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1 Introduction

Due to practical constraints portfolios are not continuously rebalanced. Traders usually
readjust their positions after significant moves in the underlying asset price. It means
that hedging portfolios are discretely rebalanced according to relative price movements,
i.e. after an increase (or decrease) by a given percentage a. Price movements leading to
these portfolio modifications are best described by a process whose logarithmic variations
have fixed sizes (a or —a) and occur at random times. Such a process is a marked point
process on the real line with one dimensional mark space. The real line depicts time
while the marks describe the random jumps taking place at random times of occurrence of
events. In this paper we analyse the pricing of an option when stock prices follow this kind
of processes also called space-time point processes. The dynamics of such processes can
be estimated on high frequency data. As will become apparent in the empirical section of
the paper, our pricing methodology allows an adequate fit of the empirical features of the
IBM stock data in top of being in phase with market practice.

The paper is organized as follows. In Section 2 we outline our framework and briefly
portray the basic structure of a marked point process using the martingale approach. In
Section 3 we characterize the set of equivalent martingale measures (the market is incom-
plete due to the presence of jumps and option prices are no more uniquely determined).
In Section 4 we give a pricing formula when a particular choice is made within this set,
namely the minimal martingale measure introduced by FOLLMER and SCHWEIZER (1991).
An explicit form for the trading strategy is derived when this choice is adopted to build
hedging portfolios. Both sections are closely related to the work of BUHLMAN, DELBAEN,
EMBRECHTS and SHIRYAEV (1996) and COLWELL and ELLIOTT (1993). Two examples are
further analyzed. The first example consists in a marked Poisson process with indepen-
dent binomial increments. The second example corresponds to a jump process built from
the random-crossings of a latent (hidden or unobservable) geometric Brownian motion.
In Section 5, we examine the convergence of the minimal pricing model to the standard
BLACK-SCHOLES (1973) model when the price increment shrinks to zero. To exemplify
such a convergence, we carry out numerical simulations. In Section 6, an empirical appli-
cation is provided using IBM intraday transaction data on the NYSE (New York Stock
Exchange). Parameters of the marked Poisson case are estimated and used as input to
compute European call option prices. These prices are compared with a BLACK-SCHOLES
pricing based on an historical volatility estimate from daily closing prices. Section 7 con-
cludes.

All proofs are gathered in an appendix.

2 Framework

Before reviewing the concepts needed to proceed further, we would like to refer the reader
to BREMAUD (1981), KARR (1986) and LAST and BRANDT (LB) (1995) for more extensive
treatments of (marked) point processes. Besides the exposition of JACOD and SHIRYAEV
(JS) (1987) is of paramount interest for the background of this paper in terms of notations
and concepts.



Let us consider a sequence of positive random variables T} satisfying T; < Tj11, j =
1,.... Random elements Z;, called the marks, take values in the mark space F, and are
associated with the random times 7. The random elements are defined on the same
probability space : (2, F, P). Each (7}, Z;) is said to be a marked point and the sequence
((Tj, Z;)); of marked points is referred to as a marked point process (MPP).

The mark space F is here equal to {a, —a} and the MPP describes the dynamics of a
stock price :

S, = SpeXt, (1)

through the random variable :
Xe= Y 7, (2)
JiT;<t
built with the marked points (7}, Z;). The process X is a purely discontinuous process
with jumps Z; = AXr, at random times 7} . The jumps take the values a or —a, and so
do the logarithmic variations of the stock price : Alog St, = AX7,.
The process X takes the form of an integral process x * o defined as the sum of jumps :

Xt = Z A"XTTJ‘ = T * [Ut,
j:TjSt

where 2 * iz is the usual notation for [} [, zu(dt,dz).
The integer-valued random measure p(dt,dz) on R4 x E is the counting measure
associated to the marked point process. It is given by (JS p. 69) :

M(dta d.%‘) = Z]I{AXS;éO}G(s,AXS) (dta dx)a
s>0

where ¢, denotes the Dirac measure at point v.

If B[ Z | Z; |] is finite for all ¢ (JS p. 72), such a process can be decomposed as :
j:TjSt

X=xx(u—v)+zx*v.

The measure v is a predictable measure, called the compensator, with the property that
u — v is a local martingale measure. This measure can be disintegrated as (JS p. 67) :

v(dt,dr) = dA K (t,dx),

where A is a predictable integrable increasing process and K is a transition kernel. Mar-
tingales of the sort = * (u — /), are also called compensated sums of jumps.
In the following we work with position-dependent marking (LB p. 18 and 186) :

Assumption 1 (compensator specification)
The compensator v(dt,dz) on IRy x E satisfies :

v(dt,dr) = dA K (t,dx),

where A is a predictable integrable increasing process absolutely continuous w.r.t. time,
K is a probability kernel on E such that [z(2* AN1)K(t,dz) < +oo, and Z1,Zs, ... are
conditionally independent given (Tj); such that P(Z; € dz|(1});) = K(T},dx).



