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Abstract. This study examines the dynamics of capital stocks distributed among

several nodes, representing different sites of production and connected via a

weighted, directed network. The network represents the externalities or spillovers

that the production in each node generates on the capital stock of other nodes. A

regulator decides to designate some of the nodes for the production of a consump-

tion good to maximize a cumulative utility from consumption. It is demonstrated

how the optimal strategies and stocks depend on the productivity of the resource

sites and the structure of the connections between the sites. The best locations to

host production of the consumption good are identified per the model’s parameters

and correspond to the least central (in the sense of eigenvector centrality) nodes

of a suitably redefined network that combines both flows between nodes and the

nodes’ productivity.
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nomic centrality measures.
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1. Introduction

There is a growing interest in the literature in the study of the economic effects

of heterogeneous interactions of different entities. Multisector growth models with

externalities (e.g., Benhabib et al., 2000), metapopulation models of interconnected

natural resources (e.g., Sanchirico and Wilen, 2005), and network models of various

kinds (e.g., Ballester et al., 2006, Elliott and Golub, 2019) are examples of this trend.

In this paper, we take a network perspective in studying a multisector growth model

with externalities.

We consider a growth model where production is distributed among several loca-

tions, different for productivity, and connected by the fact that production in one

engenders positive externalities on the production of the others. A single agent aims

to localize the production of a consumption good, to maximize the sum of the sites’

utility from consumption.
1
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This work develops a simple dynamic model where the n nodes of a weighted,

directed network represent the n sites where the capital stock is accumulated, and

the weights on the edges between two nodes represent the externalities of production

in one node on the production in the other. Specifically, it aims to show how the

structure of the network and other parameters of the system affect the agent’s decision

in the choice of one or more nodes/locations for the production of the consumption

good.

As the primary contribution to the literature, this study reveals that when the

network is strongly connected, and the agent is sufficiently “patient” - which in the

context of generalized growth theory, means their rate of discount is close to a critical

discount rate1 - the optimal closed-loop strategies exhibit linearity in the stock. This

is accompanied by the presentation of an analytical formula for such strategies, as

detailed in Theorems 1 and 3.

At optimum, independently of the assignment, the different site stocks are evalu-

ated via a constant common vector of relative prices that proves to be the eigenvector

centrality of another related network that combines the spillover flows and the sites’

net rates of growth. The effect of these two forces is jointly captured by the adja-

cency matrix of such a modified network, that is the sum of the adjacency matrix

of the original network and the diagonal matrix of net productivities of sites.2 It is

proven that the best allocation of the production of the consumption good is at the

most peripheral nodes, namely those with the least centrality. For initial stocks in a

cone contained in the positive orthant (and characterized through eventually expo-

nentially positive matrices, as in Noutsos and Tsatsomeros, 2008), such allocation is

placed immediately at the most peripheral node. For other initial capital stocks, the

allocation in the most peripheral node is best in the long run, and initially may have

to be placed otherwise, notably when the initial capital stock in the most peripheral

nodes is small. Furthermore, if the least eigencentrality is unique, the optimal control

is unique, at least when the initial stock belongs to such cone.

The model is further extended to enclose transportation costs (Theorem 3), whose

effect is to modify the eigencentrality and the associated hierarchy of nodes.

1See e.g., McFadden, 1973 for a discussion of critical discount rates in optimal growth theory.
2The resulting matrix may well have negative terms on the principal diagonal, although the other

entries remain nonnegative - i.e. it is a Metzler matrix - hence the associated network could be

referred to as a ”signed” network. Nonetheless, the fact that its adjacency matrix is Metzler helps

preserve several properties, such as the Perron-Frobenius property.
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The network structure is similar to the one used by Fabbri et al. (2024), with a

notable distinction: here, a single decision-maker selects an optimal policy, whereas in

Fabbri et al. (2024), multiple players, each occupying a node, engage in a competitive

differential game (see also Remark 5). The model is also related to the continuous

space-time growth models introduced by Boucekkine et al. (2013); Fabbri (2016);

Boucekkine et al. (2019) and the discrete space version developed by Calvia et al.

(2023). While some of the techniques employed overlap with those found in the afore-

mentioned papers, the economic models feature notable distinctions. In Boucekkine

et al. (2013) the model involves strategic iterations for natural resource extraction, in

Fabbri (2016) consumption takes place independently at each node3 (at every node,

a portion of the production is not invested, resulting in consumption that takes place

exclusively on-site). Furthermore, in the latter cases, explicit results are provided ex-

clusively for the symmetric scenario, involving the Laplacian in continuous time and

symmetric matrices in the discrete case. These disparities also manifest themselves in

the behavioral aspects of the system when examining its asymptotic state in response

to variations in the agents’ preference parameters (as discussed in Section 3.5).

The article is structured as follows: in Section 2 we introduce the model and discuss

its mathematical formulation. In Section 3, we present the main results of the article:

the introduction of the candidate optimal strategy (Theorem 1) and its admissibility

(Theorem 2), followed by a discussion (Subsection 3.5) on the asymptotic properties

of the system as the parameters of the agents’ preferences vary. Section 4.1 introduces

the extension of the model with transportation costs. Section 5 concludes. Appendix

A contains the proofs of the statements.

2. The model

We consider capital stocks available in different but interconnected areas that are

considered to be sufficiently different from each other (and sufficiently homogeneous

in their interior) so as to be described by different parameters. We then analyze a

growth model in which the production in one area generates non-negative spillovers

on stocks in the others.

