_t + s_t \\
& \quad d_{t+1} = s_t(\beta_tR^n_{t+1} + (1 - \beta_t)R^c_{t+1}) \\
& \quad e_t = (1 - \beta_t)s_t \\
& \quad \tilde{P}_{t+1} = \tilde{\gamma}c_t + \tilde{\gamma}\tilde{E}_t \\
& \quad e_t \geq 0 \\
& \quad a_t \geq 0
\end{align*}
\]

avec \(\tilde{E}_t \) la somme des investissements dans les firmes de type \(e \) des autres agents\(^2\).

3 Choix d'investissement

3.1 Condition d'arbitrage

Nous supposons ici, que durant leur première période de vie, les agent épargnent la totalité de leur salaire\(^3\), consomment l'ensemble du revenu de leur

\(^2\) À ce niveau, les agents étant libres de l'allocation de leur épargne et considérant le comportement des autres comme donné, nous retrouvons un « effet de souscription ou de contribution » bien connu dans la littérature portant sur le financement d'un bien public par contribution volontaire (cf. Warr (1982)).

\(^3\) Une hypothèse alternative est de considérer que les agents consomment une partie fixe de leur revenu en première période, \(w_t = s_t + \check{c} \).
épargne et subissent une désutilité liée à la pollution en seconde période (John and Pecchenino (1994)). L’équation (3) devient alors:

\[w_t = s_t \]
\[(8) \]

et la fonction d’utilité des agents, (7), est définie uniquement sur leur seconde période de vie:

\[E_v(d_{t+1}, \tilde{P}_{t+1}) \]
\[(9) \]

Chaque groupe d’investisseurs doit alors déterminer la répartition de l’épargne entre les firmes de type \(e \) et celles de type \(n \). En substituant \(d_{t+1} = s_t(\beta_t R_{t+1}^n + (1 - \beta_t) R_{t+1}^e) \) dans la fonction d’utilité, (9), nous obtenons la condition de premier ordre suivante:

\[H(\beta^*) \equiv (R_{t+1}^n - R_{t+1}^e)E[\nu_d] - E[\tilde{\gamma}v_P] = 0 \]
\[(10) \]

La condition (10) correspond au choix de portefeuille d’un groupe, \(\beta_t \). Cette condition peut être réécrite comme un écart de rendement entre les deux actifs:

\[R_{t+1}^n - \frac{E[\tilde{\gamma}v_P]}{E\nu_d} = R_{t+1}^e \]
\[(11) \]

Le terme de gauche de cette égalité est composé de deux éléments:
- le premier étant le rendement de l’actif non polluant,
- le second élément représente le gain d’utilité au niveau de la pollution dû à la substitution d’actif à effet incertain à l’actif neutre.

Le terme de droite est simplement le rendement de l’actif à effet incertain sur la pollution, qui correspond à un coût d’opportunité de l’acquisition d’une part supplémentaire de l’actif non polluant.

La condition du premier ordre (10) n’est vérifiée que lorsque le rendement de l’actif neutre est inférieur au rendement de l’actif à effet incertain \((R_{t+1}^n < R_{t+1}^e) \). En effet, cette condition permet un arbitrage entre les deux choix possibles en matière d’investissement. D’un côté, le rendement de l’actif à effet incertain est plus attractif que le rendement de l’actif non polluant et le groupe est incité à investir du capital dans les firmes \(e \). Mais, investir dans les firmes \(e \) peut nuire à l’environnement et cette possibilité de nuisance incite les groupes d’investisseurs à investir dans les firmes non polluantes bien qu’elles offrent un rendement plus faible.

Dans le cadre de notre modèle avec incertitude sur les effets sur l’environnement, nous devons vérifier que les groupes choisissent de partager leur portefeuille entre les deux actifs, la condition de second ordre est la suivante:

\[(R_{t+1}^n - R_{t+1}^e)^2 E\nu_{dd} - 2(R_{t+1}^n - R_{t+1}^e)E[\tilde{\gamma}v_{dP}] + E[\tilde{\gamma}^2v_{PP}] < 0 \]
\[(12) \]

Cette condition n’est a priori pas vérifiée. Nous avons supposé que le rendement de l’actif neutre est inférieur au rendement de l’actif à effet incertain. Aussi, une condition suffisante pour que cette condition soit vérifiée
est $E[\tilde{\gamma}v_{dP}] \leq 0$. La variable aléatoire $\tilde{\gamma}$ étant centrée sur 0, il suffit que v_{dP} soit une fonction décroissante de γ:

$$\forall (d, P), \quad v_{dPP} \leq 0$$

Cette hypothèse signifie que le dégoût à la consommation provoqué par la pollution est une fonction décroissante du niveau de pollution. Autrement dit, pour un individu se trouvant dans un environnement très pollué, l'effet marginal d'une unité supplémentaire de pollution sur son dégoût est faible, alors que le même individu dans un environnement moins pollué sera plus sensible à une augmentation de la pollution\(^4\). Nous pouvons remarquer que dans le cas $v_{dP} = 0$, la condition (12) est toujours vérifiée.