The marked point process (T}, Z;); is called a position-dependent K-marking of the
point process (7});. The marks have a probability kernel K and the arrivals of the incre-
ments are governed by the process A. The process A represents the intensity of the arrival
times of jumps and is the compensator associated to the counting measure of the point
process (T});. The absolute continuity hypothesis ensures that the set of fixed times of
discontinuity of X is empty and that the Radon-Nikodym derivative \; = dA;/dt is well
defined. The process A is called the directing intensity. Recall that the standard Poisson
process corresponds to the constant directing intensity case :

v(dt,dx) = Adtey(dz),

and z *x (u— V) = @ %y — At.
Eventually for the sake of interpretation let us remark that the compensator may also
be rewritten :

v(dt,dzx) Z][{T <t<Tj+1} 7. ([Z, +oo[xE)’

where G(dt,dx) is the regular version of the conditional distribution of (741, Zj41) w.r.t.
Fr; (JS p. 136 or LB ch. 4 and 6). In particular if Fj(dt) = G;(dt x E) the point process
(T}); has a compensator A; = v([0,t] x E) which reads as :

Ay = Z/ o Fi([s, Cfgo[)

The distribution F}(dt) represents the conditional distribution of the arrival time T} q
w.r.t. .7-"Tj. The current information set ij is made of the current and past realisations
of the MPP. Hence \; can be interpreted as a conditional hazard function (probability
density function divided by survival function). Besides the kernel K(¢,dz) is given by
> il i<ty P(Zj41 € dx|Fry, Tjy1) which means that it corresponds to the conditional
distribution of the mark Z;1 w.r.t. Fr; and Tj41.

Now that the setting is given we may turn to the next step : the characterization of
the equivalent martingale measures.

3 Equivalent martingale measures

From HARRISSON and KREPS (1979), HARRISSON and PriskA (1981), DELBAEN and
SCHACHERMAYER (1994), we know that in order to price derivative assets, we need to
exhibit an equivalent measure under which discounted prices are martingales. We take
here as discount factor or numéraire a savings account whose growth rate rr; on the
random time interval : ||T;_1, T}]] satisfies :

rp, = e/ Tl — (3)



with p > 0.2
The discounted stock price is then equal to :

o S
H (1+TT].)

j:TjSt
or in a shorter notation using the Doléans-Dade exponential :
Sy = S¢/E(Ry),

with Ry = 7 % .
Let us introduce the discounted excess return process (¢, ) such that for t €]}, Tj11]]:

eZi — (1 + rTj)
1+ rT;

§(t,x) = 8(Ty, Z;) = (4)

The equivalent martingale measures are then characterized by the following proposition
(see also BUHLMAN, DELBAEN, EMBRECHTS and SHIRYAEV (1996)).

Proposition 1 (equivalent martingale measures)
Under Assumption 1, the equivalent martingale measures (Q are characterized by their
density process 1 relative to P :

e[ [ Headu-), (5)

where H is a predictable process satisfying H+1 > 0 a.s. and

0= /Ot /E(H(s, x) + 1)6(s, x)dv. (6)

The process 7 is a P-martingale such that 7 is the Radon-Nikodym derivative dQ;/dP;.
The process H has the interpretation of a jump risk premium process. Equation (6)
introduces restrictions on this process but does not lead to a unique equivalent martingale
measure (market incompleteness). In fact for ¢t €]]7},T}1]] the process should satisfy
H(t,x) = hj(x) with hj(z) +1 > 0 a.s. and

0= [ (hy(@) + V3T, 2) K (Ty1, o).
E

Then the discounted price S will be a martingale under the corresponding measure Q).

2For a marked point process where the directing intensity ¢ and the kernel K (¢,dz) depend on time,
we cannot use the usual deterministic savings account 8; = exp (pt). Arbitrage is not precluded in such a
case.