3This hypothesis can be conceived as an economic model featuring infinitely high transportation

costs. The findings presented in Section 4.1, illustrating the extension of our results to include

explicit (iceberg) transportation costs, may be viewed as an intermediary model bridging the gap

between the two extremes: one characterized by infinite transportation costs and the other by

negligible transportation costs.
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Mathematically speaking, we consider a network G with n nodes – as many as

the number of areas – that we assume to be directed and weighted. We also set

N = {1, 2, · · · , n}.

We denote by Ki(t) the capital stock at node i at time t and by yi the local

productions that we assume to linearly depend on the used capital: yi = ΓiKi, where

Γi > 0 is a productivity coefficient. We suppose that production at a node j generates

the spillover bjiyj = bjiΓjKj at node i, where bij are given nonnegative coefficients.

They are the weight of the links of our network so that G will represent the spillover

network of our economy that we will suppose to be strongly connected. B = (bij) is

the adjacency matrix of G.

The budget constraint at each location i imposes that the augmented production

ΓiKi(t) +
∑

j ̸=i bjiΓjKj(t) is split at each time between the consumption ci(t) and

the investment in the location-specific investment Ii(t). We assume that investments

are reversible (i.e., each Ii(t) can be negative). If we suppose that the capital at the

location i decays at rates δi we get the evolution of the capital stock at node i:

K̇i(t) = Ii(t)− δiKi(t) = (Γi − δi)Ki(t) +
∑
j ̸=i

bjiΓjKj(t)− ci(t),

where i, j ∈ N , and in matricial form the system dynamics is given byK̇(t) = [B⊤Γ + Γ−D]K(t)− c(t), t ≥ 0

K(0) = k
(1)

where Γ is the diagonal matrix of productivities Γi, B = (bij), D is the (also diagonal)

matrix of decay rates δi, c(t) = (c1(t), · · · , cn(t))⊤

We require the capital stocks in every node to be nonnegative, that is

Ki(t) ≥ 0, ∀i ∈ N,∀t ≥ 0. (2)

Our goal is to identify the nodes where a certain agent, having free access to all,

deems it more profitable to produce the consumption good. The total consumption

of the agent is
n∑

i=1

ci(t) = ⟨c(t), e⟩

where e =
∑n

i=1 ei = (1, 1, · · · , 1)⊤, with ei the i-th vector of the canonical base in

Rn. We assume the agent maximizes the functional

J(c(·)) =
∫ +∞

0

e−ρtu

(
n∑

i=1

ci(t)

)
dt =

∫ +∞

0

e−ρtu (⟨e, c(t)⟩) dt, (3)
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with u the utility function

u(c) = ln(c) or u(c) =
c1−σ

1− σ
, σ > 0, σ ̸= 1

(the case of a logarithmic u stands for the case σ = 1), and ρ ∈ R is the discount

rate.4

Remark 1 In the above model, all externalities are non-negative. However, ex-

tensions of the Perron-Frobenius theory to matrices with some negative entries (for

example, eventually positive or eventually exponentially positive matrices, see e.g.

Noutsos and Tsatsomeros, 2008) can be used to extend the analysis to cases in which

positive and negative externalities coexist.

2.1. Primitives of the Network. Eigenvalues and eigenvectors of the matrix of the

system with null extraction, namely B⊤Γ+Γ−D, and of its transpose ΓB +Γ−D,

play a crucial role in the present study. Since by assumption the network G is strongly

connected, the matrix B is irreducible. Moreover, by hypothesis, B is non-negative.

Since Γ is diagonal with strictly positive values on the diagonal, the same properties

hold for ΓB, so that the matrix ΓB+Γ−D is again irreducible and has non-negative

values out of the diagonal (it is a Metzler matrix).

Lemma 1 The matrix ΓB + Γ − D has a simple (not necessarily positive) real

eigenvalue λ, strictly greater than the real parts of the other eigenvalues, and with a

unique positive associated normalized eigenvector η.

This fact is a direct consequence of the Perron-Frobenius theorem in its strong form

(see Bapat and Raghavan, 1997). The eigenvalue λ enjoying the above properties is

called dominant.

Remark 2 Since ΓB + Γ − D is irreducible and has non-negative non-diagonal

entries, B⊤Γ + Γ − D enjoys the same properties and then has a unique positive

eigenvector ζ associated to the same dominant eigenvalue λ.

3. Explicit Solutions

We here identify the set of parameters for which there exists an explicit solution,

and we do so employing Bellman’s Dynamic Programming. We denote by K(t; k, c(·))
the trajectory of system (1), and by J(k, c(·)) the objective functional (3), to point

4The results hold regardless of the sign of ρ. Although a negative discount rate is uncommon

in applications, a stream of literature considers “upcounting” (see e.g., Le Van and Vailakis, 2005,

Dolmas, 1996, and Rebelo, 1991).
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out their dependence from the initial stock k and the control c(·). We define the value

function

V (k) = sup
c(·),K(t;k,c(·))≥0

J(c(·)).

Indeed the positivity constraints (2) on the stock will be checked a posteriori. The

associated Hamilton-Jacobi-Bellman (briefly, HJB) equation, of which V (k) is the

candidate solution

ρv(k) = H(∇v(k)) + ⟨∇v(k), [(I +B⊤)Γ−D]k⟩ (4)

where H(p), with p in the positive orthant Rn
+ = [0,+∞)n given by

H(p) = sup
c≥0

{u (⟨e, c⟩)− ⟨c, p⟩} . (5)

is (convex and) possibly infinite valued. An explicit formula for H is provided in the

following Lemma.