Nous obtenons alors la proposition suivante selon laquelle les deux types de firmes vont coexister:

Proposition 1 Sous l'hypothèse $v_{dPP} < 0$, les groupes d'investissement financent les deux types de firmes à la date t si l'écart de rendement entre le capital risqué pour l'environnement et le capital non risqué est tel que:

$$\rho < R^e_{t+1} - R^n_{t+1} < \bar{\rho}$$

avec $\rho = \frac{-E[\gamma v_P]}{E[v_d]} \big|_{\beta_t=1}$ et $\bar{\rho} = \frac{-E[\gamma v_P]}{E[v_d]} \big|_{\beta_t=0}$.

Preuve:

- Conditions pour lesquelles un groupe investira un montant strictement positif dans le capital risqué. Une condition nécessaire et suffisante pour que $\beta_t > 0$ est:

$$\frac{\partial E v}{\partial \beta_t} \big|_{\beta_t=0} > 0$$

Soit,

$$(R^n_{t+1} - R^e_{t+1})E[v_d(s_t R^n_{t+1}, \tilde{\gamma}s_t + \tilde{\gamma}E_t)] - E[\tilde{\gamma}v_P(s_t R^n_{t+1}, \tilde{\gamma}s_t + \tilde{\gamma}E_t)] > 0$$

- Conditions pour lesquelles un agent investira un montant strictement positif dans le capital neutre vis-à-vis de l'environnement:

$$\frac{\partial E v}{\partial \beta_t} \big|_{\beta_t=1} < 0$$

Soit,

$$(R^n_{t+1} - R^e_{t+1})E[v_d(s_t R^n_{t+1}, \tilde{\gamma}E_t)] - E[\tilde{\gamma}v_P(s_t R^n_{t+1}, \tilde{\gamma}E_t)] < 0$$

CQFD

\(^4\) Le signe de cette dérivée tient intervient également dans la caractérisation d'un agent prudent, comme nous le verrons dans la section 3.3.
Nous pouvons remarquer que le capital ayant un effet sur l'environnement doit toujours offrir un rendement supérieur à celui du capital n'ayant aucun effet. En effet, sous l'hypothèse de dégoût lié à la pollution, $\frac{E_{tr}}{E_{v_d}} < 0$, $\forall (d, P)$, ce terme représente le coût que risquent de subir les agents en terme de qualité de l'environnement en investissant dans les firmes de type e. Cet écart positif entre les rendements doit alors être compris comme la rémunération supplémentaire attendue par les groupes pour assumer le risque qu'ils prennent sur le Bien-Être de leurs membres. Par ailleurs, nous pouvons remarquer que le cas $\gamma = 0$ correspond au cas où les agents ne prennent en compte que les effets de rendement et négligent l'ensemble des effets d'externalité de leur choix d'investissement. Dans ce cas, soit les deux types de firmes offrent le même rendement et deviennent indistingibles pour les investisseurs et rien ne nous assure que les deux types de firmes continueront d'exister, soit l'un des deux types de firmes a un rendement plus important et alors seul ce type sera présent dans l'économie.
Dans le cas certain, mais avec externalité due à la pollution, $\gamma = \tilde{\gamma}$, si l'effet est négatif (la firme dépouille), la condition du premier ordre n'est vérifiée que si $R^n_{t+1} > R^e_{t+1}$. En revanche, si l'effet est positif (la firme pollue), nous retrouvons la même condition sur la différence des deux taux d'intérêt et l'écart de rendement est directement donné par l'effet certain sur l'environnement.

3.2 Sensibilités aux rendements du portefeuille

Nous pouvons à présent étudier les effets d'une variation des rendements des deux types d'actif sur la composition optimale du portefeuille des groupes d'investisseurs. Les sens de variation sont donnés par les signes des expressions suivantes :

$$\text{sign}(\frac{\partial \beta_l}{\partial R^n_{t+1}}) = \text{sign}(\frac{\partial H}{\partial R^n_{t+1}})$$

(13)

avec

$$\frac{\partial H}{\partial R^n_{t+1}} = E_{v_d} + (R^n_{t+1} - R^e_{t+1}) s_t \beta_l E_{v_{dd}} - s_t \beta_l E[\tilde{\gamma} v_{dr}] > 0$$

