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MULTIREGIME TERM STRUCTURE MODELS

C. GOURIEROUX and O. SCAILLET
Résumé

Le modele de HO et LEE est pour I’étude de la structure par terme des taux d’intérét ’analogue
de larbre binomial introduit par CoX, R0ss et RUBINSTEIN pour le cas d'un seul actif risqué.
Ce modele ne permet cependant qu’un petit nombre de déformations de la structure par terme
entre deux dates, ce qui le rend incompatible avec les données disponibles. Nous nous proposons
de réconcilier les approches par arbre et l'inférence statistique. Pour cela nous considérons des
modeles a régimes, ou la déformation de la structure par terme peut dans chaque régime avoir une
certaine variabilité. Les questions de contraintes provenant de I’absence d’opportunité d’arbitrage
sont analysées dans un contexte d’information asymétrique entre les intervenants de marché et

I’économetre chargé de 1’étude.
Abstract

The Ho and LEE model is the analogue for the study of the term structure of interest rates of the
binomial tree introduced by Cox, Ross and RUBINSTEIN in the one risky asset case. This model
allows only for a small number of deformations of the term structure between two successive dates,
and is therefore incompatible with available data. We propose here to reconcile tree approaches and
statistical inference. We consider regime models for which the deformation of the term structure
may behave randomly in each regime. Questions about constraints induced by no arbitrage are
also addressed in a context of asymmetric information between traders and the econometrician in

charge with the estimation.

mots clés : modele binomial, structure par terme, taux d’intérét, information asymétrique.
key words : binomial model, term structure, interest rate, asymmetric information.
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MULTIREGIME TERM STRUCTURE MODELS

Abstract

The Ho and LEE model is the analogue for the study of the term structure of interest rates
of the binomial tree introduced by CoxX, R0ss and RUBINSTEIN in the one risky asset case.
This model allows only for a small number of deformations of the term structure between
two successive dates, and is therefore incompatible with available data. We propose here to
reconcile tree approaches and statistical inference. We consider regime models for which the
deformation of the term structure may behave randomly in each regime. Questions about
constraints induced by no arbitrage are also addressed in a context of asymetric information

between traders and the econometrician in charge with the estimation.



Introduction

In an influential paper, Ho and LEE (1986) introduced their binomial model for the dynamics
of the term structure of interest rates. Such a binomial model is particularly useful for option
pricing, especially for options with path dependent payoffs (see TURNBULL and MILNE
(1991) for an extensive treatment of option pricing in the discrete time setting). The model is
easy to understand and implement as it requires only basic computer programming skills. It
is the counterpart, in interest rate theory, of the well-known binomial tree of CoX, R0ss and
RUBINSTEIN (1979) developped for the pricing of stock options and serves as an introductory
example in most finance text-books.

The model is based on the equality between the price of a discount bond one period ahead
and its one period forward price, which holds in a deterministic environment. There are
two states of the world that are envisaged and a disturbance function is introduced to
accommodate the randomness. By standard no arbitrage arguments it is possible to exhibit
restrictions on the values taken by the disturbance function.

However the HO and LEE model is systematically incompatible with available data. It is
due to the too small number of deformations of the term structure allowed between two
successive dates. In this paper we propose to reconcile HO and LEE type models and
stastistical inference. Indeed as advocated by BLiss and RONN (1989), the data should play
a crucial role in the construction of a model in order to provide as accurate a representation
of reality as possible. BLiss and RONN (1989) adopt a method of classification of the states
of their trinomial model based on a single maturity, and their empirical results are thus
dependent on the chosen maturity. The methodology presented here avoids this feature,
and allows for a classification of the type and number of regimes without any a priori by
extracting the information provided by the data. Besides it leads to testing procedures of
the restrictions induced by no arbitrage conditions on the selected model.

The paper is organized as follows. Section I briefly introduces the binomial model, discusses
its statistical incompatibility with available data and the need for some extensions. A first
extension is considered in Section II. We maintain the assumption of two regimes, but allow

the term structure deformation to vary in each regime. We examine the constraints induced



by the no arbitrage conditions and develop the corresponding inference procedures. In order
to do so, we address the role of information available to market participants when they draw
pricing implications from no arbitrage and assume that the econometrician is less informed.
In Section III, we present an additional extension with more than two regimes. Section IV
is devoted to an application to US term structure data where we reveal the number and
features of existing regimes. The derivations of the no arbitrage conditions are gathered in

the Appendix.