Lemma 2 When p ∈ (0,+∞)n, then

H(p) = max
c≥0

{u (⟨e, c⟩)− ⟨c, p⟩} =


σ

1− σ

(
min

i
pi

)1− 1
σ
, σ ̸= 1,

−
[
ln
(
min

i
pi

)
+ 1
]

σ = 1.
(6)

The above formula holds also for p ∈ ∂Rn
+, when σ > 1, whereas

H(p) = +∞, p ∈ ∂Rn
+ σ ≤ 1.

Proof. See Appendix A. □

3.1. Optimal Strategies. We now provide an explicit solution to the model problem

in the assumption that θ, defined as

θ :=


ρ− λ(1− σ)

σ
, σ ̸= 1

ρ, σ = 1
(7)

is (positive and) small enough, as specified later.

Theorem 1 (Optimal Strategies) Assume σ ̸= 1. Let η be the dominant

eigenvector defined in Lemma 1, N∗ = argmini {ηi}, and θ > 0. Then:

(i) when admissible, the closed-loop optimal controls c∗ are all of type

c∗j = 0, ∀j ̸∈ N∗ and
∑
i∈N∗

c∗i (t) =
θ

mini ηi
⟨K(t), η⟩. (8)
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(ii) moreover, for all k ̸= 0, the value function of the problem in Section 2 is

V (k) =
θ−σ

1− σ
(min

i
ηi)

σ−1⟨k, η⟩1−σ; (9)

(iii) the associated optimal trajectory K∗(t) satisfies

⟨K∗(t), η⟩ = ⟨k, η⟩e(λ−θ)t (10)

Proof. See Appendix A. □

Remark 3 Observe that when there is a unique i for which ηi is minimal then

the described optimal control is unique. □

Remark 4 One can prove that in the case of logarithmic utility σ = 1 the optimal

control is obtained by setting θ = ρ in (8), while the value function is

V (k) =
1

ρ

[
ln

(
⟨k, η⟩ρ
mini ηi

)
− 1

]
.

The sketch of the proof is contained in Appendix A. □

Remark 5 Although the network structure is similar to the one in Fabbri et al.

(2024), the two models differ in several respects:

(a) The model outlined in Fabbri et al. (2024) addresses a distinct problem, that

is, the exploitation of a shared resource that traverses through nodes (where the

weights on the edges signify the intensity of the flow between connected nodes),

such as fish moving across territorial waters. This has significant implications for

the structure of the network: the underlying interaction dynamic (i.e., the dynamic

abstracting from new production and extraction) maintains the total quantity of the

resource (thus accurately reflecting the fact that the resource moves from one node

to another) and is therefore represented by a Laplacian matrix. This is not the case

here. Qualitatively, we can also observe that the spillovers in this model enhance the

node’s capital stock (positive spillovers/flows from neighboring nodes are possible,

but no negatives towards them), whereas in Fabbri et al. (2024), inflows and outflows

of the resource at a node can occur simultaneously.

(b) More importantly, in the present study a single decision-maker optimally

chooses actions across all nodes, while in Fabbri et al. (2024), multiple players each

occupy a node and engage in a competitive differential game. Consequently, in the

case of a single planner, it is possible to choose where to allocate the production of the

consumption good (all nodes are available), and the crux of the problem is deciding
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in which nodes it occurs. On the contrary, in the game the nodes where consump-

tion/extraction takes place are given (they correspond to each of the nodes occupied

by a player), production takes place necessarily at each occupied node because players

maximize separate utilities depending on local consumptions ci’s.

Nevertheless, the results of the two studies are consistent under the following per-

spective: in a game where a supervising planner has the sole authority to choose

which nodes are to be left consumption-free (see section 4.1 in Fabbri et al. (2024)),

they choose those with maximal (eigen)centrality, meaning the allocate players and

their consumption in the least central ones; this is consistent with the case of a single

planner, in which production is best allocated at nodes with minimal centrality.

Finally, it’s important to note that the model developed here can be considered

as one with null transportation costs and centralized consumption. In contrast, the

game can be interpreted as a model with infinite transportation costs and compulsory

local consumption. An intermediate framework, incorporating iceberg transportation

costs, is described in Section 4.1.

3.2. Examples. 5

The examples in this section are meant to explain how both the productivity of

a node and the strength of the connection with neighboring nodes can impact its

eigencentrality. We assume a network with three nodes, with the same depreciation

rate δ = 0.03, productivity rates Γ1 = 1, Γ2 = γ, Γ3 = 1.03, externalities b12 = b32 =

b23 = b31 = 1, b13 = 1.1, b21 = α. The parameters α and γ are either fixed or variable

in each example. The network is represented in Figure 1.

Figure 1

5The code of the simulation can be found at https://sites.google.com/site/

giorgiofabbri1979/code?authuser=0
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3.2.1. Example 1. We here consider a fixed productivity rate Γ2 = γ = 1.1 (that

implies that site 1 is slightly less productive than site 3, which is less productive than

site 2), and a varying externality b21 = α ∈ [0, 3]. We intend to show how the choice

of the consumption node changes with the externality rate α, accordingly with the

results in Theorem 1.