(14)

et

$$\text{sign}(\frac{\partial \beta_l}{\partial R^e_{t+1}}) = \text{sign}(\frac{\partial H}{\partial R^e_{t+1}})$$

(15)

avec

$$\frac{\partial H}{\partial R^e_{t+1}} = -[E_{v_d} + s_t R^e_{t+1} E_{v_{dd}}] + R^n_{t+1} s_t E_{v_{dd}} - s_t (1 - \beta_l) E[\tilde{\gamma} v_{dr}]$$

(16)

Nous obtenons alors la proposition suivante :
Proposition 2 i) Une augmentation du rendement de l'actif neutre conduit à une augmentation de la part de cet actif dans la composition du portefeuille.

ii) Une augmentation du rendement de l'actif à effet incertain a un effet ambigu sur la part de cet actif dans la composition du portefeuille. Le sens de cette variation dépend de l'effet substitution par rapport à l'effet revenu et de l'importance de l'effet de dégoût.

Les membres des groupes d'investissement ayant une aversion pour la pollution, vont à priori préférer que le groupe investisse dans l'actif neutre. Une augmentation du rendement de ce dernier permet, en fonction des conditions d'arbitrage sur les rendements des actifs, une allocation du portefeuille plus importante dans cet actif. En revanche, une augmentation du rendement de l'actif risqué va avoir un effet incertain sur la répartition du portefeuille. D'un côté, l'augmentation du rendement incite les agents à détenir une part plus forte de cet actif. D'un autre côté, investir plus dans l'actif à effet incertain peut entraîner une augmentation de la pollution. Ceci va avoir tendance à décourager les investisseurs à augmenter la part de l'actif à effet incertain. Intuitivement, on s'attend à ce que le premier effet domine le second (c'est d'ailleurs ce qui arrive pour un effet de dégoût nul). Le second effet viendrait alors atténuer le premier.

3.3 Sensibilités au risque des groupes d'investissement

Nous nous intéressons aux réactions des groupes d'investisseurs en terme de choix de portefeuille lorsque le risque sur la qualité de l'environnement augmente. Pour ce faire, nous considérons que la variable $\tilde{\gamma}$ suit maintenant une distribution de probabilité \tilde{J}, obtenue par un changement MPS (Mean Preserving Spread ou étalement préservant la moyenne) de la distribution de probabilité J. Nous obtenons alors la proposition suivante:

Proposition 3 Si $R^n_{t+1} - R^c_{t+1} < 0$, $v_{dP} < 0$, que les agents sont prudents avec un degré de prudence relative $P_r < 2$, la part d'investissement dans l'actif neutre, β^*_n, augmente lorsque l'incertitude sur l'environnement augmente.

Preuve : Nous supposons que la variable aléatoire $\tilde{\gamma}$ suit maintenant une distribution de probabilité $\tilde{J}(\gamma)$ obtenue par un changement MPS de $J(\gamma)$. À l'optimum, en référence à la condition d'arbitrage (10) nous obtenons :

$$H(\beta^*_n) = 0 = \tilde{H}(\beta^*_n) \equiv H$$

\tilde{H} étant la condition de premier ordre pour la distribution de probabilité \tilde{J}.

Donc $\beta^*_n > \beta^*_j$ implique que la fonction,

$$H(\gamma) = (R^n_{t+1} - R^c_{t+1})v_d - \gamma v_P$$
soit convexe en γ (Rothschild et Stiglitz (1971)):

$$H''(\gamma) = (R^n_{t+1} - R^c_{t+1})P_{t+1}^2v_{dPP} - 2P_{t+1}v_{PP} - \gamma P_{t+1}^2v_{PPP} > 0$$

Sous les hypothèses $R^n_{t+1} - R^c_{t+1} < 0$ et $v_{dPP} < 0$, si

$$P_r = -P_{t+1} \frac{v_{PPP}}{v_{PP}} < 2$$

alors,

$$H''(\gamma) > 0$$

CQFD

Lorsque le niveau d'épargne est fixé, un accroissement de risque implique une augmentation de la part d'actif neutre dans le portefeuille des groupes. Reprenant la définition introduite par Kimball (1990), un agent est dit prudent s'il se prémunit d'un accroissement de risque. Ici, se prémunir de l'augmentation de l'incertitude sur les effets d'un investissement dans les firmes e_i implique que les agents vont augmenter la part du portefeuille qui ne modifie pas l'environnement. Autrement dit, ils vont accroître leur investissement dans les firmes de type n au détriment des firmes de type e_i. Nous pouvons remarquer que suite à un accroissement du risque de pollution (variable aléatoire \tilde{P}), un individu augmente la partie non risquée de son portefeuille lorsque l'expression $(R^n - R^c)V_{dPP} - 2V_{PP} - PV_{PPP}$ est positive. Aussi, avec un degré de prudence relative inférieur à 2, l'hypothèse $V_{dPP} < 0$ permet de caractériser le comportement de prudence.