I Binomial models

The price at date ¢ of the discount bond with time-to-maturity « is denoted by B(¢,t +
u). This asset delivers one money unit at time ¢t +u, v = 1,...,N, ¢t = 1,...,T. The
binomial term structure models are derived by multiplying the no arbitrage condition in a

deterministic environment :

B(t—1,t+u)
B(t—1,t)

B(t,t +u) = Vt, u,

by a random function H(u) called the disturbance function. In the Ho and LEE model the

disturbance function is :

Hi(u) = h(u)e, + h*(u)(1 — €),

where () is a sequence of independent Bernoulli variables with P(¢, = 1) = p, P(e, =0) =
1 —p, and h(u), h*(u), two time independent functions. Therefore the functional process
(Hy(u)) is assumed stationary, time independent and admits only two values, functions of
u: h(u), h*(u) :
Hy(u) = h(u), with probability p,
h*(u), with probability 1 — p.
A plot of the functions :

B(t,t +u)B(t — 1,¢ _
Hy(u) = (B(t — )1,t(+ ” ), u varying, (1)

for different dates, immediately reveals that such a strict time independent binomial as-

sumption is not compatible with available data (see Figure 1 for US term structure data).
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In fact, this basic model does not allow for enough randomness to accommodate the data
behavior, and is misspecified.

It is thus essential to include some extra sources of randomness to improve the fit, and also
to adapt the specification so that statistical inference becomes feasible. In this paper we
modify the HO and LEE model first by allowing the h(u) and hA*(u) functions to take random

values in the two regime framework, second by increasing the number of regimes.

II Inference for two regime models

A The two regime model

In this section we develop a method of inference for a data set such that, at each given date
t, all values of the observed function H,(u), u varying, are either all bigger or all smaller
than one. We may define without ambiguity the high and low regimes prevailing at different

dates :
¢ = 1 (high regime) <= H;(u) > 1, Yu,

e = 0 (low regime) <= H,(u) < 1, Yu,

where ¢; is the regime indicator. In such a data set the regimes are easily observed ex post
only by considering whether the observed disturbance function is smaller or larger than one.
The disturbance function is now assumed to vary in each regime and obey a stochastic model
for the function H;. This function is specified in two steps. First we set the evolution of the
latent processes : (€, hi, hf) (or of a one-to-one function of these processes). Then we use
the deterministic relation : Hy(u) = ¢,hy(u) + (1 — €)h;(u), to represent the dynamics of the
disturbance function.

In fact the latent functions h;, h; are not very convenient for modelling purposes, and we

introduce the new parametrisation :
hi(u) =1+ ag(u),  hi(u) =1 —aj(u), (2)

which explicits the difference between the disturbance function and one.

The N x 1 random vectors oy = [on(1),...,ae(N)]',af = [af(1),...,0;(N)] take positive



values and satisfy :

Ht—lzetat—(l—et)oéf, (3)

with H, = [H,(1), ..., H(N)].

It remains to specify the distributions of the latent processes : (e, oy, ). We assume :
A1 : (&, af) are independent and identically distributed.

A 2 : ¢ and (oy,«f) are independent.

A 3 : (&) is a sequence of independent Bernoulli variables with the same parameter p.

A 4 :loga; = [logay(1),...,loga;(N)] and log ol = [logai(1),...,logai(N)]', have con-

m
tinuous distributions on the set of admuissible values with mean , and covariance
m*
, C
matrix
Cl Z*

Let us remark that, for a given date ¢, only one regime prevails and a single type of distur-
bance function a or a* is observed. Therefore we never have simultaneous observations of

oy and «j, and the covariance matrix C' is not identifiable.

B Arbitrage restrictions and the role of information

The previous modelling does not take into account the constraints implied by no arbitrage.
In this section, we examine this issue when the traders (or the most informed market par-
ticipants) and the econometrician may have different pieces of information (see CLEMENT,
GOURIEROUX and MONFORT (1997) for a similar approach). Indeed the no arbitrage im-
plications are related to the traders’ behavior and their information, whereas statistical
inference depends on the econometrician’s information.