The optimal node of choice as a function of α is depicted in Figure 2. For low

values of α, the preference is for node 2, despite its higher intrinsic productivity Γ2

compared to the other nodes. This is because the production at node 2 has a small

(with α) positive impact on neighboring nodes’ production. Consequently, depleting

the capital stock at node 2 results in less overall utility loss than depleting the capital

of another node.

Figure 2. The node cho-

sen for consumption for a

varying α.

Figure 3. The components

of the vector η for a varying

α.

As α increases, the centrality of node 2 increases until it becomes more advanta-

geous to shift production to node 3. This shift occurs because the direct externality

of node 1 on node 3 surpasses that of node 3 on node 1, making node 3 more central.

With further increases in α, the indirect externality of node 3 on node 1—meaning the

impact of node 3 on the production of node 1 through its influence on node 2—grows

due to the strengthening link between nodes 2 and 1. This results in node 3 becoming

more central than node 1, making node 1 the best choice for the production of the

consumption good.

The thresholds for α at which a change takes place correspond to changes in the

corresponding minimal (eigen)centrality ηi, as depicted in Figure 3
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3.2.2. Example 2. In this second example we keep a fixed b21 = α = 1, and let the

productivity Γ2 = γ vary in [0, 3].

The effect of the variation in productivity γ on the choice of the node where to

produce the consumption good is represented in Figure 4. For small values of γ, node

2 is less productive than the other two, and this feature dominates: the lesser impact

on the system’s profitability occurs when consumption takes place at node 2.

Figure 4. The node cho-

sen for consumption for a

varying γ.

.

Figure 5. The compo-

nents of the vector η for a

varying γ.

As γ increases, the productivity of node 2 increases, along with its centrality,

making it advantageous to move production to another node. The choice between

the two remaining nodes is determined by two factors: the higher productivity of node

3 (Γ3 > Γ1) and the greater externalities of node 1 on node 3 compared to the reverse

of node 3 on node 1. For intermediate values of γ, the second effect prevails, while

for sufficiently large values of γ, the first effect dominates: for large γ, the externality

resulting from production in node 2 outweighs the remaining externalities, making it

optimal to establish production at node 1. The thresholds for γ at which a change

takes place correspond to changes in the corresponding minimal (eigen)centrality ηi,

as depicted in Figure 5.

3.3. Admissibility. From now on, we assume that there is a unique minimal (pos-

itive) coordinate of the eigenvector η.6 By possibly renaming the nodes, we can

6Note that the assumption is not extremely restrictive, as the vectors η for which minima are

multiple constitute a subset of Rn of zero Lebesgue measure.
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assume

η1 = min
i

ηi.

Next, we discuss the admissibility of the optimal control described by (8). The

following remarks come in handy:

(a) The closed-loop equation (briefly, CLE), namely the evolution system associ-

ated with the optimal control (8), has the form

K̇(t) = AK(t)

where A is the matrix

A = Γ−D +B⊤Γ− θ

η1
e1η

⊤. (11)

so that the optimal trajectory is given by

K∗(t) = etAk.

(b) It is also useful to recall that a matrix A is said eventually exponentially non

negative (resp., positive), with exponential index t0 if

etA ≥ 0 (resp., etA > 0), ∀t ≥ t0. (12)

All Metzler matrices are eventually exponentially non-negative with exponen-

tial index 0, and vice versa (see Lemma 3.1 in Noutsos and Tsatsomeros,

2008). Thus, condition (14) in Theorem 2 below is equivalent to requiring A

eventually exponentially positive with exponential index 0, from which non-

negativity of the trajectory is inferred, for every initial nonnegative stock k.

In the next Theorem, we discuss under which assumptions the control described

by (8) is admissible in terms of eventual exponential positivity of the matrix A.

Theorem 2 (Admissibility) Assume σ ̸= 1, θ > 0. The optimal control c∗

described in (8) is admissible (and then optimal) in the following two sets of assump-

tions:

(i) if A given by (11) is eventually exponentially positive, with index t0 = t0(A)

and the initial stock k lies in the cone K, defined by

K := et0A
(
Rn

+

)
. (13)

(ii) if θ satisfies

0 < θ < η1
Γjbj1
ηj

, for all j ∈ N, with j ̸= 1. (14)

and the initial stock k is in the positive orthant Rn
+.
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Proof. See Appendix A. □

Remark 6 The assumption of A being eventually exponentially positive yields

an implicit bound on the magnitude of θ. We refer the reader to Section 3.5 where

we discuss how such implicit condition can be further made explicit.

3.4. Long-run Stocks. We now analyze the long-term behavior of the stock, estab-

lishing whether the stock tends to stabilize over time around certain values at different

nodes. Note that for a null extraction, the convergence is toward the direction of the

eigenvector ζ associated with the dominant eigenvalue λ, defined in Lemma 1 and

Remark 2. Here, we will explain how the equilibrium extraction reduces the growth

rate to λ− θ and modifies the direction of the associated eigenvector to ζ̂.

In the following lemma we establish a relationship between the eigenvectors and

eigenvalues of A⊤ to those of Γ −D + B⊤Γ (regardless of whether condition (14) is

met).

Lemma 3 Let η and ζ be respectively the (real) eigenvectors of the matrices ΓB+

Γ − D and its transpose, both associated to the dominant eigenvalue λ, as described

in Lemma 1.

(i) The vector η is an eigenvector of A⊤ associated with the eigenvalue λ − θ;

hence, there exists a real eigenvector ζ̂ of A associated with λ− θ. If θ > 0 is

small enough, then λ− θ is the dominant eigenvalue of both the matrices and

ζ̂ is a positive vector.