4 Option pricing with the minimal martingale measure

A very popular measure among equivalent martingale measures is the minimal martin-
gale measure introduced by FOLLMER and SCHWEIZER (1991). This measure is minimal
among all martingale measures in the sense that, apart from turning discounted prices into
martingales, it leaves unchanged the remaining structure of the model. In particular or-
thogonality relations are kept in a continuous framework (see SCHWEIZER (1991,1992a) for
a full discussion, and HOFMANN, PLATEN and SCHWEIZER (1992) for an illuminating use
in stochastic volatility models). This measure is computationally convenient and induces
nice convergence properties (RUNGGALDIER and SCHWEIZER (1995), PRIGENT (1995),
MERCURIO and VORST (1996), LESNE, PRIGENT and SCAILLET (2000)). SCHWEIZER
(1993) shows that in some cases the expectation of the final payoff under the minimal
measure is equal to the value of the variance optimal hedging strategy (for the variance
optimal measure see e.g. FOLLMER and SONDERMANN (1986), BOULEAU and LAMBER-
TON (1989), DUFFIE and RICHARDSON (1991), SCHWEIZER (1992b,1994), GOURIEROUX,
LAURENT and PHAM (1998), LAURENT and SCAILLET (1998)). This value or approxi-
mation price gives the initial amount required to implement a risk-minimizing strategy.
Such a strategy is in general not self-financing and involves a non-vanishing hedging cost.
However as soon as the minimal measure is a probability measure, this value is an actual
no-arbitrage price (it is the case below since the jump size is bounded). Concerning ex-
istence and uniqueness of the minimal measure, we refer to ANSEL and STRICKER (1992,
1993). We can now proceed to answer what form this measure takes in our framework
(see also COLWELL and ELLIOTT (1993)).

Proposition 2 (minimal probability measure)
Under Assumption 1, the minimal martingale measure P is a probability measure charac-
terized by its density process 1 relative to P :

i =& ((—aS8)* (= v)e). (7)
where fort €]|T;,T;1]] -

_JpT K (Tadr)
STj fE(SQ(Tj?'T)K(Tj-ﬁ-ladx)

(8)

If we relate this proposition to Proposition 1, we have for ¢ €]|T}, Tj11]], H(t, x) = hj(x)

with :
Jg 6(T5,0) K(Tj41, dv)

[ 6*(T5,0) K(Tj41, dv)
Once the Radon-Nikodym derivative 7 is computed, it is straightforward to derive the
price Cy = C(t, St) of a contingent claim with final payoff C(7T, St). For a European call
option with maturity 7" and strike price K, the final payoff is (S — K )4+ = max(0, S7—K).
By taking its expectation under P after an adequate discounting, we get :

E(Ry)
E(Rr)

hy(a) = 8(Ty, ).

C(t, 8,) = EP |(Sp — K)4

[ Fe | (9)



which leads to :

Proposition 3 (minimal option price)
Under Assumption 1, the call price given by the minimal martingale measure is :

E(Ry) fir
E(Rr) My

C(t, 5,) = EF [(ST —K), 7] (10)

with : E(Ry)/E(Rr) = [ Q+r) ™" and :

Jit<T;<T

e A"eX—T (s, x s, dx
= H (L+ h;(Z;)) p( /t/EH(’ )K(,d)dAs>.

M jasr<r
Let us specialize this option pricing formula on two examples.

Example 1 : Marked Poisson process

The first example consists in a marked Poisson process with independent binomial
marks. The corresponding compensator specification is :

Assumption 2 (marked Poisson process)
The compensator v(dt,dz) on IRy x {a,—a} satisfies :

v(dt,dr) = AdtK (dz),
with

K(dx) = p if dr=a,
= 1-—p if dr=—a.
This example is particularly suited for empirical purposes since the constant parame-

ters A and p can easily be estimated from intraday price data (see the empirical illustration
below). We get immediately from Proposition 3 :

Corollary 1 (option price : marked Poisson process)
Under Assumption 2, the minimal call price is given by (10) with :

(

A H (1 B 5(5(Tj,a)p+5(Tj, —a

)(1—p)
(T, )% + 8(T, —a)2(1 = p) Lo Zj>) (11)
(

1
(1-p)

6(Tj,a)p +6(Tj, —a)(1 — p))2>
8(Tj,a)?p + 6(Tj, —a)*(1 —p) )~

Th jit<T;<T

exp (A (Tp AT) — )



When the interest rate is set equal to zero (p = 0), we have an analytic formula for
the call price. From (10) and (11), the call price is given by :

C(t,Sr) = i %6(_(1_7)/\11) (i % (pa)" (1 = p)ma)"™" (Soe((%_")a) - X)+> 5

where :

N = 1—k(exp(a)—1),
na = 1—k(exp(-a)—1),
p — (plexpla) =1) + (1 —p) (exp(=a) — 1))
p(exp(a) = 1)* + (1 = p) (exp(—a) — 1)*’
+(1-

(p(exp(a) — 1) + (1 — p) (exp(—a) — 1))2'
p(exp(a) = 1)* + (1 - p) (exp(—a) — 1)°

The value of the call can thus be obtained by taking a weighted sum of recombining

’y:

binomial trees. Some rewriting enables us to obtain the simpler form :

Clt.sn -3 (1) e (iiﬂ " P (1= )" (Soe((2i_")a)—X)+>, (12)

n=0 n! i=0 (n —1
with :
-~ P 1
pu— prmy 1
P 1-7) et1 (13)
A= (1—=9)A\ (14)