4 Choix d'épargne

4.1 Conditions d'arbitrage

Nous introduisons un choix d'épargne:

$$w_t = c_t + s_t$$

L'épargne et le choix de portefeuille vérifient les conditions de premier ordre suivantes:

\[H1 \equiv -u_c(w_t - s_t) + (\beta_t R^n_{t+1} + (1 - \beta_t)R^c_{t+1})Ev_{d}[s_t(\beta_t R^n_{t+1} + (1 - \beta_t)R^c_{t+1}) + (1 - \beta_t)Ev_{p}[s_t(\beta_t R^n_{t+1} + (1 - \beta_t)R^c_{t+1})] + \gamma(1 - \beta_t)s_t + \tilde{E}_t] = 0 \] (17)

5 Le signe de cette dérivée tierce croisée apparaît ici de la même manière que dans la caractérisation d'une épargne de précaution avec utilité non séparable (Leland (1968)).
\[H2 \equiv (R_{t+1}^n - R_{t+1}^e)E_v d[s_t(\beta_t R_{t+1}^n + (1 - \beta_t) R_{t+1}^e); \tilde{\gamma}(1 - \beta_t) s_t + \tilde{\gamma} \tilde{E}_t] - E[\tilde{\gamma} v_{dP}[s_t(\beta_t R_{t+1}^n + (1 - \beta_t) R_{t+1}^e); \tilde{\gamma}(1 - \beta_t) s_t + \tilde{\gamma} \tilde{E}_t] = 0 \quad (18) \]

La condition (17) correspond à la condition d’arbitrage entre consommation et épargne en tenant compte de l’externalité négative de la pollution, la condition (18) est équivalente à la condition de premier ordre (10). Lorsque les individus sont face à un choix d’épargne, les conditions du second ordre deviennent :

\[u_{cc} + (R_{t+1}^e)^2E_v d d + 2R_{t+1}^e(1 - \beta_t)E[\tilde{\gamma} v_{dP}] + (1 - \beta_t)^2E[\tilde{\gamma}^2 v_{dP}] < 0 \quad (19) \]

\[(R_{t+1}^n - R_{t+1}^e)^2E_v d d - 2(R_{t+1}^n - R_{t+1}^e)E[\tilde{\gamma} v_{dP}] + E[\tilde{\gamma}^2 v_{dP}] < 0 \quad (20) \]

La condition de deuxième ordre (19) par rapport à l’épargne est vérifiée sous les hypothèses de stricte concavité de la fonction d’utilité et d’un effet de dégoût de la pollution. La condition (20) est identique à (12).

4.2 Effets d’une variation des rendements sur l’épargne et sa répartition

Comme dans la section précédente, nous allons étudier la réaction des groupes face à une variation des rendements des deux types d’actif.

Les sensibilités de l’épargne, \(s_t \) et de sa répartition, \(\beta_t \) à une variation du rendement des firmes de type \(i \) sont données par les expressions suivantes :

\[\frac{\partial \beta_t}{\partial R_{t+1}^i} = - \frac{\partial H_1}{\partial R_{t+1}^i} \frac{\partial H_2}{\partial s_t} - \frac{\partial H_2}{\partial R_{t+1}^i} \frac{\partial H_1}{\partial s_t} \quad (21) \]

et

\[\frac{\partial s_t}{\partial R_{t+1}^i} = - \frac{\partial H_1}{\partial R_{t+1}^i} \frac{\partial H_2}{\partial \beta_t} - \frac{\partial H_2}{\partial R_{t+1}^i} \frac{\partial H_1}{\partial \beta_t} \quad (22) \]

avec

\[\frac{\partial H_1}{\partial \beta_t} \quad (23) \]

et

\[\frac{\partial H_2}{\partial s_t} \quad (24) \]

respectivement les « effets croisés » sur les conditions de premier ordre du choix d’investissement et du choix d’épargne.

Sous l’hypothèse \(v_{dP} < 0 \) et en supposant que l’effet revenu créé par une
augmentation du rendement du portefeuille est supérieur à l’effet substitution entre consommation et épargne (le niveau d’épargne des agents est une fonction décroissante de taux de rendement de leur portefeuille), les signes des expressions (23) et (24) sont positifs. En revanche, si l’effet substitution l’emporte sur l’effet revenu, les signes des dérivés partielles sont indéterminés.