Let us denote by ¢, the information on the regime, and by a; = (a4, ;) the information on
the levels. Three cases may be distinguished depending on the degree of available informa-

tion :



i) The market participants and the econometrician are informed on the future

levels

In this framework the market participants and the econometrician know the future levels
a;, but do not know the future regime. This setup is equivalent to the Ho and LEE model

with deterministic time varying functions h; and h;. The no arbitrage constraints are :

am € [0,1] : mhy(u) + (1 — m)hi(u) =1, Yu, (4)
or equivalently :

Im € [0,1] : map(u) — (1 —m)aj(u) =0, Yu, (5)

where m; is a function of the information available at ¢t + 1 including a;. Due to equation
(5), m only depends on the admissible values of the disturbance function : m = 7(a;). At
each date the probability m; must be the same for all u and is known with certainty.

The limiting case : ¥ = ¥* = C = 0 corresponds to the standard Ho and LEE model, where

the functions A and A* are time invariant and constrained by :
dr € [0,1] : 7h(u) + (1 —m)h*(u) =1, Yu.

As already mentioned this model is statistically incompatible with the data and is rejected

with probability one by the econometrician.

ii) The market participants and the econometrician are informed on neither the

future regime, nor the future levels

It is proved in the Appendix that the no arbitrage assumption implies no additional restric-
tions on the model. This is due to the large number of additional random shocks introduced

in the model at each date, i.e. one by maturity.

iii) The market participants are informed on the future levels and the econome-

trician is not



This is a situation of asymmetric information. Since the no arbitrage implications are relative

to the traders and their lack of knowledge concerns only the regime, the constraints are :
Sr(ar) € [0,1) : mah(uia) + (1—n(a)h*(wa) =1,  Vu, (6)

where h(u;a;) denotes component u of h; which also depends on a;.

Hence the no arbitrage constraints are similar to (4), and depend on the privileged informa-
tion ay.

Any statistical inference is now performed on the basis of the econometrician’s knowledge
only. If he does not know the future levels, the no arbitrage implications are : for any date
t, there exists a stochastic risk neutral probability 7; such that : mhe(u) + (1 —m)hf(u) =
1, Yu.

Therefore he faces randomized constraints. Since m = 7(a;) is a fixed function of the i.i.d.
levels the stochastic risk neutral probabilities are also i.i.d., and the relation can be rewritten

in terms of positive random variables \; such that :

Us’

Oé;: = )\tata Wlth . )\t = 5 (7)

]_—7Tt

or :

Vu=1,...,N, log o (u) — log ay(u) = log ;. (8)

This condition entails constraints on the joint distribution of (log ay, logaf). First a con-
dition on the first order moments is obtained by taking expectations of both sides of equa-
tion (8) :

Yu=1,...,N, m*(u) —m(u) = p, independent of . 9)

A constraint on the second order moment : Vlog a;(u) —log a;(u)] = V'log \;, independent
of u, can also be obtained. However it is not testable because of the nonidentifiability of
C. Indeed, as we do not observe at the same date log a; and log o} simultaneously, it is not
possible to identify the cross term C' of the covariance matrix from the data.

To take into account second order features, we need additional identifiability conditions.
They concern the properties of the stochastic risk neutral probability under the assumptions

of no arbitrage and asymmetric information :



A 5 : In the constrained model, log oy and log A, are independent.
Under the constrained model, we have :
Ju, 0% :m* =m+pe, X =34 o’ee,

with e the N x 1 vector with all components equal to one,  and ¢ the mean and variance
of log \;.

A symmetric assumption might also be introduced :
A 6 : In the constrained model, log of and log \; are independent.

Such assumption leads to a change of sign in the relation between ¥* and ¥ :

o2 0 =Y — olee.