Formula (12) in fact corresponds to calculating the expectation of the payoff directly
under the Minimal Martingale Measure P as in equation (9). Indeed under . P we have
that S; is a marked Poisson process with intensity X and transition kernel K (t,a) = p.
The mappings (13) and (14) can be obtained by applying Girsanov theorem for jumps
(JS p.157). Interestingly, we also recover the property of the standard binomial model
(Cox, Ross and RUBINSTEIN (1979)) that the risk-neutral up-move (p) and down-move
(1 — p) probabilities do not depend on historical probabilities. Formula (12) is a sum
of standard binomial pricing formulae weighted by the probabilities of the exponential
distribution. The pricing formula can thus be derived analytically by integrating w.r.t.
to the exponential distribution and by weighting the different possible option payoffs by
their binomial probabilities.

When p # 0 one cannot build recombining trees. However, the price of our option can
be computed via Monte Carlo integration by simulating the stock price process directly
under P (cf equation (9)). This ensures better numerical stability than simulating under
P and using equation (10). The intensity and transition kernel under P are characterised
by :



dhy = Mt = (1—~)\dt,

— ?L(Tj,a)—i‘l
K(taa) = ﬁp( I(T],a) )7
with :
N _ - pd (Tj+1,a) + (1 = p) 6 (Tj41, —a)
hTw) = 0@ o T ) @ (D a)’

() (=6 (T )
ITa) = = S Ta) + (=) 8 (Ty1n—a)

Example 2 : Latent geometric Brownian motion

Let us constitute the set of barriers B = {Spexpja,j €4}. The random crossings of
such barriers by the continuous process S satisfying dS;/S; = mdt + sdW; define a price
process S of the form (1)-(2). It is enough to take : exp X; = S; N B. The entire path
of the geometric Brownian motion is assumed to be not observable and the continuous
time process driving the jumps is thus latent (hidden). The distributional features of the
(geometric) Brownian motion can nevertheless be used to identify the distribution of the
jump process X.

The conditional distribution of arrival times is characterized by the probability that a
Brownian motion with drift escapes the corridor {a, —a}. This probability can be deduced
from the trivariate distribution of the running minimum, running maximum and end value
of a Brownian motion (REVUZ and YOR (1994) p. 104) after a suitable change of measure
to incorporate the presence of a drift (see also KuNITOMO and IKEDA (1992), GEMAN
and YOR (1994), HE, KEIRSTEAD and REBHOLZ (1998)). The conditional distribution
of marks is given by the probability that a Brownian motion with drift hits one barrier
before the other (KARLIN and TAYLOR (1975) p. 361).

Consequently we replace in this example Assumption 1 by the more precise assumption:

Assumption 3 (latent geometric Brownian motion)
The compensator v(dt,dz) on IRy x {a,—a} satisfies :

v(dt,dr) = \Mdt K (dz),
where for t €]|T;, Tj+1]] -

N =[-8~ T)] /(e - 1)

and

om'a/s?
K(dz) = nial | gnial? if dx=a,
o—m'a/s?
= e ol if dr = —a,

9



with m' =m — s2/2 and

k=—c0
 oam/s? 3a—m’u—4k:a> B (a—m’u—4ka>]}
e [@( sva o —s\/ﬁ .

In this setting the survival function S(u) is equal to the probability that a Brownian
motion lives during a time period u between —a and a, or equivalently to the probability
that the running minimum and maximum stay above —a and below a, respectively (see
DurrIE and LANDO (1997) for similar computations of hazard rate processes in default
event modelling). We are now able to give the option pricing formula.

Corollary 2 (option price : latent geometric Brownian motion)
Under Assumption 3, the minimal call price is given by (10) with :

nro B §(T;,a)K (a) + 6(Tj, —a) K (—a) .
" j:t<111j<T (1 6(T5,a)?K (a) + (J,—a)zK(—aW(T],Za))

(T3, a)K () + (T3, ~0)K (~a))’
exp <_ §(Tj,a)%K (a) —|—5(T], "a)2K (—a) log S(Tj41 AN T) — T])> )

—~

To close this section it remains to exhibit the composition (¢, %) of the hedging
strategy which generates C(T', St). The processes ¢ and ¢ represent the quantities held
in the risky and riskless asset, respectively. The discounted price of the contingent claim

is denoted : C(t,S;) = C(t, S¢)/E(Ry).

Proposition 4 (minimal trading strategy)
Under Assumption 1, the minimal trading strategy (¢, +) is given by :

g &1,(2)8(T;, 2) K (Tj11, dz)
gTj fE 52(Tj= x)K(T]'+17 d.%’) ’

b =

and :

Wy = C(t, St) — ¢S, (16)
for t €]]T;, Tj11]] with : &Tj (x) = C’(Tj,STje””) - C’(Tj,STj).
5 Convergence to the Black-Scholes model

Hitherto we did not put much structure on the distributions of arrival times and marks.
Let us specify them in order to get convergence to the BLACK-SCHOLES model when the
increment a shrinks to zero.