(ii) Consider a basis {ζ, v2, . . . , vn} of generalized eigenvectors of Γ−D+B⊤Γ, as-

sociated with the eigenvalues {λ, λ2, . . . , λn}. Then {ζ̂ , v2, . . . , vn} is a basis of

generalized eigenvectors for A associated with eigenvalues {λ− θ, λ2, . . . , λn}.
In particular, the eigenspace associated with λ− θ has dimension 1.

Proof. See Appendix A. □

We now establish that, in the long run, the optimal trajectoryK∗ converges towards

the direction of the eigenvector ζ̂ of A or, more precisely, that the detrended optimal

trajectory

Y (t) = e−(λ−θ)tK∗(t)

converges towards a multiple of ζ̂, provided that θ is small enough.

Proposition 1 Assume that either (i) or (ii) in Theorem 2 are satisfied. As-

sume also

0 < θ < λ− Reλ2,
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where λ2 is the eigenvalue with the highest real part among {λ2, ..., λn}. Then the

detrended optimal trajectory Y (t) satisfies

lim
t→+∞

Y (t) =
⟨k, η⟩
⟨ζ̂ , η⟩

ζ̂ (15)

Proof. See Appendix A. □

3.5. Bounds on Impatience of the Decision Maker. We have already noted that

the assumption of A being eventually exponentially positive, appearing in Theorem

2(i) and in Proposition 1, conceals an implicit bound on the magnitude of θ, embody-

ing “impatience” of the decision maker. Such interpretation is straightforward for a

logarithmic utility where θ = ρ and a small enough θ can be seen as the decision

maker being sufficiently patient.

We intend to provide a more explicit bound and try to verify the robustness of the

results of Theorem 2(i) for changes in agent preferences in terms of impatience.

Remark 7 It will not be restrictive to limit the analysis to the case of a non-

negative matrix ΓB + Γ−D. Indeed, this is a Metzler matrix. If there are negative

elements on the main diagonal, we can add to ΓB + Γ − D the matrix aI, and for

a big enough the resulting matrix ΓB + Γ − D + aI has the same eigenspaces (and

generalized eigenspaces) as ΓB + Γ−D but a spectrum which is shifted by a in the

complex plane. For our purposes, which primarily involve understanding the relative

ranking of the real parts of the eigenvalues of ΓB + Γ − D and its submatrices, as

well as the behaviors of the associated eigenvectors, there is no loss of generality in

assuming that ΓB + Γ−D is non-negative.

Remark 8 We recall the following facts:

(i) a matrix M is said to have strong Perron–Frobenius property if its spectral ray

ρ(M) is a (positive, real) simple eigenvalue, strictly larger than the norm of

all other eigenvalues, and associated to a positive eigenvector; for nonnegative

matrices, the condition on maximal norm can be replaced by ρ(M) larger than

the real part of all other eigenvalues;

(ii) the property (12) is equivalent to the following fact (Theorem 3.3 in Noutsos

and Tsatsomeros, 2008):

There exists a ≥ 0 such that A + aI and A⊤ + aI both have the strong Per-

ron–Frobenius property.
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Now we analyze what happens when θ grows, starting from a positive level close to

zero. Preliminarily, we observe that the feedback described in equation (8) naturally

extends to the limiting case of θ = 0 (even though the optimization problem is ill-

posed in this scenario), with c∗ = 0. In this situation, the system evolves with a matrix

A defined in (11) coinciding with that of the system without extraction ΓB +Γ−D,

implying ζ = ζ̂. As noted in Section 2.1, A is irreducible, and thus (since it is also

non-negative) it satisfies the strong Perron-Frobenius property described in Remark

8. Consequently, every detrended trajectory converges to a multiple of ζ, in view of

Proposition 1.

When instead θ is strictly positive, Lemma 3 indicates the two phenomena at play

for increasing values of θ:

(1) the eigenvector ζ̂ (which is ζ modified by the effect of consumption) may

cease to be contained inside the positive orthant; in this case, the trajectory

associated with A may bear negative or null components; possibly, this fact

takes place for θ surpassing a first threshold θ1 (yet to be determined, see also

Lemma 4);

(2) if θ surpasses the threshold θ2 := λ − Re(λ2), then λ − θ is no longer the

greatest eigenvalue of A; in this case, the trajectories of the system ruled by A

no longer converge towards the direction of ζ̂, the system becomes unstable,

and condition (12) fails to hold (although a trajectory starting on the direction

of ζ̂ may still be optimal).

In what follows we will prove that, at least in the case in which λ2 is real, the

threshold θ1 exists, we provide a characterization of θ1, and we show that

0 < θ1 ≤ θ2

meaning that, for increasing values of θ, the stability is lost after the modified domi-

nant eigenvector ζ̂ leaves the positive orthant.

Lemma 4 We define λ22 as the dominant eigenvalue7 of the (n − 1) × (n − 1)

matrix A22, obtained from A by removing the first row and the first column, and we

set θ1 = λ − λ22. If 0 < θ < θ1, then ζ̂ is a positive vector. If θ = θ1 then ζ̂ is

non-negative with null first component ζ̂1.

Proof. See Appendix A. □

7The matrix A22 is non-negative (see Remark 7), we can then apply the weak form of the Perron-

Frobenius Theorem and obtain that A22 has a non-negative real eigenvalue, larger (or equal) than

the real part of any other eigenvalue of A22.
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The next proposition orders the thresholds θ1, θ2 when λ2 is real.