Concernant les effets sur la répartition de l’épargne, nous obtenons un résultat similaire à celui de la section précédente. Autrement dit, le sens de variation de la part de l’actif neutre suite à une augmentation de son rendement dépend de l’écart relatif entre l’effet substitution et l’effet revenu. Tandis que suite à une augmentation du rendement de l’actif à effet incertain, cette part peut augmenter comme diminuer selon non seulement l’importance relative entre l’effet substitution et l’effet revenu, mais également selon l’ampleur de l’effet de dégoût.

Concernant les effets sur l’épargne individuelle, ils sont, dans les deux cas, ambigus. Pour comprendre les différents effets qui se mettent en place, supposons que l’effet substitution l’emporte sur l’effet revenu. À répartition du portefeuille donnée, une augmentation de rendement d’un des deux types d’actif conduit à un rendement global plus important. Sous l’hypothèse d’un effet substitution plus important que l’effet revenu, il s’en suit une augmentation de l’épargne. Or, l’augmentation de l’épargne implique une hausse du niveau d’investissement dans les firmes à effet incertain (comme dans les firmes neutres d’ailleurs). Par conséquent, si les firmes polluent, cela revient à une hausse du niveau de la pollution. Ce dernier effet vient atténuer le premier. On peut noter que si l’effet de dégoût est nul (utilité séparable), ce second effet est inexistant et suite à une augmentation du rendement d’un des deux types d’actif, l’épargne augmente.

Lorsque l’on prend en compte les effets croisés, le sens de variation de l’épargne devient plus ambigus. Si l’effet de dégoût est relativement faible, nous savons que suite à une augmentation du rendement de l’un des actifs, il s’en suit une augmentation de la part de cet actif dans le portefeuille. L’effet total sur le rendement global est alors indéterminé. Il s’en suit une indétermination sur le niveau d’épargne.

4.3 Effets d’une variation de risque sur l’épargne et sa répartition

Nous nous intéressons aux réactions de l’épargne individuelle et de sa répartition lorsque le risque sur la pollution augmente. Nous étudions alors les sensibilités des deux variables de décision à l’équilibre au paramètre θ. Pour ce faire, nous devons étudier les signes des expressions qui suivent. À partir de la première condition du premier ordre (équation (17)), nous obtenons
toujours d’abord, sous l’hypothèse \(v_{dpp} < 0 \):

\[
\frac{\partial H_1}{\partial s_t} < 0
\]

(25)

et

\[
\frac{\partial H_1}{\partial \theta} < 0
\]

(26)

Par conséquent, si les groupes d’investisseurs ne pouvaient choisir la composition de leur portefeuille, un accroissement de risque entraînerait une diminution de leur épargne. En effet, un risque accru signifiant une possibilité de pollution plus forte, si les agents ont du dégoût de la pollution, ils sont prêts à diminuer leur niveau de consommation en seconde période pour s’assurer un certain niveau d’environnement, ceci est d’autant plus vrai qu’ils sont prudents.

D’autre part, à partir de la deuxième condition du premier ordre (équation (18)), nous obtenons, sous l’hypothèse \(v_{dpp} < 0 \):

\[
\frac{\partial H_2}{\partial \beta_t} < 0
\]

(27)

et

\[
\frac{\partial H_2}{\partial \theta} > 0
\]

(28)

Lorsque le niveau d’épargne est fixé (par exemple, si l’on contraint les agents à épargner tout leur revenu), un accroissement de risque implique une augmentation de la part d’actifs non polluants dans le portefeuille des agents à l’équilibre. Afin de se prémunir de l’augmentation de l’incertitude sur les effets d’un investissement dans la firme \(e \), les agents sont incités à augmenter la part du portefeuille qui ne peut pas modifier l’environnement.

Les sensibilités de l’épargne, \(s_t \) et de sa répartition, \(\beta_t \) à une variation du risque des effets des firmes de type \(e \) sur la qualité de l’environnement sont données par les expressions suivantes :

\[
\frac{\partial \beta_t}{\partial \theta} = - \frac{\partial H_1}{\partial \theta} \frac{\partial H_2}{\partial s_t} T_1 - \frac{\partial H_1}{\partial \beta_t} \frac{\partial H_2}{\partial s_t} T_2
\]

(29)

et

\[
\frac{\partial s_t}{\partial \theta} = - \frac{\partial H_1}{\partial \theta} \frac{\partial H_2}{\partial \beta_t} T_1 - \frac{\partial H_1}{\partial s_t} \frac{\partial H_2}{\partial \beta_t} T_2
\]

(30)
Les signes des expressions (29) et (30) sont \textit{a priori} indéterminés. En effet, nous pouvons distinguer quatre cas selon que l'allocation des portefeuilles et l'épargne augmentent ou diminuent avec le risque. Néanmoins, les conditions de second ordre (matrice Hessienne semi-définie négative) nous permettent d'énoncer la proposition suivante:

Proposition 4 Sous les hypothèses $R^n_{t+1} - R^e_{t+1} < 0$, $P_r < 2$ et $v_{dPP} < 0$ (matrice Hessienne semi-définie négative), en réponse à une augmentation du risque, une réallocation de l'investissement vers le secteur « à risque » ne peut pas s'accompagner d'une hausse simultanée du capital.