10



In the BLACK-SCHOLES model, the stock price evolves according to a geometric Brow-
nian motion :

2
S, = Spexp ((m - %)t + SWt> , (17)

and the savings account value according to : exp(pt). We use L, for convergence in prob-

- c(D . .
ability, and D) for weak convergence on ID the space of cadlag functions endowed with
the customary Skorokhod topology. We index all relevant quantities by a, and convergence
should be understood when letting a go to zero.

Proposition 5 (convergence)
Under Assumption 1, if :

§x v 25 (m—pt, (18)
62 % 1f P, 82, (19)

then : \
(5e.) A2 (St (ML) ). (20)

Proposition 5 embodies the convergence of the incomplete model based on the marked
point process to the BLACK-SCHOLES model. Indeed the proposition states the joint
convergence of the sequence of discounted stock prices and Radon-Nikodym derivatives of
the minimal measure. We recognize in (20) the well-known change of measure from the
historical probability to the risk neutral measure of the limiting complete model. As usual
convergence of contingent claim prices will be ensured under appropriate continuity and
equiintegrability conditions on the payoffs.

Now we analyze in some details the marked Poisson model. For computational conve-
nience we set the interest rate equal to zero.

Proposition 6 (convergence : marked Poisson process)
Under Assumption 2 and p =0, if p* — 1/2 ~ ma/(2s%) and X\* ~ s?/a?, then :

2
(se i) A2 (505 (mt + W), € (%Wt)) .

Proposition 6 gives the condition on the probability p® and the directing intensity A\°
so that the marked Poisson model coincides with the BLACK-SCHOLES model in the limit.

Figure 1 shows the smooth form of the convergence obtained for European call option
prices when using equation (12). The numerical example is designed with : Sy = 100,
m = 5%, s = 25%, K = 100, and T' = 0.25. The straight line is the BLACK-SCHOLES price
equal to 4.9835, while the dashed line gives the price computed by the marked Poisson
model with p* = (ma?/s* + (1 — e~ %)) / (e* —e™®) and \* = s*/a?.

Finally, we are able to deliver the analogous result to proposition (6) for the latent
geometric Brownian motion case. Some numerical results show that the convergence is
very similar but less smooth because of the use of simulations.

11



Proposition 7 (convergence : latent geometric Brownian motion)
Under Assumption 3 and p =20 :

%a ~a\ LD
( ?,m) (—>) (Sog(mt‘i‘swt)ag(%wt))'

4.95r

491

4851

4.8

Call Price

475

471 "

4.65 r ; ‘ , , ‘
8.00% 7.00% 6.00% 5.00% 4.00% 3.00% 2.00% 1.00%

a

Figure 1: Convergence of option prices : marked Poisson process

6 An empirical illustration : IBM transaction data

This section illustrates the empirical application of the marked Poisson model to the pricing
of European call options.? The model parameters \ and p are estimated from intraday
transaction data. The data were extracted from the Trades and Quotes Database (TAQ
Database) released by the NYSE. The observations are the trades of IBM stock recorded
every second from market opening (9:30:00) to market closure (16:00:00). They consist of
486,513 transactions beginning on Thursday January 2th 1997 and ending on Wednesday
September 30th 1997 (9 months).

The estimators are obtained by maximum likelihood. The estimator of A is the inverse
of the empirical average of durations between two successive relative price changes (recall
that if events follow a Poisson distribution, time intervals are exponentially distributed).
The estimator of p is the observed proportion of positive variations. To test the null
hypothesis that the durations are exponentially distributed, we use a test statistic based on
the equality between the mean and the standard deviation (see e.g. CHESHER and SPADY
(1991) or CHESHER, DHAENE, GOURIEROUX, and SCAILLET (1999)), and a Bootstrap
procedure to account for finite sample level distortions. We consider models with absolute
variation sizes a ranging from 0.25% to 5%. Common practice on the market is to rebalance
after relative variations by 3% or 4%. An observed path of log S; for the IBM stock is
plotted on Figure 2. It corresponds to the period from January to September 97 with the
jump size a = 3%. Table 1 reports the estimators of A and p, with their respective standard

3Gauss programs developed for this section are available on request.

12



deviations within brackets, and the number (Nb.) of observed relative price changes for
each absolute variation size. The intensity estimate is in 1/sec. and should be multiplied
by 60 (sec.) x 60 (min.) x 6.5 (hours) x 250 (days) = 5,850,000 in order to get an
annualized intensity. The hypothetized exponential behavior of the durations is rejected
at the 5% significance level for models with too narrow rebalancing bounds (a < 2%). For
the significant models, a jump is expected every 2, 4 and 6 days for a = 3%, 4%, and 5%,
respectively. The upmove probabilities are not far from one half.