C Inference procedures

In this section, we present inference methods for the two regime model, which exploit the
aforementioned moment conditions. We first cover the unconstrained estimation and next

turn our attention to the constrained model.

i) Unconstrained estimation
The unconstrained moment estimators of the identifiable first and second order parameters

are the sample moments :

_ Ly, — Ly
pPr = = €t = — (Ht>1)7
T t=1 T t=1
. 1
mr = T Z lOg(Ht — ].),
1 t:etzl
~ 1 !
Sro= — > log(H, — 1)log(H, — 1) — fr fiy,
1 =1
., 1
mT = — Z ].Og(l - Ht)?
0 ¢:6,=0
~ 1 !
o= — Z log(1 — Hy)log(1 — H;) — m), miy
TO t:e¢=0



with : T = Zet, To =T —T;. Note that H, > 1 means H;(u) > 1, Yu, log(H; — 1) is the
vector with components log(H(u) — 1), and the regime indicators ¢; are observable.

In this setup the number of high regimes is equal to T}, while they are observed with
frequency pr. The estimators mr, Sy are the sample mean and variance corresponding
to this regime. Such estimators are easy to compute, since we can use the SURE routine
(Seemingly Unrelated Regressions) included in most econometric packages and regress the
values of the variables log( H¢(u) — 1) corresponding to the high regime on the constant. The
estimated intercept yields the estimated mean, and the covariance matrix of the residuals,
the estimated covariance matrix. The asymptotic precision of the estimators computed by
such routines are obtained under the normality assumption on loga; and loga;. Under
this assumption the estimators pr, my, m¥., XA]T, ii} are asymptotically independent with the

following asymptotic covariance matrices :
Vas [\/_ (Pr — p)
Vas [\/_ (mr — m)
Vis [VT (@7 —m*)| = (1-p)x,
)
)

= pi,

Vis [\/T(vech Y7 —vech X 1 = <2,

Vs [\/T(vech St —vech £)| = (1-—p),

where the elements of the matrix p(2 are equal to Cov (/T GijTs \/Tcﬁkl;p) = p(oikoj+0uo k),
for i,j,k,0l = 1,...,N, with ¥ = (0y;) (see e.g. GOURIEROUX, SCAILLET and SZAFARZ
(1997) chapter II). Note that vech (.) is the vector-half operator, which stacks the lower
triangular elements of an N x N matrix in a N(N +1)/2 x 1 vector. Since %7 and 3% are
symmetric, vech S and vech XA]*T contain all the unique elements of S and ii}, respectively.
An estimate of the asymptotic covariance matrix is obtained by replacing >, ¥* and p with

their sample-based counterparts.

ii) Constrained estimation

Let us now turn to the model constrained by :
={3u,n:m* =m+pe, X*=X+nee'}, (10)
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without imposing the positivity or negativity of 7 in order to be compatible with either
identifiability condition A 5 or A 6.

Under the null hypothesis Hy, efficient moments estimators of . and 7 are easily derived using
weighted regressions. An estimator i of u can be computed by applying quasi-generalized

least squares to the linear model :
il — i = ie + 0,
with :

Ev = 0,
Vo = (1 - ﬁT)i;‘ + ﬁTiT-
An estimator 7y of 7 is obtained by a quasi-generalized least squares procedure applied to :
vech % — vech S = ne + v,
with :
Ev = 0,
Vv = (1 - ]/D\T)Q; —I—ﬁTQT.

The goodness of fit of each regression can be measured thanks to the residual sum of squares.

More precisely the two statistics :

e ~ ~ A\ gk N T 5 0
&r = T(vech 3% — vech Sp — fire)
AL Al ~. = .
[(1 — ) + pTQT] (Vech ¥ —vech ¥p — 77T€> 5 (12)
are equal to T' times the residual sum of squares provided in a standard output of linear

regression packages. The general properties of least squares estimators lead to the following

result (GOURIEROUX and MONFORT (1995) p.150).



Property 1 : Under the no arbitrage restriction Hy, the two statistics &7 and & are

asymptotically independent, and distributed as :

Er 5 3N -1),

br 5 XQ(W_Q:XQ(w»

The test procedure of the no arbitrage restriction Hy consists in accepting the null hypothesis
if & = &ir+éor < Xosy (W) , where x3s, (W) denotes the 95% percentile of
the chi square distribution with M%M degrees of freedom, and in rejecting it otherwise.
When the null hypothesis Hj is rejected, we can further examine if it is due to the mean
or the variance by comparing the values of the statistics &1 and &> normalized by their

critical values Xgsq (N — 1) and x3se (N(A;*l)) respectively.