Concernant les trois cas restants, deux types d'effets peuvent être mis en évidence.

Effets directs : Pour un niveau d'épargne donné, des agents prudents auront tendance à réallouer leur portefeuille de manière à réduire la part risquée de leur investissement. Par conséquent, les agents vont diminuer la part de leur investissement destinée aux firmes de type e (augmentation de β).

Par ailleurs, pour un rendement du portefeuille donné, un accroissement de l’incertitude quant à l'effet des firmes de type e sur la qualité de l'environnement, incite ces agents à détenir moins d'épargne par l'effet de dégoût induit par la pollution. En effet, suite à un risque de pollution importante, l'agent va préférer augmenter sa consommation de première période au détriment de son épargne.

Effets croisés : Lorsque la part de l'actif neutre augmente, le rendement global du portefeuille diminue. Aussi, si l'effet substitution l'emporte sur l'effet revenu, les agents vont diminuer à nouveau l'épargne. Ceci viendrait renforcer le premier effet. Cependant, lorsque l'épargne diminue, pour lisser leur consommation, les individus sont incités à augmenter la part de l'actif qui présente le plus haut rendement. Par conséquent, la part de l'actif neutre diminue. Ceci vient contrecarrer l'effet décrit ci-dessus : il s'en suit une augmentation du rendement global qui peut entraîner une hausse de l'épargne.

Suivant ces deux types d'effets, suite à une augmentation du risque environnemental, les variations de l'épargne et de sa répartition sont indéterminées.

5 **Effet de retour en équilibre général**

Nous venons de voir les effets microéconomiques (directs et croisés) d'une variation de risque sur l'épargne et le choix d'investissement des agents. Or, au niveau macroéconomique, en suivant la loi des rendements décroissants diminuer l'investissement dans les firmes ayant un effet incertain sur l'environnement, va accroître l'écart de rendement entre les deux types de firmes et nous devons alors considérer les effets de retour sur les décisions des agents tant au niveau de la répartition du capital que sur le niveau même
du capital dans l'économie. Intuitivement, les deux effets microéconomiques que nous venons d'expliciter vont impliquer à l'équilibre deux autres types d'ajustements.

Tout d'abord, au niveau de l'ajustement des taux d'intérêt, nous pouvons identifier les effets retour suivants. D'une part, la diminution du niveau d'épargne induit une diminution du stock de capital disponible pour chaque type de firme et donc une hausse des rendements de chaque type de capital. D'autre part, une diminution du stock de capital disponible pour les firmes de type e, par une réallocation de l'investissement, va conduire à une hausse du rendement de la productivité marginale du capital potentiellement nuisible et donc de son rendement.

Au total, le rendement du portefeuille peut diminuer ou augmenter selon l'ampleur des différentes variations de l'épargne et de la part investie dans l'actif neutre. Ce dernier effet va dépendre de la nature de la variation du rendement du portefeuille.

L'augmentation du rendement de l'actif à effet incertain conduit à une diminution de la part investie dans l'actif neutre (β diminue). En définitive, l'impact d'un accroissement de risque sur la répartition du portefeuille à l'équilibre dépend de l'écart entre l'effet direct et l'effet retour.

Si le rendement du portefeuille diminue, et sous l'hypothèse d'effet substitution supérieur à l'effet revenu, les agents sont incités à diminuer une nouvelle fois leur niveau d'épargne, ce qui renforce la baisse de l'épargne individuelle (effet direct).

Si le rendement du portefeuille augmente, et sous l'hypothèse d'effet substitution supérieur à l'effet revenu, les agents sont incités à augmenter leur niveau d'épargne. Le sens de variation de l'épargne d'équilibre dépend là encore de l'écart relatif entre l'effet direct et l'effet retour. Nous allons présenter ces effets de retour dans le cadre d'une illustration avec des productions Cobb-Douglas et une fonction d'utilité logarithmique.

5.1 Comportement des firmes

À chaque période, les firmes utilisent du travail, L, et du capital, K pour produire un bien homogène. Les firmes sont en situation concurrentielle et nous supposons que le capital de chaque firme est totalement déprécié à la fin de sa période d'utilisation. Le travail est supposé homogène avec une parfaite mobilité.