Table 1 : Parameter estimates for IBM stock (in percent)

[ a | A . p» [ Nb |
0.25 || 0.2849 (0.0054) | 50.52 (0.45) | 12501
0.5 || 0.0846 (0.0027) | 50.87 (0.82) | 3715
0.75 || 0.0407 (0.0017) | 51.20 (1.18) | 1789
1 | 0.0242 (0.0013) | 51.55 (1.53) | 1065
2 || 0.0050 (0.0004) | 53.60 (3.35) | 222
3 || 0.0021 (0.0002) | 55.91 (5.15) | 93
4 [[0.0010 (0.0001) | 59.09 (7.41) | 44
5 || 0.0007 (0.0001) | 60.00 (8.94) | 30
47
4.6
45 -
4.4 -
4.3 +
42 -
41 " y "
01/97 03/97 05/97 07/97 09/97

Figure 2 : MPP based on IBM stock price with a=3%

With these estimates we may compare option prices given by the marked Poisson model
and the BLACK-SCHOLES model. We use an historical approach to estimate the volatility
in the BLACK-SCHOLES model (unfortunately, we do not have option data to compute
implied volatilities). The volatility estimator is the standard deviation of daily closing
prices from Thursday January 2nd 1997 to Thursday March 27th 1997 (3 months). This
choice corresponds to market standards. We get a volatility estimate of 2.19%, which gives
an annualized volatility (x+/250) of 34.67%. This is also close to the annualized volatility

13



computed on the whole dataset : 31.98%. The interest rate is taken equal to 5%. The ma-
turity of the European call option is three months. The initial stock price Sy is normalized
to 100 and strike prices K expressed in percentage of spot price (spot moneyness degree)
are between 90% and 110%. Table 2 only gives the results for the statistically significant
models of Table 1. Monte-Carlo integration with 200,000 replications is used to calculate
expectation (9). To reduce the variance of the simulations, we use St as control variate
device. Note that the empirical martingality of Sp is satisfied up to a precision of at least
1073, All call prices are below their BLACK-SCHOLES equivalents. From put-call parity,
it also implies that all put prices will be below their BLACK-SCHOLES counterparts. The
prices for a = 5% are higher than for a = 4%. This is due to the compensation of the
lower intensity by the higher upmove probability.

Table 2 : Option prices (in percent)

[ a] K/Sp || Poisson | BS |
3 90 0.13314 | 0.13529
95 0.09976 | 0.10231
100 || 0.07215 | 0.07503
105 || 0.05097 | 0.05340
110 || 0.03482 | 0.03693

4 90 0.12858 | 0.13529
95 0.09415 | 0.10231
100 | 0.06583 | 0.07503
105 | 0.04491 | 0.05340
110 | 0.02973 | 0.03693

) 90 0.13052 | 0.13529
95 0.09660 | 0.10231
100 | 0.06907 | 0.07503
105 | 0.04805 | 0.05340
110 | 0.03284 | 0.03693

7 Concluding remarks

This paper proposes explicit formulae for pricing contingent claims when the underlying
price follows a marked point process. The formula relies on a minimal martingale approach.
It is particularly suited for discrete hedging in which portfolios are only rebalanced after
fixed relative price variations. The practical use of the pricing model is illustrated with a
marked Poisson model estimated on high frequency transaction data. The marked Poisson
model is shown to be able to provide a good fit for large variation sizes but not for small
sizes. However, our theoretical framework encompasses very general dynamics for the stock
price. A wide range of empirical applications based on more sophisticated econometric
models, e.g. developed for microstructure theory, can thus be proposed. The relevance of
such extensions is left to future research.
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APPENDIX :
Proof of Proposition 1

The proof consists in finding the adequate restriction on the change of measure d@/dP
so that the discounted stock price S is a local martingale under the new measure Q. It
parallels the developments in BUHLMAN, DELBAEN, EMBRECHTS and SHIRYAEV (1996).

We denote by M;,.(Q) the set of all local martingales under (). The density process 7
of ) relative to P can be rewritten thanks to the theorem of representation of martingales :

w=¢([ [ Headu-),

where the predictable process H satifies some integrability conditions (JS p. 172) and
H +1 > 0 a.s. since 7 is strictly positive.

Furthermore S; € M;,.(Q) if and only if Sy € Myo.(P). From Ito’s and Yor’s
formulas (PROTTER (1990) p. 78, REVUZ and YOR (1994) p. 354) we have :

Sy =& (/Ot /E 6(s,x)dp+ H(s,x)d(p —v) + H(s,m)é(s,m)dv) .