Proposition 2 Suppose that λ2, the second (ordered in terms of the highest real

part) eigenvector of Γ − D + B⊤Γ is real. Then, as long as 0 < θ < θ1, we have

λ2 < λ− θ.

Proof. See Appendix A. □

The above proposition implies 0 < θ1 ≤ θ2, where θ1 = λ − λ22 and θ2 = λ − λ2

Therefore, Theorems 2 and Proposition 1 hold for 0 < θ < θ1.

4. Extensions and Games

4.1. An Extension of the Model with Transportation Costs. We now assume

that the intertemporal utility takes into account iceberg-type transportation costs

βi ∈ [0, 1), namely

J(c) =

∫ +∞

0

e−ρtu

(
n∑

i=1

(1− βi)ci(t)

)
dt, (16)

where β = (β1, · · · , βn)
⊤. A βi = 0 means that there would be no loss of consumption

goods during transportation, while βi = 1 would mean a complete loss. In this case,

the Hamiltonian function becomes

H̃(p) = max
c≥0

{u (⟨e, (I − B)c⟩)− ⟨c, p⟩} ,

where

I − B =


1− β1 0 · · · 0

0 1− β2 · · · 0
...

...

0 0 · · · 1− βn


and since ⟨c, p⟩ = ⟨(I − B)−1p, (I − B)c⟩, one has

H̃(p) = H((I − B)−1p) =


σ

1− σ

(
min

i

pi
1− βi

)1− 1
σ

, σ ̸= 1,

−
[
ln

(
min

i

pi
1− βi

)
+ 1

]
, σ = 1.

(17)

In this more general context, the results obtained for null iceberg costs can be repli-

cated. In particular the analog of Theorem 1 reads as follows.

Theorem 3 Assume σ ̸= 1, θ > 0, k ∈ Rn
+, and either set of assumptions:

(i) θ satisfies (14);
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(ii) k ∈ K, where K is defined by (13), and (12) is satisfied.

Then, the Value Function of the problem of maximizing (16) , subject to (1) is

v(k) =
θ−σ

1− σ

(
min

i

ηi
1− βi

)σ−1

⟨k, η⟩1−σ. (18)

Moreover, if we define

N∗
β = argmini∈N

{
ηi

1− βi

}
the closed-loop optimal controls are the vectors c∗ ∈ Rn

+ such that

c∗j = 0, ∀j ̸∈ N∗
β and

∑
i∈N∗

β

c∗i =
θ

mini
ηi

1−βi

⟨k, η⟩. (19)

Proof. See Appendix A. □

5. Conclusions

This study delves into a model of distributed capital stocks across nodes, each repre-

senting distinct production sites interconnected through a directed, weighted network.

The network is used to represent the spillover effects originating from production at

one site, impacting the capital stock of neighboring sites.

A primary aspect of the investigation revolves around a regulatory decision to

earmark specific nodes for consumption goods production to maximize cumulative

utility from consumption. Results highlight the complex relationship between opti-

mal strategies, capital stocks, and both the productivity of resource nodes and the

structure of their interconnections. The optimal locations to draw resources for con-

sumption corresponds to the nodes with the least eigenvector centrality in a redefined

network that merges node productivities with inter-node flows. The study emphasizes

the critical role of network structure and node productivity in shaping production,

consumption, and resource allocation decisions.

Some unresolved questions remain. The primary and most immediate one is what

transpires when the conditions outlined in Theorem 2 are not satisfied, leading to the

inadmissibility of the proposed optimal control. There are two potential reasons why

the theorem’s assumptions may not hold. Firstly, even if the parameter constraints

are adhered to, it is possible for the system to initiate from a state outside the cone

specified in the statement. One would be willing to understand, in this scenario, how

the dynamics is characterized and whether it is possible to determine whether the

system still converges to the steady state described in Proposition 1. The second

reason pertains to situations where the assumptions on the parameters, particularly
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concerning the agent’s level of impatience, are not fulfilled. This second scenario gains

more significance in the context of an extension that encompasses transportation

costs, particularly when these costs carry substantial weight.
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Appendix A. Appendix: Proofs

Proof of Lemma 2. Assume p ∈ (0,+∞)n. We show that the maximum in (6) is

obtained when consumption takes place only at the node(s) where prices pi are at

their minimum. More specifically, we set

N(p) = argmini{pi} ⊆ N, Ĉ(p) = {ĉ ∈ Rn
+ : ĉi = 0,∀i ̸∈ N(p)}.

We show that for every c ∈ Rn
+ there exists a ĉ ∈ Ĉ(p) such that

u (⟨e, c⟩)− ⟨c, p⟩ ≤ u (⟨e, ĉ⟩)− ⟨ĉ, p⟩.

Indeed, we can choose ĉ such that q :=
∑

i ĉi =
∑

i ci, and note that∑
i

pici ≥ (min
i

pi)
∑
i

ci = (min
i

pi)
∑

i∈N(p)

ĉi =
∑
i

piĉi,

where the last equality holds as pi = minj pj for all i ∈ N(p). As a consequence

max
c≥0

{u (⟨e, c⟩)− ⟨c, p⟩} = max
c∈Ĉ(p)

{u (⟨e, c⟩)− ⟨c, p⟩} = max
q

{
u (q)− (min

i
pi)q

}
,

and, since p ∈ (0,+∞)n, implies mini pi > 0

q∗ = argmaxq{u(q)− q(min
i

pi)} = (u′)−1(min
i

pi),

so that the maximum in (6) is attained at

c∗i = 0, ∀i ̸∈ N(p) and
∑

i∈N(p)

c∗i = q∗, (20)

providing the characterization of maximizers, and (6) readily follows.