III Multiregime models

A The model

The specification presented hereabove is based on the assumption that the observed values
of the disturbance function H; are either larger or smaller than one for any time-to-maturity
u. What has to be done if the observed disturbance functions come across the value one as
observed on Figure 1 ?

As before, we may add some flexibility to the initial model to take into account this infor-
mation provided by the data. In Section I, this was done by taking time varying values of
the random function while maintaining the two regime setting. We now consider a further
extension by introducing several regimes.

There are a priori 2V observable regimes depending on “highs” and “lows” across the ma-

turities. We denote by €;(u) the regime-by-maturity indicators :
e(u) =1, if Hy(u) > 1,
e(u) =0, if Hy(u) <1, u=1,...,N.
A global regime corresponds to a sequence of 0 and 1 :

A:{ilv"'viN}C{Ovl}Nv

10



and the indicator of such global regime is €;(A) :
a(Ad) =1 <= {a(l) =1i,...,&(N) =in}.

The only effective regimes are the ones with strictly positive probabilities : p(A) > 0.
We do not introduce any constraints on these probabilities except the usual condition :
> 4p(A) = 1. In particular we neither assume the independence of the regime-by-maturity
indicators, nor their equidistribution.

Finally we introduce the levels in each regime h{!(u) such that :

Hy(u) = 3 e/(A)hf (u). (13)

A

It remains to specify the distributions of the latent processes : (et(A), hi, Ava,rying). We

assume :
A1l (et(A), hit, A Uarymg) are independent and identically distributed.
A’ 2 (¢(A), Avarying), (hf,Avarymg) are independent.

A’ 3 (&(A), Avarying) is a sequence of independent variables with multinomial distribution

of parameter p(A), A varying.

B No arbitrage restrictions

In this multinomial framework, we can parallel the discussion on the role of information
presented in the two regime model (Section IIT). As discussed in the Appendix, when in-
formation on the future regime and the future levels are not available to anybody, the no
arbitrage assumption has no additional incidence. In the other two cases we can still de-
rive implications from no arbitrage using standard arguments. Indeed, we know (see e.g.
EKELAND (1979) p. 70, DUFFIE (1988) chapter II) that no arbitrage is equivalent to the

existence of state prices g/}, such that :

B(tvt+u) = Zqzé-li-lBA(t_‘_ 17t+u)a
A
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where BA(t + 1,¢ + u) denotes the value at date t + 1 in regime A of the discount bond
which matures at date ¢ + u. Since B(t,t + 1) is the price of the asset delivering one
money unit at date t + 1 (i.e. the price of the riskless asset), we deduce that there exist

i =qf\,/B(t,t +1) > 0 such that Y, 74, =1, and :
B(t,t+u) = B(t,t +1)> m Bt + 1,t +u), Vu.
A

The probability W{L}H is the risk-neutral probability to be in regime A at date t+1 conditional
to the information available at ¢. Taking into account the dynamics of the discount bonds :
BA(t+1,t +u) = b (u—1)B(t,t +u)/B(t,t + 1), we immediately get the no arbitrage

constraints :
It €10,1] : Zwt =1, ZwAhA ) =1, Vu, (14)

which extend the restrictions (4).

The coefficients 7/ are not necessarily unique. They are uniquely determined as soon as the
number of effective regimes is less or equal to the number N of maturities. Such condition
corresponds to market completeness. In the case of completeness and asymmetric informa-
tion, the risk neutral probability will be unique and will be perceived by the econometrician

as a stochastic variable.

C Inference procedures

It is important in practice to determine the number and types of existing regimes. For
instance, if we observe only two regimes with significant probability weights, we are in a
binomial framework. Indeed if we have for example six maturities (N = 6) and the regimes

are {1,1,1,0,1,0},{0,0,0,1,0,1} (exactly opposite because of no arbitrage), we have :

Regime 1 :

H1)=h(1)>1, H2)=h2)>1, HQB)=h(3)>1
H(4) = h*(4) <1, H(5)=h(5)>1, H(6)=h"(6)<1



Regime 2 :

H(1)=h*(1)<1, H2)=h*"(2) <1, H(3)=hr*3)<1,
H(4) = h(4) > 1, H(5)=h*(5) <1, H(6)=h(6)> 1.