_ This implies that I8 [w(H(s,2) + 1)8(s, 2)dv should be equal to zero in order to get
Sine € Mioe(P), which ends the proof.

Proof of Proposition 2

We know from ANSEL and STRICKER (1992,1993) that if 1 — aAM > 0 a.s. and
EF [supog s<T 5'82] < +o00, the minimal martingale measure is a probability measure char-
acterised by its density process 7 relative to P :

0= E(_Q'M)a
with M a locally bounded integrable martingale and « a predictable process satisfying :
S =M+ a.(M,M),

and where the dot denotes the stochastic integration of a predictable process w.r.t. a
semimartingale. The predictable process « is given by the relation :

Oétd<M, M>t = dzzlt, (21)

where A is the predictable bounded part of S.

In our case the martingale part of S is equal to : M = (86) * (u — v) and its pre-
dictable quadratic variation (angle bracket) equal to : (M, M) = (§8)? v (JS 1.33 p. 73).
Furthermore A = (S6) % v which gives equation (8) using relation (21). Besides since the
jump size is bounded, 7 is a strictly positive local martingale and the minimal martingale
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measure is a probability measure.
Proof of Proposition 4

We follow COLWELL and ELLIOTT (1993).
On the one hand, since C' is a P-martingale, it comes from the martingale representa-
tion theorem and Ito’s lemma that :

C(t,Sy) = C(0,80) + ¢ * (1 — D)y, (22)

with ¢(z) = C(T}, St,e%) — C(T}, St,) for t €T}, Tj41]].
On the other hand we have (see e.g. SCHWEIZER (1991)) :

C(t, ) = C(0,80) + (¢56) * puy + Ty, (23)

where I'; is a martingale under P.
This process represents the cost associated with the trading strategy, and can be
rewritten from (22) and (23) :

D= (p—10) = ($56) * pu.

Since it is a martingale under P, we deduce from :

Gr(u—0)=d*(n—v)+dx—0),

and : 3 . .
(658) % 1 = (56) * (11— v) + (658) * v,
that the following equality should hold :

b * (v —10) = ($S6) xv.
Using © = (H 4 1)v and the expression of H, the result follows.

Proof of Proposition 5

Conditions (18)-(19) and the jump boundedness ensure the convergence of the first
Doléans-Dade exponential &€ (6 * uf) to € ((m — p)t + sWy) (IS 3.11 p. 432). Since the
martingale part of the discounted price is uniformly tight (the jumps are bounded and
the predictable part is increasing) we conclude the convergence of the second Doléans-

Dade exponential 7} = & ((—045'5) * (u®* — Va)t) as in PRIGENT (1995) Proposition 3.3 or
LESNE, PRIGENT and SCAILLET (2000) Proposition 1.
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Proof of Proposition 6

Conditions (18) and (19) of Proposition 5 can be rewritten as :

A =Dp*+ (e =1) (1 =p")] — m,
e =1 p 4 (e =) (1 —p)] — &

From Taylor expansions, it can be verified that both conditions are satisfied if : p®* —1/2 ~
ma/(2s%) and A ~ s%/a?. The stated result is then a direct consequence of Proposition 5.

Proof of Proposition 7

i) The weak convergence of the stock price is immediately deduced from the construc-

tion of X since : )

sup | X7 — ((m— 8—)75 +sW)| <a
te[0,T 2

(see JS 3.30 and 3.31 p. 316 with t* = X& — (m — £)t + sW; and Y = (m — £)t + sW;).

ii) To deduce the weak convergence of the density process we need first to establish
that X has the property UT (uniform tightness see MEMIN and SLOMINSKY (1991) for
a definition). In order to do so, we will need the following key lemma which gives the
behavior of the Laplace transform of the expectation of the number of jumps for small a.
Its proof is given below.

Lemma
If N{ denotes the number of jumps on the time interval [0,t] ,we have for small a :

~ —S B[N dt 1s
0 € [ t] Nggag'

Now, recall that X{* = (zxv®); 4+ x* (u* —v*);. From Condition (ii) 2) of Theorem 1-4
of MEMIN and SLOMINSKY (1991), we have to check that Var(B®) is IP%-stochastically
bounded where B* is the bounded variation part of X (i.e. x % v*). Here, since x x 1% is
an increasing process, we have :

T
sup Var(z xv*) = (/ xK%(dx)) x / A¢dt.
[0,T] E 0

Moreover, for all L > 0, we get :

IP[(/E 2K (dz)) % /OT Nedt > I < %(/E 2K (dz)) x E[/OT ).