La présence de deux types de firmes dans l'économie conduit à la production de deux biens de consommation, Y^n et Y^c, que nous supposons parfaitement substituables. Nous considérons alors que les firmes de type n et de type e sont parfaitement concurrentielles sur le marché des biens de consommation et sur le marché du travail.

En t, les firmes de type e utilisent une quantité K^e_t de capital et L^e_t de travail pour produire un bien de consommation homogène Y^e_t avec une
fonction de production Cobb-Douglas à rendements d'échelle constants :

$$Y_t^e = F(K_t^e, L_t^e) = (K_t^e)^\alpha (L_t^e)^{1-\alpha} \quad (31)$$

avec $\alpha \in [0, 1]$. Les firmes ayant un comportement concurrentiel, à l'équilibre le salaire est égal à la productivité marginale du travail et le taux d'intérêt à la productivité marginale nette du capital :

$$F_L(K_t^e, L_t^e) = (1 - \alpha)(\frac{K_t^e}{L_t^e})^\alpha \quad (32)$$

$$F_K(K_t^e, L_t^e) = \alpha(\frac{L_t^e}{K_t^e})^{1-\alpha} = 1 + r_t^e = R_t^e \quad (33)$$

En t, les firmes de type n utilisent une quantité K_t^n de capital et L_t^n de travail pour produire un bien de consommation homogène Y_t^n avec une fonction de production similaire à celle des firmes de type e, modifiée par un paramètre A de productivité :

$$Y_t^n = G(K_t^n, L_t^n) = A(K_t^n)^\alpha (L_t^n)^{1-\alpha} \quad (34)$$

avec $\alpha \in [0, 1]$. De même que précédemment, les firmes ayant un comportement concurrentiel, à l'équilibre le salaire est égal à la productivité marginale du travail et le taux d'intérêt à la productivité marginale nette du capital :

$$G_L(K_t^n, L_t^n) = (1 - \alpha)A(\frac{K_t^n}{L_t^n})^\alpha \quad (35)$$

$$G_K(K_t^n, L_t^n) = \alpha A(\frac{L_t^n}{K_t^n})^{1-\alpha} = 1 + r_t^n = R_t^n \quad (36)$$

Sous l'hypothèse d'une parfaite mobilité du travail, les productivités marginales du travail dans les deux types firmes doivent être égales (Galor (1992)), nous obtenons alors :

$$w_t = F_L(K_t^e, L_t^e) = G_L(K_t^n, L_t^n) \quad (37)$$

5.2 Choix d'épargne et investissement

Dans cette section nous spécifions une fonction d'utilité pour les agents, afin d'étudier le signe des variations de l'épargne et des choix d'investissement en réponse à une variation du risque environnemental lié à l'utilisation du capital de type e. Nous supposons que l'utilité des consommateurs est de la forme suivante :

$$\ln c_t + \delta \ln d_{t+1} + \delta E \ln \bar{T}_{t+1}$$
avec $\tilde{T}_{t+1} = T_t - \tilde{\gamma}(1 - \beta_t)s_t - \tilde{\gamma}\tilde{E}_t$ ou \tilde{T}_{t+1} représente le stock d’environnement à la période $t+1$, et δ le taux de préférence des agents pour le présent. Les conditions du premier ordre (17) et (18) deviennent:

$$-\frac{1}{w_t - s_t} + \frac{\delta}{s_t} - \delta E \frac{\tilde{\gamma}(1 - \beta_t)}{T_t - \tilde{\gamma}(1 - \beta_t)s_t - \tilde{\gamma}\tilde{E}_t} = 0$$ \hspace{1cm} (38)

et

$$\frac{R^n_{t+1} - R^e_{t+1}}{\beta_t R^n_{t+1} + (1 - \beta_t)R^e_{t+1}} + \delta E \frac{\tilde{\gamma}}{T_t - \tilde{\gamma}(1 - \beta_t)s_t - \tilde{\gamma}\tilde{E}_t} = 0 \hspace{1cm} (39)$$

5.3 Équilibre avec anticipations rationnelles

Dans cette économie les conditions d’équilibre sur les différents marchés sont les suivantes.