In Section II, we have assumed that h;(u) > h;(u) holds for all u. These inequalities are
not a consequence of no arbitrage and we can get hi(u) < hj(u) for some u, as shown in
the previous example. In the multiregime case, the only constraint on the location of the

disturbance function with respect to the one implied by restrictions (14) is the following :

For any time-to-maturity u, there exists at least one regime with positive probability such

that h{'(u) > 1, and one regime with positive probability such that hf*(u) < 1.

All regimes are observable by construction, and the probability of occurrence of regime

A ={iy,...,inx} can be estimated by :

R 1
pT(A) = f ZIEt(l):’il .. -Iet(N):iN' (15)
t=1

Similarly the first and second order moments of the levels of 4! can be estimated consistently
from their empirical counterparts regime by regime as discussed in Section II.

This nonparametric approach allows to examine if the number of regimes is indeed equal to
two, i.e. if the binomial model is adequate, and to test if the two values of the disturbance
function satisfy the constraints induced by no arbitrage. When the binomial model is rejected
this approach provides insights on the type of dynamics to model and the direction for further

theoretical development of term structure models.

D Test of the no arbitrage restrictions
Is it possible to test for consequences (14) of no arbitrage :
It € 0,1]: 3wt =1, Y 7w hi(u) =1, Vu,
A A

in this general framework ? As in the two regime case, we have to remember that we

only observe one regime at one date; for this reason, we can only identify the marginal

13



distributions of the disturbance functions (h{*(u),u = 1,...,N), A varying, and not their

joint distribution.

Property 2 : The no arbitrage restrictions (14) only imply constraints on the identifiable
marginal distributions in the two regime case. In particular, they are not identifiable in more

than two regimes.

This result is easy to understand from the examples of two and three regimes.

In the two regime case, the no arbitrage restriction writes :
mrhy (u) + 7ihi(u) = 1, Vu,

or equivalently :
2

s
W) — 1= "1 B3 (), Vu.
¢
Therefore, by taking logarithms of both sides, it is possible to derive some constraints
between the marginal moments : FElog |h}(u) — 1|, Elog|h?(u) — 1| (as already seen in
Section II).
In the three regime case, we get similarly :

() — 1= 751~ hi(w) + 7%

It is no more possible to find a nonlinear transformation of h;(u) — 1, whose expectation
admits a decomposition as a function of marginal moments of 1 — h?(u), 1 — h3(u).
We may only consider relation (14) in a model a priori submitted to identification constraints.

For instance, if we assume that, under no arbitrage, the risk neutral probabilities and the

disturbance functions are uncorrelated :
A’ 4 : Cov[r{, hi{(u)] = 0, VA, u,
then we deduce from (14) :
> ElMER (w)] =1, Vu,
A
= Inte0,1]: > 7t =1 Y 7EMhi)] =1, Vu.
A

A

Such a constraint under a mixed form may be tested by standard methods (GOURIEROUX

and MONFORT (1995) chapter 18).
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IV  Empirical Results

In this section, we examine how multiregime models perform on US term structure data.
The data are drawn from the file of McCuLLOCH and KwON (1993)! corresponding to 465
months from 12/1947 to 08/1985. We consider time-to-maturity « from one to 17 months.

A The observed regimes

Figure 1 represents the observed values of the disturbance functions (H;(u), u =1,..., N),
t=1,...,T, computed from equation (1) (7" = 464, N = 17).

Using the multiregime model described in Section III, we find 55 different regimes with at
least one observation in each regime. We show their estimated probabilities in Figure 2. The
two largest values are 44.61 % and 12.93 % (207 dates and 60 dates divided by 464 dates).
All other values are below 4 %. In particular, the values ranked third, fourth and fifth are
equal to 3.88 %, 3.88 % and 3.66 %, respectively. We give in Table I the structure of the
observed regimes for a probability of occurrence larger than 1 %.

The two more frequent regimes correspond exactly to the binomial model of Section I with a
disturbance function uniformly larger than 1 in the first regime, uniformly less than 1 in the
second one. These regimes account for 57.54 % of the total probability mass. The observed
disturbance functions of the next three regimes are greater than 1 for short maturities and
less than 1 for longer maturities; they cross only once the value 1 after four, two, and six
months, respectively.