Now we assume p ∈ ∂Rn
+, so that mini pi = 0. Then for σ > 1, the utility u is

bounded above by 0, and formula (6) extends to this case, with H(p) = 0. On the

other hand, when σ ≤ 1, and p ∈ ∂Rn
+, at least one coordinate of p is null, say, pj = 0.

Consider now the controls of type c = γej with γ ≥ 0. One has

u (⟨e, γej⟩)− ⟨γej, p⟩ = u(γ)− γpj = u(γ),

so that

H(p) = sup
c≥0

{u (⟨e, c⟩)− ⟨c, p⟩} ≥ sup
γ≥0

{u (γ)} = +∞.

□
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Proof of Theorem 1. We search for a solution of HJB of type v(k) = b
1−σ

⟨k, η⟩1−σ,

with ∇v(k) = b⟨k, η⟩−ση so that HJB would imply

ρb

1− σ
⟨k, η⟩1−σ =

σ

1− σ

(
min

i

∂v

∂ki

)1− 1
σ

+ ⟨∇v(k), [(I +B⊤)Γ−D]k⟩ (21)

=
σ

1− σ

(
min

i
ηi

)1− 1
σ
b1−

1
σ ⟨k, η⟩1−σ + λb⟨k, η⟩1−σ (22)

that is

b =

(
σ

ρ− λ(1− σ)

)σ (
min

i
ηi

)σ−1

= θ−σ
(
min

i
ηi

)σ−1

so that by (20) we derive∑
i∈N∗

c∗i =
(
b⟨k, η⟩−σ(min

i
ηi)
)− 1

σ
=

θ

mini ηi
⟨k, η⟩, c∗i = 0, i ̸∈ N∗.

We can then apply a rather standard verification technique (see for instance Flem-

ing and Rishel, 2012) to prove that the obtained controls are optimal and that v

is indeed the value function of the problem. The uniqueness of the optimal control

follows from the concavity of the value function along the directions which do not

belong in spani∈N∗ {ei}. □

Proof of Remark 4. The proof of the analog of Theorem 1 for the case of logarith-

mic utility is obtained by replicating the argument of the proof for a candidate value

function of type v(k) = a ln(k) + b and deriving the coefficients a and b from HJB

equation. □

Proof of Theorem 2. (i) The only property to check is

etA(K) ⊂ Rn
+.

By (12), we have that etA > 0 for all t ≥ t0, thus K ⊆ Rn
+. Moreover, by

definition k ∈ K implies k = et0Ak1 for some k1 ∈ Rn
+, which implies that, for

every s ≥ 0,

esAk = e(s+t0)Ak1 ≥ 0.

(ii) When instead the stronger assumption (14) holds, it is immediate to check

that the matrix A is a Metzler matrix, so that the trajectory X∗(t) = etAk

remains positive at all times, for every initial condition k.

□
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Proof of Lemma 3. The validity of (i) is straightforward. For the proof of (ii), we

observe first that any generalized eigenvector v corresponding to an eigenvalue λi ̸= λ

is orthogonal to η. Let us consider an eigenvalue λi ̸= λ (which implies i ≥ 2) and

let vi be an element of the generalized eigenspace Vi. There exists a positive integer

m such that (Γ−D +B⊤Γ− λiI)
mvi = 0. This leads to:

0 = η⊤
[
(Γ−D +B⊤Γ− λi)

mvi
]
=
[
η⊤(Γ−D +B⊤Γ− λi)

m
]
vi = (λ− λi)

mη⊤ vi.

Since λ ̸= λi, it follows that η
⊤ vi = 0, which means that η is orthogonal to vi. Given

the definition of A this fact ensures that vi is also a generalized eigenvector of A with

the eigenvalue λi.

Knowing that ζ̂ is an eigenvector for A with the eigenvalue λ−θ, it remains to note

that the set {ζ̂ , v2, . . . , vn} consists of linearly independent vectors. This is evident

since {v2, . . . , vn} are linearly independent (forming a subset of a basis) and ζ̂ belongs

to a distinct generalized eigenspace (of A) from all the Vi for i ≥ 2, ensuring it cannot

be expressed as a linear combination of the vi for i ≥ 2. □

Proof of Proposition 1. Since, thanks to Lemma 3 we know that the eigenspace

associated with λ − θ has dimension 1 and all other eigenvectors have a lower real

part than λ−θ, it is straightforward to prove that the detrended trajectory converges

to some real multiple of ζ̂. So there exists α > 0 such that

lim
t→+∞

Y (t) = αζ̂.

On the other hand, applying first the definition of Y (t) and then (10), we derive

⟨Y (t), η⟩ = ⟨e−λtX(t), η⟩ ≡ ⟨k, η⟩.

so that the left-hand side is constant in time. Consequently

⟨k, η⟩ = lim
t→+∞

⟨Y (t), η⟩ = ⟨ lim
t→+∞

Y (t), η⟩ = ⟨αζ̂, η⟩,

so that

α =
⟨k, η⟩
⟨ζ̂ , η⟩

.