Recall that E[f; \%ds] = IE[N{]. Hence from the above lemma, we can deduce by
continuity of the inverse Laplace transform that, for small a and fixed ¢, IF] fg Aeds| ~ Z—zt.
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Note also that [ 2K*(dx) ~ T—;aQ since K(a) ~ 35 + %m;a Therefore we get :

S

Ve > 0,3L, IP[sup Var(z *v*) > L] <e.
0,7]

So Var(B?) is IP*-stochastically bounded, and we conclude to the uniform tightness of X®.

Second, since (X;); = (m't + sW;); is continuous, and since X® converges to X and
satisfies the property UT, we deduce from Proposition 2.2 of MEMIN and SLOMINSKY
(1991) that the martingale part x * (u® — v*) of X converges to the martingale (sW;);
and that the bounded variation part x x v converges to the bounded variation part m/t.
Therefore we get from direct Taylor expansions :

P
S*xvp — m't,

P
2 xvt — st

The last condition guarantees the convergence of the predictable compensator of the
martingales 6 * (u* — v*). Moreover, since the jumps of these martingales are uniformly
bounded, the sequence (6 * (u* — v*)), satisfies the UT (uniform tightness) condition.

From Equation (8), a standard Taylor expansion of af proves that a® weakly converges

to o with o = gis—”%
t

From all these results the convergence of the second Doléans-Dade exponential 7' =
& ((—045'5) * (u* — Va)t) follows immediately as in PRIGENT (1995) Proposition 3.3 or
LESNE , PRIGENT and SCAILLET (2000) Proposition 1.

Proof of Lemma

Let us first compute the Laplace transform of IE[N{].
We denote by T_, 1, the first time the Brownian motion with drift escapes from the
interval [—a, +a] :
T o+q = inf{u > 0, W, +m'u & [—a, +al}.

Consider the sequence () of i.i.d. random variables where all € have the same distri-
bution as T, 4. Then for all £ € N*, the following equality is verified :

IP[N,? > k] = 1P[61 +...+e < t].
Moreover, recall that if IP is a probability on IR} with a density p then :
/ e~Etp(t)dt — / eSAP(t) = [e S PO + € / e EP(t)dt = ¢ / =€t P(1)dt.
0 0 0 0

Let us denote : ~
Ly(§) = 5/ e S Pley + ... + € < t]dt,
0
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which is equal to £ [{° e ' IP[N{* > k]dt, and also equal to (L1(£))* by independence of
the €L
Since :
IP[N{ = k| = IP[N{* > k] — IP[N{" > k +1],

we get :

Efo e B[Nt = &[5 e (i kPN = k])dt
= YRl k(€ foT e PN > kldt — € [§7 e S IP[Nf > k + 1]dt)
= Yie1 k(Le(§) — Li+1(8))
= Zzil kLk(f) - Zzil(k + 1)Lk+1(§) + Zl?;l Lk+1(§)a

which finally gives :

& .y a o e o Ll(g)
5/0 e 5E[Nt]dtfk§1L1(§)ka1(§).

For m/ = 0, we have (exponential martingale) :

52
E[exp(é.WTfapka - ET—G,,-FG,)] = ]‘7
from which we deduce :

2
ElBesp(Wr )| Fr o Jexp(—5 T asa)] = 1

and : )
Oh(a) Elexp(—5 T 1a)] = 1

Therefore : .

Li(€) = ———.
For m’ # 0 and for all ¢ > 0,

dIP
E[eXp(_gT—a,+a)]IT7a,+a<t] = E[ﬁ‘}} eXp(_gT—a,+a)]IT7a,+a<t]

where W,, = m/u+ W, is a Brownian motion under IP by applying Girsanov theorem.

~ ,2
Now, since %\E = exp(m/W; — ™~1), we get :
E[%\ﬂ exp(—ET-a4a)lr, o <i]
~ ,2
= E[Elexp(m'W; — "-t)|Fr_, ) exp(—€T o va T, <t]

~ /2
= E[exp(m/WTfapka - (5 + mT)T_a7+a)]ITfaﬁ+a<t]
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= BElexp(m'Wr_, ;)| Fr_o ) exp[—(€ + ) g rallr_, .. <i]
= Ch(m/a) Elexp[— (& + )T q o)z, ,u<t].

Then, by convergence with respect to ¢, we get :

72

Efexp(~€T . 0)] = Oh(m'a) Blespl(—€ — "2 )T )] = — U

Ch(ay/2¢ + m’2)'

Finally : . ' Chim'a)
/ e SUB[NMdt =
0

€ Chiay/2¢ + m?) — Ch(m'a)

and, for the process (m't + sW,), with the volatility s :

o0 ! 2
/ S B[N dt = + Chima/<")

o € Ch(a/s\f2 + (m*/?)) ~ Ch(mla/s2)

Then a Taylor expansion leads to the stated result :

~ —S B[N dt 1s
0 € [ t] Nggag'
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