To have further insight into the effects of the regimes on the discount bond prices, it is
worth looking at the average behavior of the disturbance functions. Indeed, according
to the model, if we start from a flat term structure of interest rates at date ¢t — 1, i.e.
Vu, B(t — 1,t + u) = exp(—(u + 1)c) for some constant ¢, the next period bond with
the same maturity will take value : B(t,t + u) = exp(—uc)H;(u), and the corresponding
interest rate : r(t,t +u) = ¢ — + log Hy(u). Hence by examining the means of the function
Bi(u) = —<log Hy(u) regime by regime, we can deduce which effects the regimes have on
average on the term structure. For example, a constant beta corresponds to a parallel shift

of the term structure, a linear effect to a modification of the slope, .... It can be seen from
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Figure 3 that the first regime has a negative effect (almost linear at the long end of the
term structure) while the second regime has a nonlinear positive effect. Other regime effects
are irregular and rather mixed by maturity. Besides the means of the beta function are

increasing with the maturity for most of the regimes.

B Constraints implied by no arbitrage

Let us now consider the test of the constraints on the moments implied by no arbitrage.
This test cannot be applied to more than two regimes since we have too few observations for
the regimes other than regimes 1 and 2, and because of the identification problems discussed
in Section II1.C. Therefore we focus on a two regime setting applied to the regimes with the
two highest estimated probabilities.

The SURE routine yields first the estimates my, m}, EAJT, f]i} Next we compute the two
statistics &7 and &p. The residual sum of squares are respectively equal to 3.363 and
9.195 which leads to a very strong rejection of the null hypothesis Hy (as these sums are
multiplied by 7' = 464 to derive the statistics) and hence of the no arbitrage restrictions.
This is not surprising since the difference between the estimated means my(u) and mi.(u),
is clearly nonlinear (Figure 4) and in particular not constant. The same remark applies to

the difference between the estimated variances ., and 7, 1 (Figure 5).

V Conclusion

The statistical inference tools and visual inspection of actual empirical disturbance functions
for US term structure data reveal that the binomial Ho and LEE model is misspecified. We
have proposed in this paper two extensions of this basic model by allowing the disturbance
function to be random in each regime, and by increasing the number of regimes. We have
also discussed the constraints implied by no arbitrage in this more general framework.

Despite the misspecification of the HO and LEE model, the empirical analysis shows that
two regimes in the sample are much more frequent than others. This would suggest that

the basic assumptions of the model on the number of regimes were correct. However the
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restrictions implied by no arbitrage are clearly not fulfilled when these two regimes are

considered.
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Appendix

We derive in this Appendix the implications of the no arbitrage assumption when neither
information on the future levels, nor on the future regimes are available.
Let us take a portfolio of N discount bonds and denote by é,, u = 1,..., N, the asset
allocation in the portfolio. The no arbitrage assumption means that a portfolio with a non
negative value at the next date and a positive probability of a positive price at that date
has necessarily a positive price. Formally :

N

> 6Bt t+(u—1)) >0  as,

u=1

N
and P |) 6,B(t,t+ (u—1))>0| >0,
u=1

N
implies > 6,B(t —1,t —1+u) > 0.

u=1

By taking into account the evolution of the term structure, we get :

N
Y 6B(t—1,t—14+u)H(u—1)>0  as,
u=1
N
and P |) 6,B(t—1,t—1+u)H(u—1)>0|>0,
u=1

N
implies > 6,B(t —1,t —1+u) > 0.

u=1

Let us first consider the two regime model of Section II. Because of assumption A 4, the

condition :

N
Y 6uBt—1,t—14u)H,(u—1)>0 a.s.
u=1

is equivalent to :

N
Y 6Bt —1,t—14u)h(u—1)>0, Vh, with h(0) =1,h(u) > 1,Vu, (16)
u=1
and :
N
Y 6Bt —1,t—14+u)h*(u—1)>0, Vh, with h*(0) =1,h"(u) <1,Vu. (17)
u=1

Since B(t — 1,t — 1 4+ u) and H;(u — 1) are non negative, we only have to verify that all §,

are non negative. In order to do so, we first take a sequence of functions h such that, for a
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given ug > 1, h(up) tends to infinity, and the other components are fixed. We deduce that
Suo+1 must be greater or equal to zero in order to keep the non negativity in (16). Therefore
we obtain 6, > 0, Vu > 2. Besides if we take a sequence of functions A* such that, for any

u > 1, h*(u) tends to zero, we get the non negativity of é;, from condition (17).