□

Proof of Lemma 4 . We show first that, for an increasing value of θ, the first

component ζ̂1 of ζ̂ is the first (or among the first) to become non-positive. By con-

tradiction, assume that ζ̂ is non-negative, with ζ̂1 > 0 and ζ̂ℓ = 0 for some ℓ ̸= 1.

Since ζ̂ is an eigenvector of A of eigenvalue λ− θ, along the optimal evolution of the
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system starting at ζ̂, we have K(t) = etAζ̂ = et(λ−θ)ζ̂. In particular, if ζ̂ℓ = 0 then

Kℓ(t) = K̇ℓ(t) ≡ 0 for all t ≥ 0. Hence

K̇ℓ(t) = (Γℓ − δℓ)Kℓ(t) +
∑
j ̸=ℓ

bjℓΓjKj(t) ⇒
∑
j ̸=ℓ

bjℓΓjKj(t) = 0 (23)

at all times t. Since all terms in the last sum are nonnegative and Γj > 0, either bjℓ
or Kj(t) = et(λ−θ)ζ̂j is null. That implies ζ̂j = 0 for all j’s such that a positive flow

bjℓ exists from j to ℓ. Iterating the argument and using the fact that the network

is strongly connected, we obtain that ζ̂1 needs to be equal to zero as well. This

contradicts our initial assumption of a strictly positive first component8.

So, as we increase the value of θ, the first component to become non-positive is

necessarily the first one. When the first component is zero, the eigenvector has the

form ζ̂ = (0, ζ̂2) where ζ̂2 is a non-negative vector in Rn−1 and

(λ− θ)(0, ζ̂2) = A(0, ζ̂2) = (a1, A22ζ̂2)

so that a1 = 0 and λ − θ is an eigenvalue of A22. Increasing θ this condition is

satisfied for the first time when ζ̂2 is an eigenvector for the dominant eigenvalue λ22.

This proves the claim. □

Proof of Proposition 2 . We rewrite the matrix B⊤Γ+Γ−D as composed of four

blocks

B⊤Γ + Γ−D =

(
f11 F12

F21 F22

)
where f11 is a 1 × 1 matrix, F22 is a (n − 1) × (n − 1) matrix, and F12 and F21 are

respectively 1× (n− 1) and (n− 1)× 1 matrices. Consequently, A can be written as

A =

 f11 − θ
(
F12 − θ

(
η2
η1
, η3
η1
, η4
η1
, . . . , ηn

η1

))
F21 F22

 .

If v = (v1, . . . , vn) is an eigenvector associated to λ2 we have, restricting to the last

n− 1 components,

v1F21 + F22(v2, .., vn)
⊤ = λ2(v2, .., vn)

⊤.

8Note that the evolution of K1(·), differently from those of the other kj ’s, bears an additional

non-positive term

K̇1(t) = (Γ1 − δ1)K1(t) +
∑

j ̸=1 bj1ΓjKj(t)− θ
η1
e1η

⊤K(t)

so that K1(·) can be zero, together with its time-derivative, without implying all terms bjℓΓjKj(t)

are zero.
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Now two cases may occur:

(i) if v1 = 0 then (v2, .., vn) is an eigenvector of F22 but, since λ22 is the dominant

eigenvalue of F22 we have λ2 < λ22 < λ− θ and we get the claim;

(ii) if v1 ̸= 0 we can suppose (up torescaling) that v1 = 1 and we get

F21 = (λ2I − F22)(v2, .., vn)
⊤.

We observe that, since v is an eigenvector for Γ−D+B⊤Γ, which is irreducible, but

not the one associated with the dominant eigenvalue, then it necessarily has negative

coordinates among v2, . . . , vn.

If by contradiction, λ2 > λ22 then λ2I − F22 is invertible and its inverse can be

written as
1

λ2

(
1− F22

λ2

)−1

=
1

λ2

∞∑
k=0

(
F22

λ2

)k

so that

(v2, . . . , vn)
⊤ =

1

λ2

∞∑
k=0

(
F22

λ2

)k

F21

but, since F21 is non-negative and each term of the sum
∑∞

k=0

(
F22

λ2

)k
is non-negative,

that would imply that (v2, . . . , vn)
⊤ is non-negative, a contradiction. □

Proof of Theorem 3 . The proof is very similar to that of Theorem 1 so that here

we point out only the differences.

We search for a solution of HJB of type v(k) = b
1−σ

⟨k, η⟩1−σ, with ∇v(k) =

b⟨k, η⟩−ση, so that HJB would imply

ρb

1− σ
⟨k, η⟩1−σ =

σ

1− σ

(
min

i

1

1− βi

∂v

∂ki

)1− 1
σ

+ ⟨∇v(k), [(I +H⊤)Γ−D]k⟩ (24)

=
σ

1− σ

(
min

i

ηi
1− βi

)1− 1
σ

b1−
1
σ ⟨k, η⟩1−σ + λb⟨k, η⟩1−σ (25)

that is

b =

(
σ

ρ− λ(1− σ)

)σ (
min

i

ηi
1− βi

)σ−1

= θ−σ

(
min

i

ηi
1− βi

)σ−1

so that

q∗ =
∑
i∈N∗

c∗i =

(
b⟨k, η⟩−σ

(
min

i

ηi
1− βi

))− 1
σ

=
θ

mini
ηi

1−βi

⟨k, η⟩

The remainder of the proof proceeds as in the case of Theorem 1. □
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