Équilibre sur le marché du travail où nous supposons une parfaite mobilité:

$$L^n_{t+1} + L^e_{t+1} = N \hspace{1cm} (40)$$

Équilibre sur le marché du capital neutre sur l’environnement:

$$N\beta_t s_t = K^n_{t+1} \hspace{1cm} (41)$$

Équilibre sur le marché du capital à effet incertain sur l’environnement:

$$N(1 - \beta_t)s_t = K^e_{t+1} \hspace{1cm} (42)$$

Équilibre sur le marché des biens:

$$Y_{t+1} = N d_{t+1} + N s_t + K^e_{t+1} + K^n_{t+1} \hspace{1cm} (43)$$

À partir des conditions d’optimalité des firmes et des conditions d’équilibre sur les marchés, nous pouvons déterminer les niveaux d’emploi dans chacune des firmes ainsi que les rendements et le salaire à l’équilibre. Nous obtenons alors:

$$l^e_{t+1} = \frac{L^e_{t+1}}{N} = \frac{1 - \beta_t}{A^{\frac{1}{\lambda}} \beta_t + (1 - \beta_t)} \hspace{1cm} (44)$$

$$l^n_{t+1} = \frac{L^n_{t+1}}{N} = \frac{A^{\frac{1}{\lambda}} \beta_t}{A^{\frac{1}{\lambda}} \beta_t + (1 - \beta_t)} \hspace{1cm} (45)$$

$$w_{t+1} = (1 - \alpha)s^\alpha_t [A^{\frac{1}{\lambda}} \beta_t + 1 - \beta_t]^\alpha \hspace{1cm} (46)$$

$$R^n_{t+1} = \alpha s^\alpha t^{-1} [A^{\frac{1}{\lambda}} \beta_t + 1 - \beta_t]^{\alpha - 1} \hspace{1cm} (47)$$

$$R^e_{t+1} = \alpha A^{\frac{1}{\lambda}} s^\alpha t^{-1} [A^{\frac{1}{\lambda}} \beta_t + 1 - \beta_t]^{\alpha - 1} \hspace{1cm} (48)$$
L'hypothèse d'un rendement de l'actif non polluant inférieur à celui de l'actif à effet incertain est vérifiée sous la condition:

\[A < 1 \]

(49)

Les groupes formant des anticipations rationnelles sur les rendements des actifs et choisissant le même portefeuille (puisqu'ils sont identiques), les choix de portefeuille et d'épargne vérifient les conditions suivantes:

\[\beta_t R^n_{t+1} + (1 - \beta_t) R^e_{t+1} = \alpha s_t^{\alpha^{-1}} [A^{\frac{1}{\alpha}} \beta_t + (1 - \beta_t)]^\alpha \]

(50)

et, avec \(A < 1 \),

\[R^n_{t+1} - R^e_{t+1} = \alpha s_t^{\alpha^{-1}} [A^{\frac{1}{\alpha}} \beta_t + (1 - \beta_t)]^\alpha [A^{\frac{1}{\alpha}} - 1] < 0 \]

(51)

En reprenant \(\tilde{\gamma} = \theta \tilde{\epsilon} \), nous obtenons le système suivant:

\[
\left\{
\begin{array}{l}
- \frac{1}{w_t - s_t} + \frac{\delta}{s_t} - \delta \theta (1 - \beta_t) E \frac{\tilde{\epsilon}}{T_t - \theta \tilde{\epsilon} (1 - \beta_t) N s_t} = 0 \\
\frac{A^{\frac{1}{\alpha}} - 1}{\beta_t (A^{\frac{1}{\alpha}} - 1) + 1} + \delta \theta s_t E \frac{\tilde{\epsilon}}{T_t - \theta \tilde{\epsilon} (1 - \beta_t) N s_t} = 0
\end{array}
\right.
\]

Nous pouvons montrer alors aisément la proposition suivante, en remarquant que dans le cas d'une fonction d'utilité logarithmique d'une part les agents sont prudents et d'autre part leur degré de prudence relatif est égal à 2 :

Proposition 1 Si \(A < 1 \), alors, à l'équilibre, une augmentation du risque sur l'environnement entraîne une réallocation du portefeuille des agents en faveur de l'actif neutre ainsi qu'une diminution du niveau de leur épargne.

6 Conclusion

Cette étude montre l'importance de la prise en compte d'une externalité dans les choix d'investissement. L'externalité ici considérée est la qualité de l'environnement, qui peut être soit augmentée soit dégradée par la mise en place d'un certain type de capital. Cette prise en compte nous permet d'une part de faire coexister deux types de firme dans l'économie et d'autre part, cette incertitude a des conséquences sur le niveau général d'accumulation du capital. En effet, il apparaît que la présence d'une incertitude sur les effets de l'environnement d'un certain type de capital va réduire la capacité de production de l'ensemble de l'économie en diminuant le niveau d'épargne des agents. Aussi, ces effets vont modifier le stock de capital futur, de même que
la qualité de l’environnement dont vont bénéficier les générations futures. Il devient alors nécessaire de comprendre les conséquences de cette incertitude sur le long terme.

References

Kimball M. S., (1990), Precautionary savings in the small and in the large, Econometrica, 58, 53-73.