Finally thanks to the condition : P i 6,B(t,t 4+ (u—1)) > 0| > 0, at least one of the com-
ponents 8, of the asset a,lloczugilon is positive and therefore the condition
i 6,B(t,t + (u—1)) > 0 is automatically satisfied.

q{ifé conclude that there is no additional constraints implied by the no arbitrage assumption.

The same conclusion holds for the multiregime case where the degree of market incomplete-

ness is still greater.

20



Tables and Table legends :

maturity |1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | prob. (%) | cumul (%)
regime 1 + + 4+ + + + + + + + + + + + +  + + | 4461 44.61
regime 2 - - - - - - - - - - - - - - - - - 12.93 57.54
regime 3 + + + 4+ - - - - - - - - - - - - - 3.88 61.42
regime 4 + 4+ - - - - - - - - - - - - - - - 3.88 65.30
regime 5 + + 4+ 4+ + + - - - - - - - - - - - 3.66 68.96
regime 6 + - - - - - - - - - - - - - - - - 3.45 72.41
regime 7 + + 4+ - - - - - - - - - - - - - - 3.02 75.43
regime 8 + + + + + - - - - - - - - - - - - 2.37 77.80
regime 9 + + + + + + 4+ 4+ + + - - - - - - - 2.16 79.96
regime 10 | - + + + + + + + + + + 4+ + + + + + | L72 81.68
regime 11 | + + + 4+ + + + + + + + + + + - - - 1.51 83.19
regime12 | + 4+ + + 4+ + + + 4+ - - - - oo 1.08 84.27
regme 13 | + + + + + + + + + + + + + - - - - 1.08 85.35
regime 14 | + + + + + + 4+ 4+ - - - - - - - - - 1.08 86.43

Table I : Structure of observed regimes and estimated probabilities

The listed regimes correspond to regimes with an estimated probability of occurrence (ex-
pressed in percents) larger than 1 %. The column labelled cumul gives the probability of
occurrence cumulated over the regimes, while maturity refers to time-to-maturity from 1 to
17 months. A plus indicates that the value of the observed disturbance function H;(u) is
above one (i.e. the regime-by-maturity indicator €;(u) is equal to one) and a minus below

one (i.e. the regime-by-maturity indicator €;(u) is equal to zero).
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Figure legends :

Figure 1 : Observed values of the disturbance function
The observed values of the disturbance function H;(u) are plotted for monthly US term
structure data (dates ¢t = 1,...,464 from 01/1948 to 08/1985) and for time-to-maturity u

from 1 to 17 months.

Figure 2 : Estimated probabilities
This figure shows the estimated probabilities for the 55 observed regimes ranked in a de-

creasing order.

Figure 3 : Estimated means of the beta function

Estimated means of the beta function §;(u) = —21log Hy(u) are displayed for the five ob-

U

served regimes with the highest probabilities of occurrence.

Figure 4 : Estimated means and difference

The estimated means mq(u), mk(u) of the reparametrized disturbance functions log oy (u)
(high regime), log o (1) (low regime), and their difference m?.(u) —my(u) are plotted against
time-to-maturity u. A test of the no arbitrage restrictions is obtained by examining whether

the difference is statistically constant through time-to-maturity.

Figure 5 : Estimated variances and difference

This figure plots the estimated variances Gy.r, 0, r of the reparametrized disturbance
functions log a;(u) (high regime), log a;(u) (low regime), and their difference &}, 7 — Guu,r
against time-to-maturity u. If the no arbitrage restrictions hold, the difference should not

be statistically different from a straight horizontal line.
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Notes :
1. The data file ZEROYLD1 can be downloaded from the web site

http://www.cob.ohio-state.edu/dept/fin/osudown.htm. The Gauss programs developped

for this paper are available on request.
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